

ASHESI UNIVERSITY

A Study on Whether Animations can help Algorithms

Students Understand Computational Complexity

Undergraduate Thesis

B.Sc. Computer Science

Immanuella Samuel Duke

2019

ASHESI UNIVERSITY

A study on whether animations can help Algorithms students understand computational

complexity

Undergraduate Thesis

Undergraduate Thesis submitted to the Department of Computer Science, Ashesi University

College in partial fulfilment of the requirements for the award of Bachelor of Science in

Computer Science

Immanuella Duke

April 2019

i

DECLARATION

I hereby declare that this Undergraduate Thesis is the result of my own original work and that

no part of it has been presented for another degree in this university or elsewhere.

Candidate’s Signature:

…………………………………………………………………………………………………...

Candidate’s Name:

…………………………………………………………………………………………………...

Date:

…………………………………………………………………………………………………...

I hereby declare that preparation and presentation of this Undergraduate Thesis were supervised

in accordance with the guidelines on supervision of Undergraduate Thesis laid down by Ashesi

University College.

Supervisor’s Signature:

…………………………………………………………………………………………………...

Supervisor’s Name:

…………………………………………………………………………………………………...

Date:

…………………………………………………………………………………………………...

Acknowledgements

I thank the Almighty God for seeing me through this entire process and for His sufficient

grace over me. I thank my supervisor, Dr. Korsah, for her advice and supervision and most

importantly for ensuring that I put in my best. Thank you, ma. I thank my family -my parents -

Mr and Mrs. Duke who listened to my endless lamentations. Finally, this is to my closest friend,

Ransford, whom I’m truly grateful for.

Abstract

This paper seeks to discover if using animations to explain computational complexity

to Algorithms students is better than using only handouts. As researchers in the field have

shown, theoretical topics such as computational complexity are often difficult for students to

understand especially because these students find the math and reductions too abstract to

understand. In this paper, the author developed a visualisation system with key animations to

improve students understanding. Students taking an Algorithms course were the participants of

the study. They were equally divided into a control group and experimental group. The study

took place in this order: all students took a class on computational complexity, then a pre-test,

the control group used handouts while the experimental group used the animation system to

learn computational complexity, finally everyone took a post-test. After running the Mann-

Whitney test, the results showed that there was no significant difference between the scores of

the control group and experimental group. Hence, both the handouts and animation provide a

similar level of understanding.

Table of Contents

DECLARATION ...i

Acknowledgements .. ii

Abstract .. iii

Table of Contents ... iv

List of Tables ... vi

List of Figures ...vii

1 Chapter One: Introduction ... 1

1.1 The Fundamental Data Structures and Algorithms knowledge area3

1.2 The Algorithms and Complexity knowledge area ...3

1.3 Theoretical topics in the Algorithms and Complexity knowledge area4

1.3.1 Computational Complexity ..4

2 Chapter Two: Related Work.. 7

3 Chapter Three: Methodology .. 12

3.1 Overview ... 12

3.2 Research methods .. 13

3.3 Software Development Life Cycle of the animation system.......................... 14

3.3.1 Requirements specification .. 14

3.3.2 Analysis and Design .. 15

3.3.3 Implementation ... 18

3.3.4 Testing and Evaluation .. 22

3.4 Procedure for executing the methodology .. 23

3.4.1 Participants of the research .. 23

3.4.2 Pre-test .. 23

3.4.3 Lecture Method ... 23

3.4.4 Mid-test ... 24

3.4.5 Handouts ... 24

3.4.6 Post-test .. 24

3.5 Empirical tool: Mann-Whitney U test .. 25

3.5.1 Applying the Mann-Whitney U test ... 26

3.5.2 Data Analysis: Performing Mann-Whitney U test in Microsoft Excel 26

3.6 Observational studies - Questionnaires ... 28

4 Chapter Four: Results ... 29

4.1 Research Findings .. 29

4.2 Discussion of Findings ... 30

5 Chapter Five: Conclusion and Recommendations .. 32

5.1 Application of results ... 32

5.2 Limitations of the study ... 32

5.3 Future work ... 33

REFERENCES ... 34

APPENDICES .. 37

List of Tables

Table 3-1: Table showing the order in which the study was carried out 13

Table 3-2: Table showing a portion of the data in Microsoft Excel 27

Table 3-3: Table showing the results of the Mann-Whitney test in Microsoft Excel ... 27

Table 4-1: Table showing a summary of the results from the questionnaire 30

List of Figures

Figure 3-1: Activity Diagram for the animation system ... 17

Figure 3-2: Use case Diagram for visualisation system .. 18

Figure 3-3: Diagram showing the animation for the P problem: m-colouring 19

Figure 3-4: Diagram showing the animation for the NP Problem - knapsack problem20

Figure 3-5: Diagram showing end of 3-SAT TO 3-colouring animation 22

Figure 3-6: Formula for Matt-Whitney U test[14] ... 26

1

1 Chapter One: Introduction

The Association of Computing Machinery (ACM) and Institute for Electrical and

Electronics Engineers (IEEE) Computer Society, who are concerned with establishing

curricular guidelines for undergraduate programs in computing, describe key knowledge areas

that must be incorporated in every university’s undergraduate computer science curriculum.

Two of these knowledge areas are Fundamental Data Structures and Algorithms, and

Algorithms and Complexity. On a high level, the Fundamental Data Structures knowledge area

involves implementing an algorithm, understanding various performance metrics and applying

these in solving real-world problems. The Algorithms and Complexity knowledge area

encompasses understanding problems and applying suitable algorithms to solve those problems.

According to Kehoe et al. [7], undergraduate Computer Science students face

difficulties when learning about these knowledge areas. There are several proposed reasons for

this difficulty: the theoretical and abstract nature of the teaching methods of the instructors [13]

and more commonly, the abstract nature of the concepts [5,13]. To ensure that algorithms

students clearly understand the theoretical topics before completing the course, researchers have

explored different possible teaching methods. These methods and techniques include but are

not limited to the use of metaphors and analogies [4], the use of case studies and quizzes in

interactive tutorials [5], and allowing students to create their animations or representations [6].

All these methods have attempted to improve students’ understanding of standard and

practical algorithms such as shortest path algorithms and sorting algorithms. However, little

research has been done in the area of using animations, to help students understand more

theoretical concepts such as the computational complexity of an algorithm (categorising

computational problems according to their difficulty levels), its methodology and how it relates

to other algorithms [7,11]. The research focuses on filling this gap by creating a visualisation

solution and measuring its success in helping undergraduate algorithm students understand how

to approach computational complexity problems and tackle them. This research addresses the

research question: Can animations enable algorithm students to understand computational

complexity better than using only handouts?

This question is crucial because it will help undergraduate computer science instructors

focus on the right tools and teaching methods to help their students clearly understand the

theoretical concepts in these knowledge areas. Also, students would be aware of the tools that

are most effective in helping them grasp computational complexity. Why is this knowledge

important? In the computer science industry, companies require that employees understand

algorithmic problem solving as well as the complexity of different problems [1]. Questions in

these areas are often asked during coding interviews [1]. Therefore, for undergraduate computer

science students to work in software technology companies, they must have good knowledge

of computational complexity.

To answer the research question proposed earlier, a study was carried out in the

Algorithms and Complexity knowledge area which is taught as part of a computer science

course at Ashesi University, Ghana. The following sections describe the objectives and

contents of these knowledge areas as discussed by ACM and IEEE and further explain

computational complexity. The subsequent chapters extensively explain the approach used to

answer this question.

1.1 The Fundamental Data Structures and Algorithms knowledge area

According to the ACM and IEEE Computer Society Computing Curricula 2013, Data

Structures and Algorithms emphasises implementing algorithms and data structures and using

them to solve real-world problems [1]. The knowledge area concentrates on helping students

understand the performance characteristics of the algorithms they develop and evaluate their

effectiveness in applications [1]. In a study conducted by ACM and IEEE at Princeton

University in 2013, only one-quarter of the students who took the course were Computer

Science majors. The others came from fields in science and engineering. These other students

have taken an interest in this knowledge area because it is not only useful to programmers but

anyone who wants to run faster and larger problems on their computers [1].

1.2 The Algorithms and Complexity knowledge area

According to the ACM and IEEE Computer Science Curricula 2013, algorithms are

fundamental to computer science and software engineering because the performance of

software applications depends on: (1) the algorithms chosen and (2) the appropriateness and

efficiency of the various layers of implementation [1]. The study of algorithms enables a person

to understand better the problems they are solving and develop possible techniques for solving

the problems (without considering the programming language or computer hardware) [1]. This

knowledge area - the subject of algorithms - aims to define the major concepts and techniques

needed to design, implement, and analyse algorithms for solving problems [1]. The knowledge

of algorithms is required in other areas of computer science such as databases, networking,

operating systems, security, programming languages, etc. [1]. Therefore, for computer science

students to fully understand and apply the concepts taught in other courses, they must correctly

understand the design, analysis, and implementation of algorithms.

Considering the reasons above, it is imperative that students gain a clear and thorough

understanding of algorithms. Hence, there is a need for the study of the Algorithms and

Complexity knowledge area.

1.3 Theoretical topics in the Algorithms and Complexity knowledge area

Theoretical topics in the Algorithms and Complexity concentration fall under

Theoretical Computer Science. Theoretical Computer Science, which merges both mathematics

and computer science, is a field that involves the design and analysis of computational methods,

shows that no efficient algorithms exist in certain scenarios, and examines the classification

system for computational problems [16]. Since computational complexity falls in the last

category – the investigation of the classification system for computational tasks, it is a subject

in Theoretical Computer Science.

1.3.1 Computational Complexity

Computational Complexity focuses on mathematical topics of computing that require

proofs and calculations to enable students to understand them. Some of these areas include non-

deterministic polynomial time problems (NP problems) [8], polynomial time problems (P

problems), non-deterministic polynomial time completeness problems (NP-Complete

problems), and non-deterministic polynomial time hard problems (NP-Hard problems).

1.3.1.1 P Complexity

Polynomial time complexity problems are decision problems whose outputs can be

verified in polynomial time by deterministic algorithms [8]. Deterministic algorithms are

algorithms which give the same output on each run of the algorithm. An algorithm is said to

solve a problem in polynomial time if its worst-case efficiency is O(p(n)) where p(n) is a

polynomial of the input size n and O represents the big-oh notation [8]. An example of a

problem in this category is the m-colouring problem where, given an undirected graph, and an

integer m, one must determine if the graph can be coloured with at most m colours in a way

that no two adjacent vertices are coloured the same [8].

1.3.1.2 NP Complexity

These are decision problems that are solvable in non-deterministic polynomial time [8].

That is, it can be solved by a non-deterministic algorithm that runs in polynomial time. There

are two stages of a non-deterministic polynomial-time algorithm [8]. First, the nondeterministic

(guessing) stage where we guess a possible solution to the problem and second, the

deterministic (verification) stage where we check whether the solution in the guessing stage is

a correct solution to the given input [8]. The output is a yes if this holds true. The time efficiency

of the verification step must be in polynomial time [8]. An example of an NP problem is the

0-1 knapsack problem where given the weights and values of n items and a knapsack with a

weight capacity, one must find the maximum value of the items such that the sum of their

weights is less than or equal to the weight capacity [8]. A condition is that no item can be broken

into pieces. A potential solution to such a problem can be verified in polynomial time.

1.3.1.3 NP-Completeness

This is a problem in NP that is as difficult as any other problem in the NP-Complete

class. Therefore, any problem in this class can be transformed (reduced) to another problem in

polynomial time. When a given problem is transformed to another problem within a given class

(such as the NP-Complete class), we say we have performed a reduction. This is often done

using mathematical proofs and logic. A decision problem, A, can be transformed to another

decision problem, B, if there is a function t, that transforms yes instances of A to yes instances

of B and all no instances of A to no instances of B. For instance, the 0-1 knapsack problem is

NP-Complete. It is polynomially reducible to any other problems in NP such as the bin packing

problem – which states that given n items whose sizes are positive rational numbers not larger

than one, put them in the smallest number of bins where each item must have a bin.

1.3.1.4 NP-Hardness

A hard problem is a problem with no known algorithm that solves it easily. Because of

this, the time to find the solution grows exponentially with the problem size. NP-Hard problems

are a class of decision problems that are at least as hard as the hardest problem in NP-Complete.

An example is the knapsack problem mentioned earlier in this paper.

2 Chapter Two: Related Work

In the field of Computer Science education and research, researchers have developed

numerous methods and explored different innovative ways of helping undergraduate students

better understand algorithms within the Algorithms and Complexity knowledge area. Forišek

and Steinová discuss an easy method of helping students learn algorithms with the use of

metaphors and analogies during lectures [4]. In their research, the authors study and develop

some metaphors that successfully enable students to grasp and visualise algorithms. From their

research, the approach is an efficient tool for helping students develop correct mental models

and understand topics better. However, Forišek and Steinová point out that there could be

gender and cultural barriers when using this approach in the traditional classroom. For example,

in Slovakia, ice cream is usually served by heaping scoops on a cone (one on top of the other)

[4]. In explaining the stack data structure, instructors use this metaphor and students often

clearly understand it. However, this could pose a cultural barrier to students outside Slovakia.

Also, instructors would need extra training to ensure that they use the right metaphors to explain

the algorithms – so that the metaphors are not shallow and misleading. For example, in

explaining the queue data structure, instructors often use a supermarket checkout line [4].

Although this metaphor correctly explains the first in-first out principle, it is inadequate when

it comes to explaining the actual implementation and time complexity of the algorithm. This

metaphor creates the false notion that when the first element is removed from a queue, the other

elements must move as well. Depending on instructors to convey correct metaphors can be

detrimental to the student’s learning – an instructor’s flawed metaphor could go unnoticed.

More so, metaphors and analogies are only a didactic tool that can help the teacher give a better

explanation[4].

Huang et al. attempted to avoid the risk of using flawed metaphors by developing an

approach that uses case studies and interactive tutorials to teach students algorithms[5]; this is

a much safer approach compared to Forišek and Steinová’s because Huang et al. avoid a

situation where students might misunderstand the metaphors or where instructors might use

flawed metaphors. In Huang et al.’s approach, students learn algorithms using quizzes, tutorials

and case studies. The paper focuses on the experience of the authors in teaching advanced data

structures and algorithms for year 2 students in the university. For three consecutive years, the

authors practised a different teaching pattern each year. In each of those years, 80% of class

time was devoted to the explanation of algorithms with case studies and examples on the

whiteboard [5]. The case studies were real-life problems where the algorithms taught in class

could be applied to find solutions. Students were given a list of tasks which involved writing

the execution results of each step of the algorithms taught in class. For the tutorial sessions, in

year 1, students were given the tasks to attempt before the tutorial, and during the tutorial, the

tutors checked the students’ answers only if the students wanted them to. In year 2, students

were asked to do the tasks in a quiz during the tutorial time while the tutors revised the answers

with the students after the quiz; and in year 3, students were asked to attempt a programming

task during the tutorial time and a quiz outside the tutorial time while the tutors helped only if

the students approached them[5]. To measure the impact of these approaches on the learning of

students, the researchers analyzed the final exam scores of the students. The results showed that

the approach in year 2 was relatively more beneficial – the quizzes in interactive tutorials had

a positive impact and made a difference in improving the learning performance of students[5].

This approach was found to be more beneficial than those used in year 1 and year 3. However,

the authors did not state the specific case studies used to teach the course; this makes it difficult

to apply the approach anywhere else.

The research work discussed above tackled the problem – helping undergraduate

students better understand algorithms – from the perspective of teaching the course as an

instructor. Other researchers believed that students were able to solve this problem themselves

and explored the possibility. For example, Hübscher-Younger and Narayanan focus on

improving student learning of algorithms by allowing students to create the algorithms

“representations” themselves. In the study, the students were given a pre-test and then asked to

create these “representations” (such as text, audio, video, graphics and animations). After the

exercise, they rated the submissions of their colleagues and took a post-test. Overall results

showed that creating and evaluating the algorithm visualisations had a positive impact of the

students’ learning; on average, they improved their score from pre-test to post-test by 30%

across all algorithms compared to their counterparts who either only made their own animations

or did not participate at all [6]. Although the results from the research were quite positive, it is

difficult to determine if this method can be used if the students do not adequately understand

the algorithm topics. In this case, they may be unable to create accurate representations or

evaluate those of their colleagues.

To prevent the possibility of students creating wrong representations, Reed developed a

“System for Studying the Effectiveness of Animations” (SSEA) which allows the user to view

animations while recording the viewer’s interactions and responses to questions about the

algorithm [12]. The questions are in two forms – the first is a group of questions at the bottom

of the animation which the user can respond to at any time, the next are pop-up questions that

the system can ask the user at any point in time. For each session, the system stores log files of

students’ answers and the type of interaction the user has with the animation[12]. These

interactions include pausing the animation, adjusting the speed and returning to a previous step

in the animation. This approach requires a researcher to analyse the log files, timings and

responses of students from the system. These results would then provide the student with areas

in which they require more learning and understanding. Like the previous papers (authored by

Forišek and Steinová and Huang et al.), Reed’s approach is incomplete without a standby

researcher/educator thereby making it expensive and inflexible. Still exploring the use of

visualization techniques to teach algorithms, Kehoe et al. study how students use animations

and other instructional materials to understand a new algorithm; and how animations can foster

successful learning [7]. From their studies, they discovered that when animations fail to provide

the desired benefits, then the presumption of how the animation could have helped needs to be

re-evaluated [7]. The authors used both quantitative and qualitative research methods to

determine how effective the animations were in enhancing student’s understanding. The

quantitative results showed that the animation group performed significantly better than the

non-animation group on the binomial heap exam. In questions where the students had to

perform operations on the binomial heap (insert, delete, etc.), the animation group clearly

outperformed the non-animation group [7]. Using animations to teach algorithms serves the

purpose of making an algorithm more accessible and less intimidating for students [7]. It also

helps in learning the procedural operations of algorithms [7]. The authors wonder whether

algorithm animation can be applied to understanding the complexity of an algorithm but do not

explore this question.

To continue with the work already done in the literature, it was important to discover if

computer animations, can help students better understand theoretical topics such as

computational complexity [3]. Enström and Kann’s study in KTH Royal Institute of

Technology is centred around using various techniques including assignments, quizzes, proofs

and some animations to explain technical topics such as NP-completeness and dynamic

programming. One of the problems identified by the researchers is that students do not know

the purpose of the NP-completeness reductions and so they are unmotivated to learn it. The task

of proving a problem to belong to a particular complexity class is not self-evident to students.

The researchers felt that they needed to show the importance of the course to students to give

them an incentive to learn it. The authors used an automated program assessment system and

an algorithm visualisation system to help the students better understand complexity. From the

discussion, although the visualisation was the least appreciated activity compared to the

motivational lecture, reduction computer lab and clicker tutorial questions, students received

them positively. The authors state that many complex algorithms can be more easily explained

using visualisations than by tracing the execution on the whiteboard [3].

However, there is a gap in using appropriate animations to aid learning of NP-

Completeness. Enstrom and Kann do not entirely explore this possibility, and their visualisation

software is unavailable for testing. To the best of my knowledge, no further research has been

done in using animations to teach concepts to use proofs for explanations. This research bridges

this gap.

3 Chapter Three: Methodology

3.1 Overview

To answer the research question posed earlier in this paper, an animation system was

developed with features to introduce the different categories of computational complexity, show

examples of the different algorithms in these categories, teach NP-Completeness reductions and

give practice exercises on computational complexity. Thirty-six computer science

undergraduate students in their third year were then recruited from the Algorithms Design and

Analysis course at Ashesi University. All the students took a pre-test to measure any

preliminary understanding of computational complexity. This was followed by a series of

lectures on the topic and a mid-test to measure the impact of the lectures on the students’

understanding. After the mid-test, the students were divided equally into two groups – one was

a control group and the other an experimental group. The control group used handouts to further

study computational complexity while the experimental group used the animation system. After

the different interactions, the two groups took a post-test. Finally, both groups filled a

questionnaire asking questions about their experience during the study. Since this study was

done as part of a course, all students were sent a copy of the handouts and animations system

after the study to prevent either group from being at a disadvantage.

Below is a table, Table 3-1, showing the order in which the research was conducted for

both groups.

Table 3-1: Table showing the order in which the study was carried out

Group 1 (control group) Group 2 (experimental group)

Pre-test

Lecture

Mid-test

Handouts Visualization system

Post-test

Questionnaire

3.2 Research methods

Some research methods were used to answer the research question and carry out the

research procedure outlined above. The primary research methods that correctly fit my research

are the implementation-driven method, experimental method described by Ayash in [2] and the

observational method. The implementation-driven research involves making adaptions and

improvements to a currently existing system; and the experimental method encompasses

measuring the effectiveness of the system in enhancing the understanding of a subject or topic.

The implementation-driven approach was included because the study involved

developing a piece of software that would contribute to answering the research question. That

is, by developing an animation system with certain features, it is possible to test if animations

helped students understand computational complexity better than using the handouts. The

experimental or empirical approach was adopted because of the experiments carried out (on the

control and experimental groups) and the sampling techniques used in the project. After

obtaining test results (pre-tests, mid-tests and post-tests) from the control and experimental

group, statistical tests were applied to obtain statistical evidence on the results and ascertain if

they were statistically significant or not. With regards to the observational studies, the students’

interaction with the software/handouts was recorded along with their challenges and behaviours

to provide insights into the effectiveness of the systems and any influential environmental,

cultural and gender factors that could skew the results. A questionnaire was issued to measure

the opinions of the students on the lectures and the handouts/animation system.

3.3 Software Development Life Cycle of the animation system

3.3.1 Requirements specification

The system contains basic features that would assist students in understanding

computational complexity. These attributes are essential for understanding the major

computational complexity concepts, especially reductions. Some of the features are:

• Illustrations that show how algorithms in different complexity categories work

• Examples showing how to perform P and NP reductions, so students can follow the

steps and replicate them as well as apply intuitions to sample questions. These examples

also include voice-overs that explain concepts alongside the animations.

• Test exercises for students to map and link problems to their corresponding

computational complexities as well as place problems in the correct category of

complexity.

• Practice exercises for students to test their general knowledge of computational

complexity. The answers are given along the way to assist students.

3.3.1.1 Functional requirements

1. The system shall provide a basic recap of the lecture on computational complexity

2. The user should see an animation of a sample P-problem and NP-problem: M-colouring

and the knapsack problem respectively in this case.

3. The system should have animations and explanations for reductions.

4. The system should have a feature to test users’ understanding of how to categorise

problems in different complexity classes.

5. The system should have exercises to test students’ knowledge and strengthen the users’

understanding of the concepts.

6. The system should be fun and interactive for students to use.

3.3.1.2 Non-functional requirements

1. The system should be easy to operate and quick to respond to any action the user takes.

For example, when a button is clicked, there should be quick feedback for the user.

2. The system should be reliable. That is, it must not shut down or crash while the user is

interacting with it.

3. The system should be effective. That is, it should actually help in improving students

understanding of computational complexity.

3.3.2 Analysis and Design

In this section, the procedure for designing the software is discussed. The use cases and

diagrams showing the connections within the animation system are shown.

3.3.2.1 Use cases

3.3.2.1.1 Example 1

Kofi is a third-year Computer Science student taking the Algorithms Design and

Analysis course. He is currently learning computational complexity in class, but he needs a tool

to help him better to understand how to perform reductions on problems and how to group

problems in their correct complexity categories. He believes some animations and further

explanations would help. So, he has resorted to YouTube videos.

3.3.2.1.2 Example 2

Janet is a third-year Computer Science student taking the Algorithms Design and

Analysis course. She is currently learning computational complexity in class, in addition to

using a tool to help her understand reductions. She also needs to see more questions on

computational complexity.

3.3.2.2 Diagrams

3.3.2.2.1 Activity diagram

This diagram shows the different aspects of the system. It represents the flow from one

activity to the other. Introduction, Animations, Reductions and Exercises are main items and

can be starting points for the user. However, the user can still navigate the system from the

beginning of Introduction to end of Exercises. Figure 3-1 shows the activity diagram for the

animation system.

Figure 3-1: Activity Diagram for the animation system

3.3.2.2.2 Use case Diagram

This diagram models the functionality of the system using actors and the set of actions

they can perform. Here, it shows the main actions a student performs when he interacts with a

system. The actors on the right are subsystems that support the system as a whole. For example,

the system sound is required to help the user hear the voice-overs. Figure 3-2 shows the use

case diagram for the animation system.

Figure 3-2: Use case Diagram for visualisation system

3.3.3 Implementation

3.3.3.1 Technologies used

1. Programming language: the programming language used was Java. This allowed the

code to run fast and efficiently since Java is a compiled language. It is used for academic

programming. JavaFXML is a Java application used to build Rich Internet Applications

(RIAs). It provides an easy way for programmers to build web and desktop applications

with rich content [15].

2. Netbeans IDE: This Integrated Development Environment (IDE) was chosen because it

supports Graphic User Interface building for JavaFXML applications. Also, Netbeans

has good debugging tools that support the programmer [17].

3. Git: This is a version control system used to track changes made in the code. It was

useful in recovering lost code and keep track of changes made in the overall system.

3.3.3.2 The animation system

Here, some parts of the animation system are shown and discussed. Some screenshots

of the system are also included below.

3.3.3.2.1 An animation on P complexity – the m-colouring problem

In Figure 3-3: Diagram showing the animation for the P problem: m-colouring, there is

a graph on the left that has not been coloured yet. When the user clicks check, he can see how

the graph is coloured using three colours. He can see more examples by clicking the “see

another example button”. By seeing the animation, the user understands how the m-colouring

animation works.

Figure 3-3: Diagram showing the animation for the P problem: m-colouring

3.3.3.2.2 An animation on NP complexity – the knapsack problem

In Figure 3-4, on the left, there are gold bars with weights and values attached to them.

The task is to put the gold bars (that would maximise the total value) in the knapsack while

staying within the weight capacity. When the check button is clicked, the user can see the gold

bars that meet the requirements and therefore then be placed in the knapsack.

Figure 3-4: Diagram showing the animation for the NP Problem - knapsack problem

3.3.3.2.3 An animation on P-problem reduction – 3 SAT to 3-coloring

The 3-SAT problem falls within the sphere of propositional satisfiability (SAT) [9].

Propositional satisfiability is the problem of deciding whether it is possible for a given Boolean

formula to evaluate to true[9]. This Boolean formula can contain Boolean connectives such as

AND (conjunction), OR (disjunction) and NOT (negation). The formula is deemed satisfiable

if there exists a combination of clauses or Boolean literals such that the entire formula evaluates

to true. The 3-colouring problem states that given an undirected graph, one must determine if

the graph can be coloured with at most 3 colours in a way that no two adjacent vertices are

coloured the same [8].

Figure 3-5, shows the final step of the reduction from the 3 SAT problem to the 3-

colouring problem. We begin with a graph with three vertices. One vertex (N) is coloured with

a neutral colour, another (T) is coloured with a truth colour and the last vertex (F) is coloured

with a false colour. Each of these vertices represents a clause in a Boolean formula. Next, a new

vertex - a propositional variable called P – is connected to the neutral coloured vertex. P is

coloured truth while maintaining the rule of 3-colouring (two adjacent vertices cannot be

coloured the same). Next, a new vertex called NOT P is created meaning that it is coloured

differently from P. Then, P is connected to NOT P since they are of different colours. The 3-

SAT problem is successfully transformed into the 3-colouring problem. Figure 3-5 below,

shows the final output. In the real animation, however, a step by step procedure with voice-

overs is used to guide the user in performing the reduction. There are also pause and play

buttons so that the user can learn at their own pace.

Figure 3-5: Diagram showing end of 3-SAT TO 3-colouring animation

3.3.4 Testing and Evaluation

The system was tested using different levels of testing: unit testing, component testing

and system testing. Unit testing which is the lowest level involved testing individual functions

and classes in the code to ensure they worked well. In component testing, the different classes

in the code were tested to ensure they interacted correctly. That is, buttons were producing

proper transitions and performing as designed to. Finally, system testing involved confirming

that the entire system performed well as a whole and met the requirements of the user. This also

ensured that the system did not crash when a user was performing an activity.

3.4 Procedure for executing the methodology

3.4.1 Participants of the research

As mentioned earlier, the sample population consists of third-year undergraduate

computer science students who were taking the Algorithms Design and Analysis Course.

Initially, thirty-six students were recruited for the study. However, ten of the students did not

show up for at least one of the tests (pre-test, mid-test or post-test) thereby reducing the number

of students who fully participated to twenty-six. There were 12 people (both males and females)

in the experimental group and 14 people (both males and females) in the control group.

Participation in the research was voluntary. Students signed a consent form stating that they

were willing to participate and could drop out at any point in the research. They were randomly

placed in two groups (control group and experimental group) and there was a gender balance

and academic performance balance based on the scores from the pretest.

The same pre-test, mid-test and post-tests were used for both groups.

3.4.2 Pre-test

The pre-test was also used as a mid-test. It contained questions on computational

complexity. Some of the questions involve comparing different types of computational

complexity and characteristics of the complexity types (see Appendix A).

3.4.3 Lecture Method

After the pre-test, the students took a short course on computational complexity. The

lectures were taught in two sessions of ninety minutes each. The main objectives of the class

were:

• Helping students understand the different types of computational complexity

• Teaching students how to place problems in their correct complexity categories

• Teaching students how to compare problems and rank problems from most complex to

least complex

• Understand the concept of reductions – transforming an instance of a problem to an

instance of a different problem.

This was a simple introduction to the computational complexity topic and only major

parts of the topic were taught. The purpose was to give students a foundational understanding

so that they could answer the basic questions in computational complexity. Due to time

constraints as well, only a few topics were covered.

3.4.4 Mid-test

The mid-test was the same as the pre-test (see Appendix A).

3.4.5 Handouts

Next, the students in the control group used the handouts – which were screenshots of

the animation system while students in the experimental group used the animation system (see

Appendix C).

3.4.6 Post-test

The post-test contained multiple-choice questions. These questions were on the features

of the different complexity types. The difficulty level was the same as that of the pre-test/mid-

test.

3.5 Empirical tool: Mann-Whitney U test

The Mann-Whitney U test is used to compare two independent samples. It does not

require samples to be normally distributed [10] and is therefore useful for samples that do not

pass the normality test (where the mean of the sample is equal to the median and mode of the

distribution). The Mann-Whitney U test is used to answer questions concerning the difference

between two groups. It can also be used for small samples of participants[10]. It is popularly

known as the non-parametric version of the independent t-test. The Mann-Whitney U test can

only be used if the two independent samples are obtained randomly from the population (there

is no gender and academic performance bias); and there is independence within and between

the groups; and the data scores are ordinal or continuous[10].

The null hypothesis (Ho) states that the two groups come from the same population and

have the same distribution. Hence, the distribution from the scores from the two groups are

equal [18]. The alternative hypothesis (HA) on the other hand, states that the distribution of the

scores for the two groups is not equal. The test can be easily done by hand or small statistical

software because it is quite easy and straightforward. When the test is performed, the result is

called a U-statistic. The U-statistic formula is shown in Figure 3-6 below. R1 is the sum of

ranks for the first group, R2 is the sum of ranks for the second group, n1 is the number of items

in the first group and n2 is the number of items in the second group. After obtaining, the U-

statistic, we would need a critical value with which we compare the U-statistic, so we can decide

whether to reject or fail to reject the null hypothesis. This critical value is obtained from a table

using 5% significance (see the critical value table in Appendix D).

Figure 3-6: Formula for Matt-Whitney U test[14]

3.5.1 Applying the Mann-Whitney U test

In this paper, the metric that was used as a point of comparison between the two groups

was the difference between the post-test and mid-test scores. The null hypothesis was that the

distribution of this difference was the same for both the control group and the experimental

group. The alternative hypothesis stated, however, that the distribution of the score difference

was not equal for both groups. In other words, the null hypothesis implies that there both

treatments (using handouts and using animations) had the same impact on the students while

the alternative hypothesis states that the two treatments had a different impact on the groups

and one of the treatments had a greater impact than the other.

In this paper, the results were computed using Microsoft Excel.

3.5.2 Data Analysis: Performing Mann-Whitney U test in Microsoft Excel

The steps taken to perform the test in Microsoft Excel are listed below.

a) The data was placed correctly under the following headings: Group (control or

experimental), score (difference between post-test and mid-way test) and rank (using

RANK.AVG function in Microsoft Excel which gave the position of a number within a

list of other numeric values. When numbers had duplicates, the function returned an

average rank for the set of duplicate numbers.

Table 3-2: Table showing a portion of the data in Microsoft Excel

b) The data was sorted based on the scores of both groups (see Table 3-2 above).

c) The RANK.AVG function was applied to obtain the rank of each score in the data.

d) Next, the sum of ranks value for each group was obtained by using the Excel SUMIF

function. First, this function was used to sum the score cells related to the control group

and then sum the cells related to the experimental group. (see Table 3-3 below).

Table 3-3: Table showing the results of the Mann-Whitney test in Microsoft Excel

e) Then the count (number of participants from both groups) was obtained using the Excel

COUNTIF function. The U-statistic of each group was obtained using the equation: sum

of ranks -(count*(count+1))/2 (same as in Figure 3-6)

f) Finally, the U-statistic was compared with the critical value to make inferences from

the data.

3.6 Observational studies - Questionnaires

After the post-test, students were given questionnaires to collect feedback on their

experiences using the different treatments. A sample of the questionnaire can be found in

Appendix E. They were asked how helpful they thought the lectures, animation

system/handouts were, on a scale of 1 to 5, with 1 being not helpful and 5 being very helpful.

In order to simplify the results, answers between 3 and 5 were labelled helpful and answers of

1 and 2 were labelled not helpful. They were also asked if they would recommend the animation

system or handouts to other people.

4 Chapter Four: Results

4.1 Research Findings

This paper has been concerned with answering the research question: Can animations

enable algorithm students to understand computational complexity better than using handouts?

To answer this question, the scores from the pre-tests, mid tests and post-tests from both groups

were compared to identify any patterns and check if the animations improved the understanding

of the experimental group compared to the handouts used by the control group.

In the pre-test, 100% of the students got a 0 on the test showing they had no prior

knowledge on the subject. The average score on the mid-test for the experimental group and

control group was 35% and 25% respectively. On the post-test, the experimental group had an

average score of 72.5% and the control group had an average score of 66.4%.

After running the Matt-Whitney U test on the data, a u-statistic of 90 and 78 for the

control group and experimental group respectively were found. Using the Matt-Whitney U

table, a critical value of 45 was used (because the number of participants were 14 and 12 for

the control and experimental groups). Since the lower u-statistic – 78 is greater than the critical

value (45), we fail to reject the null hypothesis.

The feedback from the questionnaire showed that approximately 85% of the students

found the lecture helpful while the others found it not helpful (giving a score of 2). 89% of the

students who used the animation system reported that it was helpful while the others thought it

was not helpful. Only 67% of the students who used the handouts found it helpful making it is

least helpful treatment among the three options. Table 4-1 below summarises the results gotten

from the questionnaire.

Table 4-1: Table showing a summary of the results from the questionnaire

4.2 Discussion of Findings

The results from the Mann-Whitney U test failed to reject the null hypothesis that the

distribution of the two groups – control and experimental – are equal. This implies that there

is no significant statistical difference between the scores of the control group and those of the

experimental group. Although, on the surface, the experimental group had a better average

score of 72.5% than the control group which had an average score of 66.4%, the statistical test

used showed that this difference was not statistically significant. This means that the disparity

in the means could have occurred by chance or some other lurking variable that was not

captured. Also, it is possible that using animations had a more positive effect on the students’

understanding but this impact was not significant enough. Again, there was a great

improvement in the students’ understanding after using handouts/animations. There was a

large disparity between the average of the mid-test and post-test scores. This could have been

because the handouts/animations helped strengthen the students’ knowledge of the concepts.

However, there is a possibility that the students found the post-test easier than the mid-test.

The questionnaire gave insights into how students felt about the different treatments.

The results showed that students perceived the handouts to be the least effective treatment and

the animation system to be the most effective treatment. About a third of students found the

handout method to be not helpful. Only one out of twelve of the students who used the

animation system said they would not recommend it to someone else. The others mentioned

they would. One of the students mentioned that he would only recommend it if there was an

improvement to the interface of the system. Of the students who used the handouts, three out

of fourteen of them said they would not recommend the handouts to others and three were

unsure if they would. This was perhaps, due to the static nature of the handouts – “much like a

textbook” as one of the students put it.

5 Chapter Five: Conclusion and Recommendations

5.1 Application of results

The results shown in this study shows can be used to inform the design of the

Algorithms Design and Analysis course at Ashesi University. Since students find animations

most helpful in understanding a concept, this method should be given priority over the use of

handouts. Although both methods have been statistically shown to have equal effects on their

understanding, the animations are more appealing to students due to their interactive and

dynamic nature.

Approximately nine out of every ten students found the lectures helpful. This shows

that the teaching methods and techniques used in teaching the course are very relevant and

instrumental in improving students’ understanding. These techniques should definitely be

maintained.

The animation system was used to simplify the process of reducing computational

complexity problems from one form to another. Since this was done, other researchers can

explore the possibility of simplifying other theoretical topics in computer science using

animations.

5.2 Limitations of the study

The results clearly answer the question posed at the beginning. It is clear that using

handouts is just as effective as using animations in helping students understand computational

complexity. There are some possible threats to the validity of the research. First, the handouts

(see in Appendix C) used for the control group were screenshots of the animation system. This

might have skewed their post-test results positively. Also, perhaps if the students in the

experimental group were given more time to use the system they would have explored it more

and hence performed better on the post-test.

5.3 Future work

Future research can be done in further enhancing the animation system which more

dynamic animations. In subsequent studies, students should use the system for a more extended

period of time. Perhaps, if they interact with the system for a longer, they would thoroughly

engage with the system. Also, an incentive could be provided to students who fully participate

in order to obtain a wider sample of students. A larger sample size will make the results more

accurate and are less likely to contain errors. The test can also be done with students in the first

and second years of their computer science degree so that one can see how the results differ

with different levels of computer science knowledge.

REFERENCES

[1] ACM Computing Curricula Task Force (Ed.). 2013. Computer Science Curricula 2013:

Curriculum Guidelines for Undergraduate Degree Programs in Computer Science. ACM,

Inc. DOI:https://doi.org/10.1145/2534860

[2] Eng Mohannad M Ayash. undated. Research Methodologies in Computer Science and

Information Systems. (undated), 4.

[3] Emma Enström and Viggo Kann. 2017. Iteratively Intervening with the “Most Difficult”

Topics of an Algorithms and Complexity Course. Trans Comput Educ 17, 1 (January

2017), 4:1–4:38. DOI:https://doi.org/10.1145/3018109

[4] Michal Forišek and Monika Steinová. 2012. Metaphors and Analogies for Teaching

Algorithms. In Proceedings of the 43rd ACM Technical Symposium on Computer Science

Education (SIGCSE ’12), 15–20. DOI:https://doi.org/10.1145/2157136.2157147

[5] Weidong Huang, Jing Luo, and Mao Ling Huang. 2015. Teaching undergraduate

algorithms with case studies and quizzes in interactive tutorials. In 2015 IEEE

International Conference on Teaching, Assessment, and Learning for Engineering

(TALE), 272–276. DOI:https://doi.org/10.1109/TALE.2015.7386057

[6] Teresa Hübscher-Younger and N. Hari Narayanan. 2003. Dancing Hamsters and Marble

Statues: Characterizing Student Visualizations of Algorithms. In Proceedings of the 2003

ACM Symposium on Software Visualization (SoftVis ’03), 95–104.

DOI:https://doi.org/10.1145/774833.774847

[7] Colleen Kehoe, John Stasko, and Ashley Taylor. 2001. Rethinking the evaluation of

algorithm animations as learning aids: an observational study. Int. J. Hum.-Comput. Stud.

54, 2 (February 2001), 265–284. DOI:https://doi.org/10.1006/ijhc.2000.0409

[8] Anany Levitin. 2012. Introduction to the Design & Analysis of Algortihms (3rd ed.).

Pearson Education Limited.

[9] Peter Maandag. 2012. Solving 3-SAT. Retrieved from http://www.cs.ru.nl/bachelors-

theses/2012/Peter_Maandag___3047121___Solving_3-Sat.pdf

[10] Nadim Nachar. 2008. The Mann-Whitney U: A Test for Assessing Whether Two

Independent Samples Come from the Same Distribution. Tutor. Quant. Methods Psychol.

4, 1 (March 2008), 13–20. DOI:https://doi.org/10.20982/tqmp.04.1.p013

[11] Miranda Parker, Colleen Lewis, Harvey Mudd College, and Platt Blvd. 2014. WHAT

MAKES BIG-O ANALYSIS DIFFICULT: UNDERSTANDING HOW STUDENTS

UNDERSTAND RUNTIME ANALYSIS. (2014), 11.

[12] Bina Reed. 2006. A System for Investigating Characteristics That Make Effective

Visualizations. In Proceedings of the 44th Annual Southeast Regional Conference (ACM-

SE 44), 740–741. DOI:https://doi.org/10.1145/1185448.1185612

[13] Yan Shaohong, Feng Lichao, Liu Baoxiang, and Ji Nan. 2010. Some thoughts on

“Algorithm Design and Analysis” teaching reform. In 2010 The 2nd International

Conference on Industrial Mechatronics and Automation, 595–597.

DOI:https://doi.org/10.1109/ICINDMA.2010.5538118

[14] Stephanie. 2015. Mann Whitney U Test. Statistics How To. Retrieved April 21, 2019

from https://www.statisticshowto.datasciencecentral.com/mann-whitney-u-test/

[15] tutorialspoint.com. JavaFX Overview. www.tutorialspoint.com. Retrieved March 10,

2019 from https://www.tutorialspoint.com/javafx/javafx_overview.htm

[16] Theoretical Computer Science | MIT Mathematics. Retrieved April 15, 2019 from

http://math.mit.edu/research/applied/comp-science-theory.php

[17] Top Reasons to Switch to the NetBeans IDE. Retrieved March 10, 2019 from

https://netbeans.org/switch/why.html

[18] Mann-Whitney U test in SPSS | Laerd Statistics Premium Sample. Retrieved March

29, 2019 from https://statistics.laerd.com/premium-sample/mwut/mann-whitney-test-in-

spss-2.php

APPENDICES

A. Computational Complexity Pre-test and Mid-test

Adapted from geeksforgeeks.org

The purpose of this test is to gauge your understanding of computational

complexity after the lectures and/or the use of the visualization system. Your participation

is voluntary. Your reponses are anonymous and confidential.

The questions below are of the type: objective; briefly justify your answer.

1. Assuming P != NP, which of the following is true?

a. NP-complete = NP

b. NP-complete ∩ P = ∅

c. NP-hard = NP

d. P = NP-complete

e. I have no idea

Justify your answer.

2. Let S be an NP-complete problem and Q and R be two other problems known not to

be in NP. Q is polynomial time reducible to S and S is polynomial-time reducible to R.

Which one of the following statements is true?

a. R is np-complete

b. R is np-hard

c. Q is np-complete

d. Q is np-hard

e. I have no idea

Justify your answer

3. Let X be a problem that belongs to the class NP. Then which one of the following is

TRUE?

a. There is no polynomial time algorithm for X.

b. If X can be solved deterministically in polynomial time, then P = NP

c. If X is NP-hard, then it is NP-complete.

d. X may be undecidable

e. I have no idea

Justify your answer

4. Which of the following statements are TRUE?

(1) The problem of determining whether there exists a cycle in an undirected

graph is in P.

(2) The problem of determining whether there exists a cycle in an undirected

graph is in NP.

(3) If a problem A is NP-Complete, there exists a non-deterministic

polynomial time algorithm to solve A.

a. 1, 2 and 3

b. 1 and 3

c. 2 and 3

d. 1 and 2

e. I have no idea

Justify your answer

5. Which of the following is true about NP-Complete and NP-Hard problems?

a. If we want to prove that a problem X is NP-Hard, we take a known NP-Hard

problem Y and reduce Y to X

b. The first problem that was proved as NP-complete was the circuit satisfiability

problem.

c. NP-complete is a subset of NP Hard

d. All of the above

e. None of the above

f. I have no idea

Justify your answer

B. Computational complexity Post-test

This test will gauge your understanding on computational complexity so far.

Please answer all questions to the best of your abilities. Your answers do not contribute

to your grade in the Algorithms Design and Analysis course.

1. Problems that can be solved in polynomial time are known as?

a) intractable

b) tractable

c) decision

d) complete

2. The sum and composition of two polynomials are always polynomials.

a) true

b) false

3. _________ is the class of decision problems that can be solved by non-deterministic

polynomial algorithms?

a) NP

b) P

c) Hard

d) Complete

4. Problems that cannot be solved by any algorithm are called?

a) tractable problems

b) intractable problems

c) undecidable problems

d) decidable problems

5. Halting problem is an example for?

a) decidable problem

b) undecidable problem

c) complete problem

d) trackable problem

6. How many stages of procedure does a non-deterministic algorithm consist of?

a) 1

b) 2

c) 3

d) 4

7. A non-deterministic algorithm is said to be non-deterministic polynomial if the time-

efficiency of its verification stage is polynomial.

a) true

b) false

8. How many conditions have to be met if an NP- complete problem is polynomially

reducible?

a) 1

b) 2

c) 3

d) 4

9. To which of the following class does a CNF-satisfiability problem belong?

a) NP class

b) P class

c) NP complete

d) NP hard

10. The choice of polynomial class has led to the development of an extensive theory

called ________

a) computational complexity

b) time complexity

c) problem complexity

d) decision complexity

C. Handouts and screenshots of the Animation system

D. Critical Value table for the Mann-Whitney U test

E. Questionnaire for observational study

Computer Science Thesis Capstone 2018/2019

Can animations enable algorithm students to understand computational

complexity better than using handouts?

Researcher: Immanuella Duke

Supervisor: Ayorkor Korsah (PhD)

The purpose of this questionnaire is to receive your feedback on how well you think the lectures

and animation system/handouts aided your understanding of computational complexity.

On a scale of 1 to 5, how effective were the lectures in helping you understand

computational complexity?

not helpful 1 2 3 4 5 very helpful

On a scale of 1 to 5, how effective were the handouts in helping you understand

computational complexity? (if applicable)

not helpful 1 2 3 4 5 very helpful

On a scale of 1 to 5, how effective was the animation system in helping you understand

computational complexity? (if applicable)

not helpful 1 2 3 4 5 very helpful

Would you recommend this animation system to other people?

__

__

Would you recommend these handouts to other people?

__

__

Thanks for your response.

