
1

ASHESI UNIVERSITY COLLEGE

DEVELOPING A MACHINE LEARNING MODEL FOR MALARIA

DIAGNOSIS IN RURAL AREAS

APPLIED PROJECT

B.sc Computer Science

Vladimir Fomene

2018

2

DEVELOPING A MACHINE LEARNING MODEL FOR MALARIA DIAGNOSIS IN

RURAL AREAS

Applied Project submitted to the Department of Computer Science, Ashesi University College in

partial fulfillment of the requirements for the award of Bachelor of Science degree in Computer

Science

Applied Capstone Project

Vladimir Fomene

2018

3

DECLARATION

I hereby declare that this applied project is the result of my own original work and that no part of

it has been presented for another degree in this university or elsewhere.

Candidate’s Signature:

………………………………………………………………………………………………………

Candidate’s Name:

………………………………………………………………………………………………………

Date:

………………………………………………………………………………………………………

I hereby declare that preparation and presentation of this applied project were supervised in

accordance with the guidelines on supervision of applied projects laid down by Ashesi

University College.

Supervisor’s Signature:

………………………………………………………………………………………………………

Supervisor’s Name:

………………………………………………………………………………………………………

Date:

………………………………………………………………………………………………………

4

Acknowledgements

To my supervisor, Prof. Lorenzo Torresani without whose advice and guidance, this project

implementation will not have been possible. To my friend, Hassan Sillah, whose work with

Tuberculosis diagnosis gave rise to this project.

5

Abstract

Medical diagnosis of diseases like Malaria and tuberculosis still use microscopy as a

standard, but this procedure is usually very tiring for pathologists and health workers as it

imposes much stress on their vision. Due to the fatigue that health workers get from this process,

they might end up misdiagnosing a case. In most Rural areas of Cameroon and Ghana, there are

no qualified personnel to do these diagnoses. Moreover, according to the World Bank, malaria

still kills millions of people every year in Sub-Saharan Africa. To solve this problem, we used a

machine learning approach; transfer learning to retrain an already existing model to perform

binary classification on malaria blood smear images. The pretrained model was already

optimized for devices with low memory, therefore this project’s model can work on low memory

devices with no network connectivity. This project also explored Generative Adversarial

networks as an alternative way of training a classifier for scenarios with data scarcity. This

project shows how a model trained on a different task can be retrained to solve a similar task and

shows a technique for developing a classifier in scenarios of data scarcity.

6

Table of Contents

Chapter 1: Introduction ... 8

1.1 Introduction: ... 8

1.4 Project Objectives: .. 9

1.5 Related Work: ... 10

Chapter 2: Requirement Specification .. 15

2.1 Requirement Gathering Procedures: .. 15

2.2 Requirements: ... 15

Chapter 3: High level Architecture ... 17

3.1 User Interface: ... 18

3.2 User Activity Diagram: ... 18

3.3 Mobile app activities workflow: ... 18

3.4 Image Storage: .. 18

3.5 Model Architecture: .. 19

Chapter 4: Implementation .. 22

4.4 Sample Data: ... 23

4.5 Training: .. 23

4.6 TensorFlow Model Representation: .. 24

4.7 Porting to Android: ... 25

4.8 Generative Adversarial Network(GAN) Training: .. 27

Chapter 5: Testing and Result ... 30

5.1 Training Results: ... 30

5.2 Generative Adversarial Network Training Results: .. 32

5.3 Application Memory Usage: .. 34

Chapter 6: Conclusion and Recommendations .. 36

6.1 Future Work: .. 36

References ... 38

7

Table of Figures

Figure 1 ... 17

Figure 2 ... 18

Figure 3 ... 21

Figure 4 ... 25

Figure 5 ... 26

Figure 6 ... 27

Figure 7 ... 31

Figure 8 ... 32

Figure 9 ... 33

Figure 10 ... 34

Figure 11 ... 35

Figure 12 ... 35

8

Chapter 1: Introduction

1.1 Introduction:

This research will focus on using machine learning algorithms to improve medical

diagnosis of tropical diseases using microscopy. To explore this field of medical diagnosis, this

project will focus on malaria diagnosis. This project will use the recent advancements in the field

of computer vision to improve medical diagnosis via microscopy.

1.2 Problem Statement:

Microscopy is still the gold standard for diagnosing diseases such as malaria and

tuberculosis which are very common in West and Central Africa. Previous research done

by Boray Tek, Andrew Dempster and Izzet Kale points out the following shortcomings about

manual microscope diagnosis (Boray Tek, 2009):

• Error-prone

Although microscopy has served us for long, it usually poses a problem of accuracy,

efficiency and always requires trained personnel to do a diagnosis. After interviewing the lab

workers at Noguchi Medical Institute at the University of Ghana, I learned that some malaria

diagnosis at hospitals are not accurate. That is, some patients can have malaria but when

diagnosed by the medical personnel their test was negative. According to this workers, these

errors were coming because the medical professional who oversaw the diagnosis had misread the

slides.

• Time-consuming and Repetitive

9

Moreover, the malaria diagnosis process is often time consuming and repetitive, patients

must wait for some few minutes before they get their lab results and since the process is

repetitive, it could easily be automated to save time for both patients and health workers.

Lastly, West and Central Africa states do not have many of these trained personnel to

operate this microscopes in rural health centres.

1.3 Motivation:

 According to the World Health Organization, in 2015 90% of 212 million malaria cases

where from Sub-Saharan Africa and of the 429 000 malaria deaths, 92% of them were from Sub-

Saharan Africa. There have been great developments and advancements in the field of machine

learning (sub-field of artificial intelligence) especially in the field of computer vision with the

development of convolutional neural network which can be used to address this problem. Due to

this development, we have seen the emergence of tools and libraries that are helping developers

who are not machine learning experts develop intelligent software. We will use these libraries

and tools to develop a machine learning algorithm that will learn how to diagnose malaria. This

software cannot run on our current microscopes given that they do not have an operating system.

We will develop a mobile application using machine learning models which will read malaria

blood smear images and will detect the malaria parasite on these images.

 To validate our research, we will compare the efficiency of this machine learning

software to skilled personnel in malaria and tuberculosis disease diagnosis.

1.4 Project Objectives:

• Collect positive and negative samples of malaria blood smear images from a

hospital or research institute.

10

• Train a machine learning model to diagnose malaria in areas with no connectivity

and on low memory devices.

• Port this classifier to an android application for testing with malaria blood smear

images.

1.5 Related Work:

F Boray TekEmail author, A. G. (2009). Computer vision for microscopy diagnosis of malaria.

Malaria Journal.

This article explores a lot of techniques that has been used in automating the diagnosis of

Malaria. The paper uses images from a thin blood smear for the detection of plasmodium

falciparum. This paper follows the following methods sequentially for doing an automated

diagnosis: image acquisition, image variations, illumination and thresholding, scale and

granulometry, stained pixels and objects and finally classification. The paper highlights the

challenges of variations in imaging due to microscope lighting and blood smear preparation and

proposes many techniques to deal with it. The paper ends up by talking about classification as a

differentiation of the different structures found in the blood and a differentiation between healthy

red blood cells and unhealthy red blood cells. The researchers also talk of classification as a

differentiation between different life stages of the parasite. For future work, the paper proposes

the use of these methods on thick blood smear because it is more sensitive in detection of the

parasite.

This paper is gives a very good background on the methodologies used in past research

for automated malaria diagnosis using computer vision. Although the paper is old (2009), it

makes a good analysis on previous work by highlighting its shortcoming and proposing better

methods to use. The article falls short of expectations because it only focuses on thin blood

11

smears and does not talk much about a practical computer vision software that was developed. Its

emphasis on theoretical analysis makes it a good choice for our background research.

Mehrjou, A. (2017). Towards life cycle identification of malaria parasites using machine

learning. Cornell University Library.

This article focuses on using an unsupervised algorithm and manifolds in automated

diagnosis process of malaria. It focuses on solving the limitations of supervised algorithms by

providing an unsupervised algorithm which reduces variations in the whole diagnosis process

and increases speed of diagnosis without undermining the sensitivity level. Unlike other papers,

this one is very practical, as it discusses the machine learning software used in automated

diagnosis. The paper highlights the following as drawbacks of supervised approaches: time,

considering single pixels, ignoring colors in the marking process and susceptible to uneven

illumination. The paper also focuses on classifying the different life stages of the malaria

parasite.

This paper was released this year and shows the MATLAB running version of the

machine learning program. It proposes a completely different approach to most of the previous

research, by using unsupervised learning. It focuses on reducing diagnosis time and also explain

how this unsupervised approach reduces variations in the diagnosis process. It is well suited for

my research because it proposes a new method for developing an automated diagnosis tool and

aside from detecting the parasite, it also focuses on classifying different life stages of the

parasite.

12

Luıs Rosadoa, J. M. (2016). Automated detection of malaria parasites on thick blood smears via.

Procedia Computer Science.

This paper uses supervised classification to assess the present of Plasmodium Falciparum

trophozoites and white blood cells in a Giemsa stained thick blood film. The researchers in this

article used a smartphone to get the images for the automatic diagnosis process. They used

OpenCV (an open source computer vision library) for the supervised classification. This research

used 194 images. They used support vector machine classifier and 314 features to classify the

images. The researchers ran their software on a computer and an android phone to test the speed

and memory usage of their software in each instance. The paper shows a 98.2% of sensitivity and

72.1% of specificity in automatic detection of white blood, while the Plasmodium Falciparum

trophozoites detection achieved a sensitivity of 80.5% and a specificity of 93.8%.

 This paper is one of the few papers to use a supervised approach of automatic diagnosis

on a thick blood smear. The researchers used Valgrind to analyze the memory usage of their

program on a computer and an android phone. This is very relevant for my research because my

research is focused on developing a computer vision software that will work on android

smartphones. The researchers used a smartphone to capture the images they used for the

diagnosis and this has the disadvantage that it will not pick all the parasites and other blood

particles. The paper is also narrow because it only focuses on detecting one life stage of the

parasite.

Arnon Houri-Yafin, Y. E.-S. (2016). An Enhanced Computer Vision Platform for Clinical

Diagnosis of Malaria. Malaria Control and Elimination.

13

 In this research, a device for malaria diagnosis, speciation and parasite quantification.

These researchers did an evaluative test of this device clinically in Lancet laboratories

Johannesburg and City Hospital India. The researchers conducted their trials on plasmodium

vivax and plasmodium falciparum

 This research is important to me because of their use of two species of the parasite and

methods they used for quantification of the parasites. It is also valuable because it shows a

clinical implementing of a computer vision tool for automated malaria diagnosis.

(Andrew G. Howard, 2018). MobileNets: Efficient Convolutional Neural Networks for Mobile

Vision Applications

 Researchers working on this pretrained model decided to use a different type of

convolution layers called depth wise separable convolutions. These layers are made up of a depth

wise convolution and a pointwise convolution. This kind of layers are more efficient compared

to normal convolution layers. MobileNets require low memory than other pretrained models like

Inception and VGG. According to the paper, MobileNets are faster during predictions than

Inception and VGG.

(Apple, 2017). Improving the Realism of Synthetic Images

 This paper outlines how Generative Adversarial networks(GANS) can be used to

generate eye gaze images from noise. It is great for our context because it gives a good

explanation of GANS and talks about the different losses to optimize during the training process.

It will help us implement a GAN that generates negative malaria blood smear images that are

14

very similar to positive images so that hopefully the malaria classifier ends up learning the real

difference between negative and positive malaria blood smear images.

15

Chapter 2: Requirement Specification

2.1 Requirement Gathering Procedures:

Interview:

I carried out an interview with the lab workers at Korle-Bu hospital lab for tuberculosis to

understand the whole tuberculosis diagnosis procedure.

Observation:

While interning at Noguchi Institute, I observed the whole malaria diagnosis process and was

able to figure out how computers could be used in the process.

Previous work:

Some of the requirements were extracted from the related literature work.

Users:

This application is going to be used by health workers to identify how well the classifier

is doing compared to the lab workers diagnosing malaria.

Use Case:

 This application will be used by health workers to evaluate how our classifier is doing

compared to humans on the task of diagnosing malaria.

2.2 Requirements:

We will focus on two types of requirements in this chapter, user requirements and system

requirements. The project is still at the level of data collection from stakeholders (doctors in

clinics) so will solely focus on system requirements.

16

 System requirements are usually divided into two groups: functional and non-functional

requirements. For the malaria diagnosis, we will focus on developing a computer vision software

that can work in regions without internet connectivity.

2.3 Functional Requirements:

• The diagnosis software is supposed to run on mobile devices with limited internal

memory.

• The software should work offline since many health centers in the rural areas do not have

access to the internet.

• The application will have an upload image functionality to allow health worker to upload

a patient’s image from a microscopic blood film.

• The application will increase clarity of blurred images to increase accuracy during

diagnosis.

• The application will process the image and tell if the blood film has malaria or not.

2.4 Non-Functional Requirements:

• The application should work on mobile devices with very low memory and a slow

graphic processing unit.

• The application will provide the same user experience online and offline.

17

Chapter 3: High level Architecture

This schema depicts the high-level architecture of the malaria diagnosis clinical application.

Figure 1

The medical worker

will input the malaria

microscope images

to our diagnosis

application.

Android Operating System

Image storage for the malaria

microscope images.

Machine learning algorithms

coded in Tensor Flow or any

other machine learning libraries

User interface for upload the

image to the application and

showing the result of the

diagnosis Malaria diagnosis for

the given input

microscope image.

18

Architectural Components

3.1 User Interface:

The user interface of the malaria diagnosis app is very simple. It is a set of android application

activities that will take user information and displays results. It will take in the patient’s personal

details like their phone number, full name and address.

3.2 User Activity Diagram:

See Figure 3 below.

3.3 Mobile app activities workflow:

Figure 2

3.4 Image Storage:

The application will have a local storage for all the images it analyzes. Although this will

overload the android device, we cannot put the image storage in the cloud because the

19

application will be tested in areas where there is either no internet connectivity or low internet

bandwidth.

Machine learning Algorithm:

The machine learning algorithm will be developed as part of the android application using

already existing machine learning libraries like Tensorflow.

3.5 Model Architecture:

To predict if a patient is malaria positive or negative a classifier was trained to take in an image

of a malaria blood smear from a health worker and classifies as either negative or positive. Our

classifier was built by fine-tuning MobileNet, one of Google’s multiple pretrained models on

ImageNet (1.2 million image databases with 1000 classes) that has been optimized for devices

with low memory and slow computational power. Below is the architecture of the model:

https://www.tensorflow.org/

20

Table 1.0

21

Figure 3

22

Chapter 4: Implementation

4.1 Implementation Tools and libraries:

To implement this project, we used the following tools and libraries:

Tensorflow (Machine learning library from Google), Atom editor, Android Studio,

Pycharm IDE for python, python Augmentor library, Jupyter Notebook and ImageMagick.

4. 2 Data Collection:

After communication with the team of researchers at Noguchi Institute, we were able to

get 107 negative bitmap images of blood smears of patients and 354 positive bitmap images of

malaria blood smears. This data was not balanced, diverse and the quantity was not substantial to

train a convolutional neural network on it. This means the data has to be augmented.

4.3 Preprocessing:

MobileNet can only train on Jpeg image format and the Noguchi dataset are all bitmap

images. To train on the MobileNet model, we resize our images to 224px X 224px and converted

all of them to jpeg format. To make the two classes balanced and increase the diversity in our

training set, we augmented the data in each class of our training set using reflection, vertical

flipping, horizontal flipping, 90 degree rotation, 270 degree rotation and random cropping. After

augmentation we have 2000 images, in both classes. Data augmentation is important because it

will reduce the possibility of our model overfitting over particular orientations of the dataset

images because the model will learn from several orientations of the images. Therefore, our two

sets of data are finally balanced and ready for training. We use a python package called

Augmentor for this step.

https://github.com/mdbloice/Augmentor

23

4.4 Sample Data:

Negative Samples Positive Samples

4.5 Training:

For training, the images were arranged into two folders, one for positive malaria images

named “Positive” and another for negative images named “Negative”. During training 20% of

the images were selected for validation and 10% for testing. The classifier will learn 1001 * N

parameters where N represent the number of labels (Google, n.d.). The classifier was trained

using mini-batches of 10 images in 4000 steps. A learning rate of 0.01 was used for training. A

new layer was added to the Mobilenet_1.0_224 architecture and then a SoftMax layer to produce

prediction probability of our new classes. Gradient descent was used for optimization and cross-

entropy as the loss. Let S be a SoftMax function, (x, y) a training pair from a training set and L

the one hot encoding vector representing our label y. The cross-entropy loss, D is the following:

24

𝐷(𝑆, 𝐿) = − ∑ 𝐿𝑖 ∗ log (𝑆𝑖)𝑖 where Li and Si both represents the i-component in L and S

respectively.

4.6 TensorFlow Model Representation:

This graph shows TensorFlow’s representation of the model. Looking at it you can see

the input layer, bottleneck layer (layer before the output layer) and the output layer.

25

Figure 4

4.7 Porting to Android:

After training the classifier on a laptop, we added it to the asset folder of the android

project as a graph file (retrained_graph.pb). In addition, a text file was added with the labels used

for classification. The TensorFlow dependency for Android was added to Gradle build. Three

26

activities were built into the android application. The splash screen activity which serves as a

starter activity for the app. The MainActivity.java which serves as a screen for the health worker

to enter the patient’s information and then select the image corresponding to the patient’s malaria

blood smear. Once, all this information entered the health worker will tap the diagnose button

which will prompt Android SDK to pass the image to the Android NDK which has a TensorFlow

C++ wrapper. This wrapper will convert the image into a tensor and pass it as input to the model

which will an array of length two with probabilities for the negative and positive predictions. The

TensorFlow inference interface allows the SDK to interact with the NDK. These predictions are

sent to the MedicalResultActivity.java, the same activity also prompts the health worker to enter

a diagnosis for the patient. This diagnosis is sent to the patient via SMS using Twilio’s API.

Figure 5

27

4.8 Generative Adversarial Network(GAN) Training:

Figure 6

A generative adversarial network is a model made of up of two neural networks, a

generator and a discriminator. A generator is a network which focuses on forging images which

look exactly like the dataset images from noise input and the discriminator is train to determine if

an image is real or fake given an image by taking the real images and the noise as input

(Mosquera, 2018). In our case instead of our generator learning taking random noise as input, it

is going to take our current negative dataset and try to generate positive images from it. Our

discriminator will take our current positive and negative data and will learn how to discriminate

the positive from the negatives. The benefit of this approach is that after training our

28

discriminator will have really learned the features of positive images and will be able to

discriminate if an image is positive or not(negative).

To develop this model, we trained both the discriminator and the generator on 1000

epochs. We trained both the discriminator(classifier) and generator on batches of 10 images. The

generator was trained by taking negative images from the training set as input. The discriminator

was trained with positive images and output images from the generator.

Architecture of the Generator:

The generator is made up of three linear layers which are compose with RELUs to add

non-linearity to the model. The final layer is a linear layer compose with a tanh function as

activation.

Architecture of the Discriminator:

The discriminator is made up of three linear layers which are composed with RELUs and

then dropouts. For the output layer the discriminator uses a linear model.

For optimizing the model, we used the ADAM optimizer for both the generator and the

discriminator with a learning rate of 0.0002. The following equations represent the cross-entropy

loss for both network:

Discriminator Loss:

𝐺𝑒𝑛𝑙𝑜𝑠𝑠 =
1

𝑚
∑[log (𝐷(

𝑚

𝑖=0

𝑥𝑖) + log (1 − 𝐷 (𝐺(𝑍𝑖)))]

Generator Loss:

29

D𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑙𝑜𝑠𝑠 =
1

m
∑ log (1 − D(G(𝑍𝑖))

𝒎

𝒊=𝟏

Where D : discriminator network; G : generator network; m: number of training examples; xi: i-

real image(in our case i-positive image) and zi: i-fake images(in our case i-negative image).

30

Chapter 5: Testing and Result

5.1 Training Results:

After retraining the MobileNet neural network on the positive and negative datasets, they

produced the following results:

Training Operation Images Size Accuracy

Training 70% of the dataset 100%

Validation 20% of the dataset 100%

Testing 10% of the dataset 100%

From the above table, the model is doing extremely well on this classification task.

Although these are great results, it is also hinting that this classification task is trivial for the

model. This task is trivial because the negative samples in our dataset are very different from the

positive samples which is not the case in practice. In particular, the negative dataset is not

representative of a healthy person. Therefore, the model is not learning the right parameters to

differentiate between negative samples and positive samples.

31

Figure 7

The above figure shows how the training accuracy starts off very small and gradually starts

increasing until it finally plateaus very close to 100%. The validation accuracy shows the same

trends as the training accuracy. This means that the model was able to perform well on the

training set without overfitting because it still performed well on the validation set.

 Training Steps

Training:

Validation:

Training:

Validation:

32

Figure 8

The above graph shows that the cross-entropy loss decreasing both during the training and

validation. This is indication that the model made good progress on the classification both during

training and validation.

Despite having such amazing results while training the classifier, it cannot be proven that

the classifier is learning the correct features because the negatives images are not representative

of a healthy individual who is not suffering from malaria. To solve this data problem, a

generative adversarial network will be trained on the data.

5.2 Generative Adversarial Network Training Results:

After training the GAN for 1000 epochs, we got the following progression of the

generator and discriminator loss:

Training Steps

33

Figure 9

From the figure above, we can say that at the beginning of the training process the

generator loss is low and the discriminator loss is high because the generator start off with

images that are not too far from the positive ones compared to noise and the discriminator has

not yet learnt how to distinguish between positives and negatives. As the discriminator becomes

confident in discriminating between positive and negative images the generator loss starts

increasing.

34

5.3 Application Memory Usage:

The application was tested on one android phone to access how much memory and CPU

is used by the model. After building the model into the app, the APK file had a size of 52.28MB

which is smaller than social apps like WhatsApp and Facebook which are about 100 MB, but

stills run effectively on phone with low memory. Here are the results of testing the application

for memory and CPU usage (at beginning of profiling the phone had 93.71MB of unused

memory):

Device Name Start of image

upload

End of Image

Upload

Before

classification

After

classification

CPU Usage ~0% 5% ~0% %13

Memory Usage 93.71MB 74.666 91.06 MB 111.05MB

When a user is uploading an image to the application there is decrease in memory usage

as he is leaving the context of the application to pick a file from the file system (see Figure 10).

On the other hand, there is an increase in memory usage by 10.01MB when a user calls the

model in the app. This is seen in Figure 11.

Figure 10

35

Figure 11

Figure 12

With regards to CPU usage, there is an increase of 5% in CPU usage on image upload and an

increase of 13% during classification. This 13% increase in CPU usage

36

Chapter 6: Conclusion and Recommendations

The machine learning model built through this project shows how computer vision can be

applied to the field of medical diagnosis to make the work of pathologists and doctors easier.

With this model, we can do a binary classification of malaria blood smear images by uploading

these images to a phone and then passing these images through a classifier to predict if a person

is malaria positive or malaria negative. This project’s classifier was trained using Google’s

Mobilenet convolutional neural network, this model has been optimized for mobile devices

which makes the model suitable to work in areas where there is no internet connectivity and on

low memory devices. While working on the classifier, our negative examples where not

representative of a person without malaria. To make sure that our model was learning the right

features, we trained a generative adversarial network(GAN) on data where the discriminator was

to discriminate between positive and negative images instead of real and fake images. The

project explored using GAN to create classifier rather than using it to generate data as it is

usually the case. Despite these great milestones, much is still left to be done.

6.1 Future Work:

This project sets the stage for very interesting improvements and explorations as it has

proven that machine learning could be used on low memory devices with no connectivity to

detect malaria. The following are my recommendations for future work:

• For a start, this system needs to be tested in clinics and hospitals to document how well

the system is doing in practice compared to humans. Based on the model’s practical

performance, it could be improved by tuning hyperparameter during training.

• This project could also be used as foundation for developing a real time malaria parasite

detection system. The advantage for such a system is that it could help pathologists focus

37

on the right spots when looking at a malaria blood smear thereby speeding up the malaria

detection process. This could also be very helpful in computing malaria parasites to red

blood cells which is the determining factor used by pathologists for malaria diagnosis.

• While working on this project, our greatest challenge was getting data that was

representative of the problem and that was of high resolution. To retrain our classifier for

higher performance, there is need to collect data with higher resolution and better

labeling from hospitals and clinics. For this to happen, the images need to be taken with

microscopes of better camera quality to get images of higher resolution.

• The techniques used in this project could easily be applied to solve similar diagnosis

problem for tuberculosis and for other medical procedures where classifier could be good

at producing medical results.

38

References
Andrew G. Howard, M. Z. (2018). MobileNets: Efficient Convolutional Neural Networks for Mobile Vision

Applications. Cornell University Library.

Apple. (2017). Improving the Realism of Synthetic Images . Machine Learning Journal.

Boray Tek, A. D. (2009). Computer vision for microscopy diagnosis of malaria. Malaria Journal.

Mosquera, D. G. (2018, February 1). Retrieved from https://medium.com/ai-society/gans-from-scratch-

1-a-deep-introduction-with-code-in-pytorch-and-tensorflow-cb03cdcdba0f

Arnon Houri-Yafin, Y. E.-S. (2016). An Enhanced Computer Vision Platform for Clinical Diagnosis of

Malaria. Malaria Control and Elimination.

Luıs Rosadoa, J. M. (2016). Automated detection of malaria parasites on thick blood smears via. Procedia

Computer Science.

Mehrjou, A. (2018). Towards life cycle identification of malaria parasites using machine learning. Cornell

University Library.

