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Abstract 

Medical diagnosis of diseases like Malaria and tuberculosis still use microscopy as a 

standard, but this procedure is usually very tiring for pathologists and health workers as it 

imposes much stress on their vision. Due to the fatigue that health workers get from this process, 

they might end up misdiagnosing a case. In most Rural areas of Cameroon and Ghana, there are 

no qualified personnel to do these diagnoses. Moreover, according to the World Bank, malaria 

still kills millions of people every year in Sub-Saharan Africa. To solve this problem, we used a 

machine learning approach; transfer learning to retrain an already existing model to perform 

binary classification on malaria blood smear images. The pretrained model was already 

optimized for devices with low memory, therefore this project’s model can work on low memory 

devices with no network connectivity. This project also explored Generative Adversarial 

networks as an alternative way of training a classifier for scenarios with data scarcity. This 

project shows how a model trained on a different task can be retrained to solve a similar task and 

shows a technique for developing a classifier in scenarios of data scarcity. 
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Chapter 1: Introduction 

1.1 Introduction: 

This research will focus on using machine learning algorithms to improve medical 

diagnosis of tropical diseases using microscopy. To explore this field of medical diagnosis, this 

project will focus on malaria diagnosis. This project will use the recent advancements in the field 

of computer vision to improve medical diagnosis via microscopy. 

1.2 Problem Statement: 

Microscopy is still the gold standard for diagnosing diseases such as malaria and 

tuberculosis which are very common in West and Central Africa. Previous research done 

by Boray Tek, Andrew Dempster and Izzet Kale points out the following shortcomings about 

manual microscope diagnosis  (Boray Tek, 2009):  

• Error-prone  

Although microscopy has served us for long, it usually poses a problem of accuracy, 

efficiency and always requires trained personnel to do a diagnosis. After interviewing the lab 

workers at Noguchi Medical Institute at the University of Ghana, I learned that some malaria 

diagnosis at hospitals are not accurate. That is, some patients can have malaria but when 

diagnosed by the medical personnel their test was negative. According to this workers, these 

errors were coming because the medical professional who oversaw the diagnosis had misread the 

slides. 

• Time-consuming and Repetitive 
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Moreover, the malaria diagnosis process is often time consuming and repetitive, patients 

must wait for some few minutes before they get their lab results and since the process is 

repetitive, it could easily be automated to save time for both patients and health workers.  

Lastly, West and Central Africa states do not have many of these trained personnel to 

operate this microscopes in rural health centres.  

1.3 Motivation: 

 According to the World Health Organization, in 2015 90% of 212 million malaria cases 

where from Sub-Saharan Africa and of the 429 000 malaria deaths, 92% of them were from Sub-

Saharan Africa. There have been great developments and advancements in the field of machine 

learning (sub-field of artificial intelligence) especially in the field of computer vision with the 

development of convolutional neural network which can be used to address this problem. Due to 

this development, we have seen the emergence of tools and libraries that are helping developers 

who are not machine learning experts develop intelligent software. We will use these libraries 

and tools to develop a machine learning algorithm that will learn how to diagnose malaria. This 

software cannot run on our current microscopes given that they do not have an operating system. 

We will develop a mobile application using machine learning models which will read malaria 

blood smear images and will detect the malaria parasite on these images. 

 To validate our research, we will compare the efficiency of this machine learning 

software to skilled personnel in malaria and tuberculosis disease diagnosis.  

1.4 Project Objectives: 

• Collect positive and negative samples of malaria blood smear images from a 

hospital or research institute. 
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• Train a machine learning model to diagnose malaria in areas with no connectivity 

and on low memory devices. 

• Port this classifier to an android application for testing with malaria blood smear 

images. 

1.5 Related Work: 

F Boray TekEmail author, A. G. (2009). Computer vision for microscopy diagnosis of malaria. 

Malaria Journal. 

This article explores a lot of techniques that has been used in automating the diagnosis of 

Malaria. The paper uses images from a thin blood smear for the detection of plasmodium 

falciparum. This paper follows the following methods sequentially for doing an automated 

diagnosis: image acquisition, image variations, illumination and thresholding, scale and 

granulometry, stained pixels and objects and finally classification. The paper highlights the 

challenges of variations in imaging due to microscope lighting and blood smear preparation and 

proposes many techniques to deal with it. The paper ends up by talking about classification as a 

differentiation of the different structures found in the blood and a differentiation between healthy 

red blood cells and unhealthy red blood cells. The researchers also talk of classification as a 

differentiation between different life stages of the parasite. For future work, the paper proposes 

the use of these methods on thick blood smear because it is more sensitive in detection of the 

parasite.  

This paper is gives a very good background on the methodologies used in past research 

for automated malaria diagnosis using computer vision. Although the paper is old (2009), it 

makes a good analysis on previous work by highlighting its shortcoming and proposing better 

methods to use. The article falls short of expectations because it only focuses on thin blood 
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smears and does not talk much about a practical computer vision software that was developed. Its 

emphasis on theoretical analysis makes it a good choice for our background research. 

 

Mehrjou, A. (2017). Towards life cycle identification of malaria parasites using machine 

learning. Cornell University Library. 

This article focuses on using an unsupervised algorithm and manifolds in automated 

diagnosis process of malaria. It focuses on solving the limitations of supervised algorithms by 

providing an unsupervised algorithm which reduces variations in the whole diagnosis process 

and increases speed of diagnosis without undermining the sensitivity level. Unlike other papers, 

this one is very practical, as it discusses the machine learning software used in automated 

diagnosis. The paper highlights the following as drawbacks of supervised approaches: time, 

considering single pixels, ignoring colors in the marking process and susceptible to uneven 

illumination. The paper also focuses on classifying the different life stages of the malaria 

parasite. 

This paper was released this year and shows the MATLAB running version of the 

machine learning program. It proposes a completely different approach to most of the previous 

research, by using unsupervised learning. It focuses on reducing diagnosis time and also explain 

how this unsupervised approach reduces variations in the diagnosis process. It is well suited for 

my research because it proposes a new method for developing an automated diagnosis tool and 

aside from detecting the parasite, it also focuses on classifying different life stages of the 

parasite. 
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Luıs Rosadoa, J. M. (2016). Automated detection of malaria parasites on thick blood smears via. 

Procedia Computer Science. 

This paper uses supervised classification to assess the present of Plasmodium Falciparum 

trophozoites and white blood cells in a Giemsa stained thick blood film. The researchers in this 

article used a smartphone to get the images for the automatic diagnosis process. They used 

OpenCV (an open source computer vision library) for the supervised classification. This research 

used 194 images. They used support vector machine classifier and 314 features to classify the 

images. The researchers ran their software on a computer and an android phone to test the speed 

and memory usage of their software in each instance. The paper shows a 98.2% of sensitivity and 

72.1% of specificity in automatic detection of white blood, while the Plasmodium Falciparum 

trophozoites detection achieved a sensitivity of 80.5% and a specificity of 93.8%. 

 This paper is one of the few papers to use a supervised approach of automatic diagnosis 

on a thick blood smear. The researchers used Valgrind to analyze the memory usage of their 

program on a computer and an android phone. This is very relevant for my research because my 

research is focused on developing a computer vision software that will work on android 

smartphones. The researchers used a smartphone to capture the images they used for the 

diagnosis and this has the disadvantage that it will not pick all the parasites and other blood 

particles. The paper is also narrow because it only focuses on detecting one life stage of the 

parasite.  

 

Arnon Houri-Yafin, Y. E.-S. (2016). An Enhanced Computer Vision Platform for Clinical 

Diagnosis of Malaria. Malaria Control and Elimination. 
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 In this research, a device for malaria diagnosis, speciation and parasite quantification. 

These researchers did an evaluative test of this device clinically in Lancet laboratories 

Johannesburg and City Hospital India. The researchers conducted their trials on plasmodium 

vivax and plasmodium falciparum 

 This research is important to me because of their use of two species of the parasite and 

methods they used for quantification of the parasites. It is also valuable because it shows a 

clinical implementing of a computer vision tool for automated malaria diagnosis. 

 

(Andrew G. Howard, 2018). MobileNets: Efficient Convolutional Neural Networks for Mobile 

Vision Applications 

 Researchers working on this pretrained model decided to use a different type of 

convolution layers called depth wise separable convolutions. These layers are made up of a depth 

wise convolution and a pointwise convolution. This kind of layers are more efficient compared 

to normal convolution layers. MobileNets require low memory than other pretrained models like 

Inception and VGG. According to the paper, MobileNets are faster during predictions than 

Inception and VGG. 

(Apple, 2017). Improving the Realism of Synthetic Images  

 This paper outlines how Generative Adversarial networks(GANS) can be used to 

generate eye gaze images from noise. It is great for our context because it gives a good 

explanation of GANS and talks about the different losses to optimize during the training process. 

It will help us implement a GAN that generates negative malaria blood smear images that are 



14 
 

very similar to positive images so that hopefully the malaria classifier ends up learning the real 

difference between negative and positive malaria blood smear images. 
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Chapter 2: Requirement Specification 

2.1 Requirement Gathering Procedures: 

Interview:  

I carried out an interview with the lab workers at Korle-Bu hospital lab for tuberculosis to 

understand the whole tuberculosis diagnosis procedure. 

Observation:  

While interning at Noguchi Institute, I observed the whole malaria diagnosis process and was 

able to figure out how computers could be used in the process. 

Previous work:  

Some of the requirements were extracted from the related literature work. 

Users: 

This application is going to be used by health workers to identify how well the classifier 

is doing compared to the lab workers diagnosing malaria. 

Use Case: 

 This application will be used by health workers to evaluate how our classifier is doing 

compared to humans on the task of diagnosing malaria. 

2.2 Requirements: 

We will focus on two types of requirements in this chapter, user requirements and system 

requirements. The project is still at the level of data collection from stakeholders (doctors in 

clinics) so will solely focus on system requirements. 
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 System requirements are usually divided into two groups: functional and non-functional 

requirements. For the malaria diagnosis, we will focus on developing a computer vision software 

that can work in regions without internet connectivity. 

2.3 Functional Requirements: 

• The diagnosis software is supposed to run on mobile devices with limited internal 

memory. 

• The software should work offline since many health centers in the rural areas do not have 

access to the internet. 

• The application will have an upload image functionality to allow health worker to upload 

a patient’s image from a microscopic blood film. 

• The application will increase clarity of blurred images to increase accuracy during 

diagnosis. 

• The application will process the image and tell if the blood film has malaria or not. 

2.4 Non-Functional Requirements: 

• The application should work on mobile devices with very low memory and a slow 

graphic processing unit.  

• The application will provide the same user experience online and offline. 
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Chapter 3: High level Architecture 

This schema depicts the high-level architecture of the malaria diagnosis clinical application.  

 

Figure 1 
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application.  

Android Operating System 
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Machine learning algorithms 
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image to the application and 
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the given input 

microscope image. 
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Architectural Components 

3.1 User Interface: 

The user interface of the malaria diagnosis app is very simple. It is a set of android application 

activities that will take user information and displays results. It will take in the patient’s personal 

details like their phone number, full name and address.  

3.2 User Activity Diagram: 

See Figure 3 below. 

3.3 Mobile app activities workflow: 

 

 

 

 

 

 

 

 

Figure 2 

 

 

3.4 Image Storage:  

The application will have a local storage for all the images it analyzes. Although this will 

overload the android device, we cannot put the image storage in the cloud because the 
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application will be tested in areas where there is either no internet connectivity or low internet 

bandwidth. 

Machine learning Algorithm: 

The machine learning algorithm will be developed as part of the android application using 

already existing machine learning libraries like Tensorflow.  

3.5 Model Architecture: 

To predict if a patient is malaria positive or negative a classifier was trained to take in an image 

of a malaria blood smear from a health worker and classifies as either negative or positive. Our 

classifier was built by fine-tuning MobileNet, one of Google’s multiple pretrained models on 

ImageNet (1.2 million image databases with 1000 classes) that has been optimized for devices 

with low memory and slow computational power. Below is the architecture of the model: 

https://www.tensorflow.org/
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Table 1.0 
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Figure 3 



22 
 

Chapter 4: Implementation 

4.1 Implementation Tools and libraries: 

To implement this project, we used the following tools and libraries: 

Tensorflow (Machine learning library from Google), Atom editor, Android Studio, 

Pycharm IDE for python, python Augmentor library, Jupyter Notebook and ImageMagick. 

4. 2 Data Collection: 

After communication with the team of researchers at Noguchi Institute, we were able to 

get 107 negative bitmap images of blood smears of patients and 354 positive bitmap images of 

malaria blood smears. This data was not balanced, diverse and the quantity was not substantial to 

train a convolutional neural network on it. This means the data has to be augmented. 

4.3 Preprocessing: 

MobileNet can only train on Jpeg image format and the Noguchi dataset are all bitmap 

images. To train on the MobileNet model, we resize our images to 224px X 224px and converted 

all of them to jpeg format. To make the two classes balanced and increase the diversity in our 

training set, we augmented the data in each class of our training set using reflection, vertical 

flipping, horizontal flipping, 90 degree rotation, 270 degree rotation and random cropping. After 

augmentation we have 2000 images, in both classes. Data augmentation is important because it 

will reduce the possibility of our model overfitting over particular orientations of the dataset 

images because the model will learn from several orientations of the images.  Therefore, our two 

sets of data are finally balanced and ready for training. We use a python package called 

Augmentor for this step. 

https://github.com/mdbloice/Augmentor
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4.4 Sample Data:  

Negative Samples Positive Samples 

      

      

 

 

 

 

4.5 Training: 

For training, the images were arranged into two folders, one for positive malaria images 

named “Positive” and another for negative images named “Negative”. During training 20% of 

the images were selected for validation and 10% for testing. The classifier will learn 1001 * N 

parameters where N represent the number of labels (Google, n.d.). The classifier was trained 

using mini-batches of 10 images in 4000 steps. A learning rate of 0.01 was used for training. A 

new layer was added to the Mobilenet_1.0_224 architecture and then a SoftMax layer to produce 

prediction probability of our new classes. Gradient descent was used for optimization and cross-

entropy as the loss. Let S be a SoftMax function, (x, y) a training pair from a training set and L 

the one hot encoding vector representing our label y. The cross-entropy loss, D is the following: 



24 
 

𝐷(𝑆, 𝐿) =  − ∑ 𝐿𝑖 ∗ log (𝑆𝑖)𝑖   where Li and Si both represents the i-component in L and S 

respectively. 

4.6 TensorFlow Model Representation: 

This graph shows TensorFlow’s representation of the model. Looking at it you can see 

the input layer, bottleneck layer (layer before the output layer) and the output layer. 
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Figure 4 

4.7 Porting to Android: 

After training the classifier on a laptop, we added it to the asset folder of the android 

project as a graph file (retrained_graph.pb). In addition, a text file was added with the labels used 

for classification. The TensorFlow dependency for Android was added to Gradle build. Three 
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activities were built into the android application. The splash screen activity which serves as a 

starter activity for the app. The MainActivity.java which serves as a screen for the health worker 

to enter the patient’s information and then select the image corresponding to the patient’s malaria 

blood smear. Once, all this information entered the health worker will tap the diagnose button 

which will prompt Android SDK to pass the image to the Android NDK which has a TensorFlow 

C++ wrapper. This wrapper will convert the image into a tensor and pass it as input to the model 

which will an array of length two with probabilities for the negative and positive predictions. The 

TensorFlow inference interface allows the SDK to interact with the NDK. These predictions are 

sent to the MedicalResultActivity.java, the same activity also prompts the health worker to enter 

a diagnosis for the patient. This diagnosis is sent to the patient via SMS using Twilio’s API. 

 

Figure 5 
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4.8 Generative Adversarial Network(GAN) Training: 

 

Figure 6 

A generative adversarial network is a model made of up of two neural networks, a 

generator and a discriminator. A generator is a network which focuses on forging images which 

look exactly like the dataset images from noise input and the discriminator is train to determine if 

an image is real or fake given an image by taking the real images and the noise as input 

(Mosquera, 2018). In our case instead of our generator learning taking random noise as input, it 

is going to take our current negative dataset and try to generate positive images from it. Our 

discriminator will take our current positive and negative data and will learn how to discriminate 

the positive from the negatives. The benefit of this approach is that after training our 
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discriminator will have really learned the features of positive images and will be able to 

discriminate if an image is positive or not(negative). 

To develop this model, we trained both the discriminator and the generator on 1000 

epochs. We trained both the discriminator(classifier) and generator on batches of 10 images. The 

generator was trained by taking negative images from the training set as input. The discriminator 

was trained with positive images and output images from the generator.  

Architecture of the Generator: 

The generator is made up of three linear layers which are compose with RELUs to add 

non-linearity to the model. The final layer is a linear layer compose with a tanh function as 

activation.  

Architecture of the Discriminator: 

The discriminator is made up of three linear layers which are composed with RELUs and 

then dropouts. For the output layer the discriminator uses a linear model.  

For optimizing the model, we used the ADAM optimizer for both the generator and the 

discriminator with a learning rate of 0.0002. The following equations represent the cross-entropy 

loss for both network: 

Discriminator Loss: 

𝐺𝑒𝑛𝑙𝑜𝑠𝑠 =  
1

𝑚
∑[log (𝐷(

𝑚

𝑖=0

𝑥𝑖) + log (1 − 𝐷 (𝐺(𝑍𝑖)))] 

Generator Loss: 
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D𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑙𝑜𝑠𝑠 =  
1

m
∑ log (1 − D(G(𝑍𝑖))

𝒎

𝒊=𝟏

 

Where D : discriminator network; G : generator network; m: number of training examples; xi: i-

real image(in our case i-positive image) and zi: i-fake images(in our case i-negative image). 
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Chapter 5: Testing and Result 

5.1 Training Results: 

After retraining the MobileNet neural network on the positive and negative datasets, they 

produced the following results: 

Training Operation Images Size Accuracy 

Training  70% of the dataset 100% 

Validation  20% of the dataset 100% 

Testing 10% of the dataset 100% 

 

From the above table, the model is doing extremely well on this classification task. 

Although these are great results, it is also hinting that this classification task is trivial for the 

model. This task is trivial because the negative samples in our dataset are very different from the 

positive samples which is not the case in practice. In particular, the negative dataset is not 

representative of a healthy person. Therefore, the model is not learning the right parameters to 

differentiate between negative samples and positive samples. 
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Figure 7 

The above figure shows how the training accuracy starts off very small and gradually starts 

increasing until it finally plateaus very close to 100%. The validation accuracy shows the same 

trends as the training accuracy. This means that the model was able to perform well on the 

training set without overfitting because it still performed well on the validation set. 

 

 

 

 Training Steps 

Training:  

Validation:  

Training:  

Validation:  
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Figure 8 

The above graph shows that the cross-entropy loss decreasing both during the training and 

validation. This is indication that the model made good progress on the classification both during 

training and validation. 

Despite having such amazing results while training the classifier, it cannot be proven that 

the classifier is learning the correct features because the negatives images are not representative 

of a healthy individual who is not suffering from malaria. To solve this data problem, a 

generative adversarial network will be trained on the data.  

5.2 Generative Adversarial Network Training Results: 

After training the GAN for 1000 epochs, we got the following progression of the 

generator and discriminator loss: 

Training Steps 
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Figure 9 

From the figure above, we can say that at the beginning of the training process the 

generator loss is low and the discriminator loss is high because the generator start off with 

images that are not too far from the positive ones compared to noise and the discriminator has 

not yet learnt how to distinguish between positives and negatives. As the discriminator becomes 

confident in discriminating between positive and negative images the generator loss starts 

increasing.  
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5.3 Application Memory Usage: 

The application was tested on one android phone to access how much memory and CPU 

is used by the model. After building the model into the app, the APK file had a size of 52.28MB 

which is smaller than social apps like WhatsApp and Facebook which are about 100 MB, but 

stills run effectively on phone with low memory. Here are the results of testing the application 

for memory and CPU usage (at beginning of profiling the phone had 93.71MB of unused 

memory): 

Device Name Start of image 

upload 

End of Image 

Upload 

Before 

classification 

After 

classification 

CPU Usage ~0% 5% ~0% %13 

Memory Usage 93.71MB 74.666 91.06 MB 111.05MB 

 

When a user is uploading an image to the application there is decrease in memory usage 

as he is leaving the context of the application to pick a file from the file system (see Figure 10). 

On the other hand, there is an increase in memory usage by 10.01MB when a user calls the 

model in the app. This is seen in Figure 11. 

 

Figure 10 
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Figure 11 

 

Figure 12 

With regards to CPU usage, there is an increase of 5% in CPU usage on image upload and an 

increase of 13% during classification. This 13% increase in CPU usage  
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Chapter 6: Conclusion and Recommendations 

The machine learning model built through this project shows how computer vision can be 

applied to the field of medical diagnosis to make the work of pathologists and doctors easier. 

With this model, we can do a binary classification of malaria blood smear images by uploading 

these images to a phone and then passing these images through a classifier to predict if a person 

is malaria positive or malaria negative. This project’s classifier was trained using Google’s 

Mobilenet convolutional neural network, this model has been optimized for mobile devices 

which makes the model suitable to work in areas where there is no internet connectivity and on 

low memory devices. While working on the classifier, our negative examples where not 

representative of a person without malaria. To make sure that our model was learning the right 

features, we trained a generative adversarial network(GAN) on data where the discriminator was 

to discriminate between positive and negative images instead of real and fake images. The 

project explored using GAN to create classifier rather than using it to generate data as it is 

usually the case. Despite these great milestones, much is still left to be done. 

6.1 Future Work: 

This project sets the stage for very interesting improvements and explorations as it has 

proven that machine learning could be used on low memory devices with no connectivity to 

detect malaria. The following are my recommendations for future work: 

• For a start, this system needs to be tested in clinics and hospitals to document how well 

the system is doing in practice compared to humans. Based on the model’s practical 

performance, it could be improved by tuning hyperparameter during training. 

• This project could also be used as foundation for developing a real time malaria parasite 

detection system. The advantage for such a system is that it could help pathologists focus 
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on the right spots when looking at a malaria blood smear thereby speeding up the malaria 

detection process.  This could also be very helpful in computing malaria parasites to red 

blood cells which is the determining factor used by pathologists for malaria diagnosis. 

• While working on this project, our greatest challenge was getting data that was 

representative of the problem and that was of high resolution. To retrain our classifier for 

higher performance, there is need to collect data with higher resolution and better 

labeling from hospitals and clinics. For this to happen, the images need to be taken with 

microscopes of better camera quality to get images of higher resolution.  

• The techniques used in this project could easily be applied to solve similar diagnosis 

problem for tuberculosis and for other medical procedures where classifier could be good 

at producing medical results. 
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