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Abstract 

This paper describes the design and fabrication of an epileptic seizure detection watch for the 

timely detection of Generalized Tonic-Clonic (GTC) seizures; using skin conductance (SC) 

signals. The watch’s circuit was designed in EasyEDA and implemented on a Breadboard to 

showcase the dispatch of a seizure event alert to a phone via a Bluetooth module; in the event of 

an ongoing seizure and vice versa. Due to the unavailability of SC signal databases, 

Electroencephalography (EEG) signals, acquired from a physiological database known as 

PhysioNet were used in showcasing the signal processing of incoming SC signals, temporal and 

spectral feature extraction of these signals, and the classification of these signals using a trained 

machine learning algorithm. Twenty-five machine learning algorithms provided by the MATLAB 

Classification Learner App were trained using 80 EEG signals (both seizure and non-seizure) and 

only two algorithms, namely the Medium Tree and Linear Support Vector Machine (SVM) had 

the highest training prediction accuracy. However, in determining their prediction accuracy with 

two different data sets, the Medium Tree model had the highest cumulative prediction accuracy of 

76.7%; as compared to the Linear SVM model which had a cumulative prediction accuracy of 

73.3%. Based on these results, the Medium Tree model was recommended as a good seizure 

detection algorithm to prevent fatal and non-fatal injuries; and even Sudden Unexpected Death in 

Epilepsy (SUDEP). 
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Chapter 1: Introduction 

1.1 Project Objective  

This project will describe the design and fabrication of a smart watch for the timely 

detection of generalized tonic-clonic (GTC) seizures which typically occur in people diagnosed 

with epilepsy; by monitoring Electrodermal Activity (EDA) in order to alert the 

parent(s)/caregiver(s) of that person. 

1.1.1 Project Motivation 

In Ghana, one per cent of the population has epilepsy, thus approximately 250,000 people 

have been diagnosed with epilepsy [6]. When these people are having an epileptic seizure, 

specifically the GTC seizure, they become physically unable to call for help. A watch-like sensor 

capable of detecting these GTC seizures could significantly improve the quality of life for these 

Ghanaians who are constantly placed in life-threatening situations; in danger of acquiring serious 

and even fatal injuries while going about their daily activities. Even during sleep, in the event of a 

GTC seizure, a person can injure themselves and/or can experience airway obstruction which could 

be fatal; so if the parent(s)/caregiver(s) of that person are alerted that a grand mal seizure is 

ongoing, the person could receive timely treatment if injured and/or they could be placed in a 

recovery position to avoid airway obstruction [1]. Additionally, because most epileptic deaths are 

unwitnessed, timely detection of a GTC seizure is vital in SUDEP (Sudden Unexpected Death in 

Epilepsy) prevention [1].  

1.1.2 Background 

About 65 million people around the world have epilepsy [2], one of the most common 

neurological disorders characterized by recurring seizures of different degrees of severity which 

have potentially deadly consequences. Epilepsy is not one condition, but a variety of disorders 
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reflecting underlying brain dysfunction that may result from many different causes; nonetheless 

more than half of the time the underlying cause is unknown [1].  

An epileptic seizure is defined as a transient occurrence of signs and/or symptoms due to 

abnormal excessive or synchronous neuronal activity in the brain and when asked as observed, 

people with epilepsy often describe seizures as occurring “like a bolt from the blue” which reflects 

the unforeseen way in which seizures tend to strike [1]. International classification of epileptic 

seizures give rise to two main categories: focal seizures and generalized seizures which were 

established by the ILAE (International League Against Epilepsy) [1]. Focal seizures, also known 

as auras are seizures which occur at one cerebral hemisphere of the brain (the left/right) [3]. They 

normally occur without a change in awareness and consciousness [2]. These seizures make a 

person with epilepsy twitch, experience abrupt changes in sensation (taste and/or smell), become 

confused or dazed [3].  Generalized seizures occur in both cerebral hemispheres of the brain (left 

and right) and they normally start with a loss of consciousness or awareness [3,4]. These seizures 

are easily detectable by outsiders – as they can be convulsive (sporadic or jerky movements of the 

limbs and face) or non-convulsive, such as rapid blinking and staring [2,4]. They can also involve 

a tonic phase where the muscles in the person become stiff and an atonic phase where the person 

abruptly loses their muscle tone [3]. The emotional state alterations occurring during frontal and 

generalized seizures produce a variety of autonomic footprints which result in increased 

sympathetic activity in the sympathetic subdivision of the Autonomic Nervous System (ANS) [1]. 

These autonomic footprints in the sympathetic nervous system (SNS) include elevated heart rate, 

blood pressure, respiratory rate and sweating [1].  

Sweat (the subtle change in perspiration that is only detectable by precise instrumentation 

and is quite different than the amount of sweat produced by physical activity) is a weak electrolyte 
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and good conductor [1,5]. The filling of sweat ducts by sweat results in many low-resistance 

parallel pathways, thereby increasing the conductance of an applied current [1].  Since sweating 

causes variations in skin conductance at the skin surface, formally known as EDA (Electrodermal 

Activity), activity within the sympathetic axis of the ANS (caused by these variations) is reflected 

and this provides a sensitive and convenient measure of assessing alterations in sympathetic 

arousal associated with emotion, cognition and attention [1]. So far, physiological alterations 

during epileptic seizures have mostly been studied using indirect parameters such as heart rate, 

respiratory rate and blood pressure changes that are dually modulated by both divisions 

(Parasympathetic & Sympathetic) of the ANS but the additional use of EDA (singly modulated by 

the Sympathetic division of the ANS) potentially provides more insight given that EDA can be 

considered to act as an indicator of both psychological and physiological arousal [1,9]. 
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1.2 Overview of Device  

At the heart of this seizure detection watch is a circuitry which measures the variation of 

the user’s skin conductance by applying a constant, low voltage to the user’s skin via two 

electrodes positioned on the dorsal side of the user’s wrist. After the measurement of the variation 

in skin conductance, amplification of these skin conductance (SC) signals occur via an operational 

amplifier. Analog signal processing and event detection sequentially occur via an algorithm. The 

microcontroller activates the Beetle BLE (Bluetooth 4.0 Low Energy) module to dispatch a seizure 

event alert to the user’s parent(s)/caregiver(s) phones if a GTC seizure is detected, using an event 

detection algorithm. If a seizure is not detected after the skin SC signals go through the processing 

and event detection algorithm, the Bluetooth module does not dispatch an alert. 

Below is the operational logical structure of the seizure detection watch: 

 

 

 

 

 

 

 

 

Figure 1-1.  Operational Logical Structure of Seizure Detection Watch 
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Figure 1-2.  Circuit  Schematic of Seizure Detection Watch 

In Figure 1-2, the sensor circuitry is depicted and it is powered by a 3.7V lithium polymer-

rechargeable battery whose positive and negative terminals are represented by the fixed terminal 

block labelled U1. The Vin and GND pins of the Arduino Nano are connected to the terminals of 

U5 in order to get powered and the terminal block labelled U5 represents a 5V lithium polymer 

battery. The Beetle BLE module has its Vin and GND pins connected to the Vin and GND pins of 

the Arduino Nano. 

The 3.7V supplied to the circuitry is divided by the two resistors, R1 and R2. This divided 

voltage is then routed towards the unbalanced Wheatstone bridge (made up of known resistances 

R3, R4, R5 and the unknown varying resistance of the user’s skin), specifically to the two 

electrodes placed on the dorsal side of the user’s wrist in order to apply a low, constant voltage to 

the person’s skin. Terminal 1 of the fixed terminal block labelled U3 in Figure 1-2, represents the 

negative/ground terminal of one the electrodes; while terminal 2 represents the positive terminal 

of the other electrode. The unbalanced Wheatstone bridge is utilized because the resistances of R3, 



	 	 12	

R4 and R5 are fixed and as a result, it is used for measuring an unknown resistance [10]. The 

voltages at the two nodes of this Wheatstone bridge (created by R3 and the user’s skin, and R5 and 

R4) have their voltages sent to the inverting and non-inverting inputs of the amplifier 

(AD8651ANZ), respectively. The amplifier is also powered by the 3.7V battery.  

After amplification, the SC signals are sent to the analog input (A0) of the Arduino Nano 

in order to get filtered, de-convoluted, have their temporal and spectral features extracted and get 

sent through a trained machine learning algorithm for GTC seizure detection. The Pins TX and 

RX of the Arduino Nano are connected to pins RX and TX of the Beetle BLE respectively. 

Therefore, at the onset of a GTC seizure, through this connection, the Bluetooth module dispatches 

an alert to the parent(s)/caregiver(s) phone. 
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Chapter 2: Literature Review 

Depending on the patient, epileptic seizure treatments include antiepileptic drugs (AEDs), 

surgery to remove a small part of the brain causing the seizures, the implantation of a small 

electrical device in the body and a ketogenic diet to help control seizures [11]. The aim of these 

forms of treatments is to severely reduce the occurrence of seizures and/or to completely stop them 

from occurring [11].  

Despite antiepileptic drugs (AEDs), one-third of people with epilepsy continue to have 

seizures [13]. However, even when seizures are well controlled with other treatment methods, self-

reported quality of life is significantly lowered by the anxiety associated with the unpredictability 

and apparent randomness of epileptic seizures which can cause severe non-fatal and fatal injuries 

[11, 13]. That is why methods or devices capable of accurately detecting seizures could promote 

therapies aimed at rapidly treating seizures, help prevent injury or even death and significantly 

improve quality of life for epileptic patients [11,13]. Electroencephalography (EEG) is an 

electrophysiological, non-invasive, multi-channel monitoring technique meant to record electrical 

activity in the brain; measured by an Electroencephalogram [12, 13]. The electroencephalogram is 

a device made up of electrodes, conductive gel, amplifiers and an Analog to Digital Converter 

[12]. The electrodes are placed along specific places on a person’s scalp according to 10-20 

standards for EEG placement and they are labelled by letters which indicate the lobes of the brain 

(i.e. F-Frontal, T-Temporal, C-Central, P-Parietal, O-Occipital) [12].  

EEG waveforms are generally classified according to their frequency, amplitude, shape as 

well as the position of the electrodes on the person’s scalp [12]. In regards to classification of these 

waveforms according to their frequency, there are five broad spectral sub-bands of the EEG signal 

which are generally of particular interest: delta (0-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta (13-
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30 Hz) and gamma (30-100 Hz) [12]. Brain issues like Alzheimer’s, Attention Deficit Disorder 

(ADD), epilepsy, anxiety disorders, autism, insomnia, chronic pain and dyslexia all produce 

electrical signals with specific frequencies from one or more of these five broad spectral sub-bands 

[12]. High frequencies are often more common in abnormal brain states from an epileptic patient 

as there is a shift of EEG signal energy from lower to higher frequency bands before and during a 

seizure [12]. Thus, monitoring the electrical activity of the brain from scalp electroencephalograms 

(EEG) is the conventional and easy way to observe an epileptic patient before, during and after a 

seizure. As a result, feature analysis of EEG signals from an epileptic patient is a powerful and 

enabling way for the prediction and timely detection of the onset of seizures (both partial and 

generalized tonic-clonic seizures) usually using a seizure detection algorithm.  

Although this method of seizure detection is considered to be more accurate because the 

electric signals being analyzed are directly from the brain, it becomes a stigmatizing and obtrusive 

method not suitable for long-term continuous monitoring outside of the hospital. In a survey of 

141 patients with uncontrolled epilepsy from two different epilepsy centers, almost 80% of patients 

were opposed to wearing scalp EEG electrodes to obtain seizure warnings [1]. This strong aversion 

could have been due to the discomfort associated with wearing scalp electrodes, the fear of 

stigmatization, or both [1]. Alternatively, monitoring EDA via a compact sensor circuitry and two 

electrodes on the ventral/dorsal side of a patient’s distal forearm [8] is an unobtrusive and non-

stigmatizing method of seizure detection.  

Electrodermal activity (EDA) is the umbrella term used for defining autonomic changes in 

skin conductance [14]. Skin conductance can be quantified by applying an electrical potential 

between two points of skin contact and measuring the resulting current flow between them [14]. 

Typical units of EDA are microSiemens (µS) or micromho (µmho) [14]. The EDA signal has a 
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frequency bandwidth of 0–2 Hz and they are made up of background tonic (skin conductance level: 

SCL) and rapid phasic components (Skin Conductance Responses: SCRs) that result from 

sympathetic neuronal activity [14,17]. The measure of the tonic component (general tonic-level 

EDA) is the SCL and this component relates to the slower acting components and background 

characteristics of the signal (the overall level, slow climbing and slow declinations over time) [14]. 

Skin conductance level (SCL), represents the baseline of the skin conductance as it varies among 

people, depending on their physiological states and autonomic regulation [15]. On the other hand, 

the measure of the phasic component is the SCR which refers to the faster changing characteristics 

of the skin conductance signal [14].  

These tonic and phasic (SCL & SCR) components can be obtained from a EDA signal 

through a de-convolution process [16]. De-convolution reverses the process of convolution which 

is a mathematical way of combining two signals (an input signal and an impulse response) to form 

a third signal, the output signal [18,19]. Research shows that SudoMotor Nerve Activity (SMNA) 

causes sweat secretion and thus triggers a specific change in skin conductivity and as such, in 

mathematical terms, it can be considered as a driver; consisting of a sequence of mostly distinct 

impulses (i.e. SudoMotor Nerve Bursts), which in turn, trigger a specific impulse response (i.e., 

SCRs) [18]. The bi-exponential impulse response function (IRF) which is also known as the 

Bateman function describes the course of the impulse response (i.e., SCRs) over time [18]. 

Therefore, the result of this process can be represented by the convolution of SMNA with the IRF 

[16, 18]. That is, EDA = SMNA	 	IRF. IRF = e3
4
56 − e3

4
58 ×u t 	where		τ?	and τ@ are, 

respectively, the slow and the fast time constants of the phasic curve shape, and u(t) is the unit step 

function; and SMNA = (DRIVERBCDEF + DRIVERHIJKEF) [16,17].  
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 SMNA is unknown and is evaluated by de-convolving the EDA signal with the IRF [16]. 

To decompose the obtained SMNA signal into the DRIVERBCDEF and DRIVERHIJKEF	components, 

some algorithmic steps are taken [16]. In the first algorithmic step, a smoothing Gauss window of 

200ms is applied to the SMNA signal, then in the second step, a peak detection algorithm is used 

in order to find the peaks over a threshold of 0.2µS [16]. In the third step, all the points below the 

threshold get interpolated with a cubic spline fitting method; resulting in the DRIVERHIJKEF 

component [16]. In the final step, the DRIVERHIJKEF	component, is computed by subtracting the 

previously estimated DRIVERBCDEF from the SMNA, under the hypothesis that tonic activity is 

observed in the absence of any phasic activity [16]. It is after this process of de-convolution and 

decomposition that the SCR signals that represent the responsive characteristics of EDA can have 

their features extracted, analysed and classified for the detection of seizures. Figure 2-1 shows an 

SCR signal obtained from the de-convolution process of a raw and filtered EDA signal. 

 

 

 

 

 

Figure 2-1.  Different stages in EDA signal processing.  (a)  Raw EDA signal before f i l tering. (b)  Raw EDA 
signal after low-pass f i l tering. (c)  Filtered EDA Signal & Skin conductance level (SCL) component.  (d)  
Skin conductivity response (SCR) obtained after the de-convolution process.  [15]  

In regards to using alternative methods like monitoring EDA (as compared to EEG signals) 

via a compact sensor circuitry for the timely detection of GTC seizures, a PhD thesis published in 
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Figure 3. Different stages in EDA signal processing. (a) Raw EDA signal before filtering. (b) Raw EDA
signal after low-pass filtering and stimuli onset. (c) Estimation of EDA baseline using a cubic spline
approximation. (d) Skin conductivity response (SCR) obtained after the convolution process.

4.2. Feature Sets

In the present section, all the features are estimated. The characteristics related to time domain,
frequency domain, statistics and morphological analysis are computed for each physiological variable.
In this work, thirty six features are used, as you may observe in Table 1.

Table 1. Temporal, morphological and frequency features computed for EDA signals.

Analysis Features

Temporal MSC, SDSC, MASC, MISC, DRSC, FMSC, FDSC, SMSC, SDSC
Morphological ALSC, INSC, APSC, RMSC, ILSC, ELSC, KUSC, SKSC, KUSC, MOSC
Frequency F1SC, F2SC, F3SC

Different time-domain and frequency-domain markers are computed over the phasic component
SCR to characterize the EDA signal. The SCL tonic component is out of scope of this study, since it uses
to vary among different people due to physical and genetic aspects [19]. Firstly, a number of temporal
metrics are computed over the SCR component. Thus, the mean (MSC), standard deviation (SDSC),
maximum (MASC), minimum (MISC) and the dynamic range (DRSC), defined as the difference
between MASC and MISC, are estimated. In order to highlight the sudden changes in the skin
conductivity, the first and second derivative of SCR are also computed. Then, the mean (FMSC) and
standard deviation (FDSC) of the first derivative and the mean (SMSC) and standard deviation (SDSC)
of the second derivative are calculated.
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4.2. Feature Sets

In the present section, all the features are estimated. The characteristics related to time domain,
frequency domain, statistics and morphological analysis are computed for each physiological variable.
In this work, thirty six features are used, as you may observe in Table 1.

Table 1. Temporal, morphological and frequency features computed for EDA signals.

Analysis Features

Temporal MSC, SDSC, MASC, MISC, DRSC, FMSC, FDSC, SMSC, SDSC
Morphological ALSC, INSC, APSC, RMSC, ILSC, ELSC, KUSC, SKSC, KUSC, MOSC
Frequency F1SC, F2SC, F3SC

Different time-domain and frequency-domain markers are computed over the phasic component
SCR to characterize the EDA signal. The SCL tonic component is out of scope of this study, since it uses
to vary among different people due to physical and genetic aspects [19]. Firstly, a number of temporal
metrics are computed over the SCR component. Thus, the mean (MSC), standard deviation (SDSC),
maximum (MASC), minimum (MISC) and the dynamic range (DRSC), defined as the difference
between MASC and MISC, are estimated. In order to highlight the sudden changes in the skin
conductivity, the first and second derivative of SCR are also computed. Then, the mean (FMSC) and
standard deviation (FDSC) of the first derivative and the mean (SMSC) and standard deviation (SDSC)
of the second derivative are calculated.
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2011 by Ming-Zher Poh introduced a non-obtrusive and non-stigmatizing wearable Electrodermal 

activity (EDA) and accelerometry (ACM) wristband biosensor; purposed to detect the onset of 

GTC seizures. This wristband biosensor was designed and evaluated on 80 patients. The machine 

learning algorithm used in the evaluation of this biosensor, to detect the onset of GTC seizures 

was the Support Vector Machine. The algorithm was tested on 80 patients containing a wide range 

of ordinary daily activities and achieved high seizure detection accuracy of 94% with a low rate of 

false alarms (≤ 1 per 24 h) [1]. A comparison of the key features of other wearable GTC seizure 

detectors to the MIT Wrist-worn Biosensor can be seen in Figure 2-2.  

As seen from Figure 2-2, unlike utilizing electroencephalogram (EEG) and video-

monitoring collectively for seizure detection, in Epilepsy Monitoring Units (EMUs), in the 

confines of a hospital, using wearable, non-obtrusive and non-stigmatizing sensors serve as great 

methods for detecting GTC seizures.  
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Figure 2-2. Comparison of the key features other wearable GTC seizure detectors to the MIT wearable sensor. [1] 
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Chapter 3: Design 

3.1 Review of Existing Designs 

In Chapter 1, it was stated that a novel way of detecting GTC seizures was by continuously 

monitoring the changes in EDA since epileptic patients emotionally sweat during seizures. The 

traditional form of measurement of skin conductance on all human beings has been via two disc 

electrodes (mainly Silver Chloride) housed in straps which are then normally placed on the palmar 

surface of a person’s hands; the most popular sites being the medial and distal phalanges of their 

fingers (middle and index) and the thenar and hypothenar eminences [7,8].  

A direct current is simultaneously and constantly applied through the two disc electrodes 

to these sites from the sensor’s circuity whose size makes the entire device unmovable [7]. 

Furthermore, the electrodes placed on the hand are often very sensitive to motion and thus require 

the person’s hand to stay absolutely still [9]. Despite being the common form of EDA 

measurement, it is not an ideal and practical choice for the continuous measurement of EDA. 

Another means of monitoring EDA has been explored via a ring prototype called the Moodmetric 

EDA Ring. The creation and testing of this prototype EDA ring was inspired by the fact that novel 

wearable skin conductivity sensors offer portable low-cost solutions for accurate and precise long-

term monitoring [9]. A psychophysiological experiment was conducted for the comparison of the 

similarity of the SCR signals obtained by both the prototype of the EDA ring and a laboratory-

grade skin conductance sensor known as SA9309M [9]. Results from this experiment revealed that 

even though the ring sensor can be used to measure skin conductance, its accuracy might not, 

however, be enough for clinical use [9].  

Another means of unobtrusively measuring EDA is by wearing a small, portable enclosure 

(housing a compact EDA sensor module) on a person’s wrist and placing two disc electrodes at 
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the bottom of the enclosure so that they rest on the dorsal side of the person’s distal forearm [8].  

This chosen form of monitoring the changes in EDA is more accurate and precise than the 

prototype of the Moodmetric EDA ring, as it is unobtrusive and portable when compared to the 

traditional method (electrodes housed in straps and a bulky sensor module) of monitoring EDA. 

This form of monitoring EDA does not require the person to remain absolutely still as compared 

to the traditional method. There exists an FDA-approved seizure detection watch on the market 

known as Embrace2. Embrace2 monitors EDA via two small electrodes that get placed on the 

dorsal side of its user’s distal forearm; when it is worn. This watch also houses a compact EDA 

sensor circuit, an accelerometer and gyroscope for unobtrusive and long-term monitoring of EDA; 

for the detection of epileptic seizures to prevent non-fatal and fatal injuries, and even SUDEP.   

3.2 Thesis Design Objective 

The design objective of this project is to develop an affordable, portable and unobtrusive 

watch to provide EDA monitoring for epileptic patients in Ghana, anytime and anywhere; for the 

timely detection of generalized tonic-clonic seizures. In order to prevent fatal and non-fatal 

injuries, and even SUDEP. Ideally, the prototype of this seizure detection watch would have its 

sensor circuitry implemented on a printed circuit board (PCB). This PCB, including all the 

electronic components soldered unto it will be enclosed in a rectangular 3D printed case and two 

electrodes will be placed in circular slots at the bottom of this case. By being placed at the bottom 

of the case, these electrodes will be placed on the dorsal side of the user’s wrist and this site will 

be where the changes in EDA will be obtained and monitored continuously. 
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3.3 Design Decisions 

The various factors involved in the design decision of the suitable form of long-term, 

unobtrusive EDA monitoring are as follows: cost, accuracy of measurement (by sensor circuitry), 

weight which dictates how portable the watch would be and size. 

3.3.1 Pugh Matrix 

Criteria Baseline 
[Embrace2]  

Weight Moodmetric 
EDA Ring 
[Prototype] 

Seizure 
Detection 

Watch 
[Prototype] 

Cost 0 7 0 +7 
Size 0 4 +4 0 

Weight 
[Portability] 

0 5 +5 +5 

Accuracy of 
measurement (by 
sensor circuitry) 

0 6 -6 0 

Table 3-1 

According to the Pugh Matrix above, the watch design of a GTC seizure sensor is the best choice 

in comparison with Embrace2 (the only FDA-approved Epilepsy Management Watch on the 

market) which was used as the baseline in the Pugh Matrix. Further analysis on the following 

factors is done below to support the previous statement. 

3.3.1.1 Cost 

Table 3-2 shows the bill of required materials employed to fabricate the prototype of the 

seizure detection watch. 

Components Quantity Price ($) 
3.7V Lithium Polymer 

Battery [500mAh] 
1 1.49 

5V Lithium Polymer Battery 
[2500mAh] 

1 2.20 

1	kΩ resistor 1 0.0184 
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10	kΩ resistor 1 0.0197 
100kΩ resistors 3 0.0178×3 

Electrodes 2 0.14×2 

Operational Amplifier 
(AD8651ANZ) 

1  4.4927 

Arduino Nano 1 8.99 
Bluetooth Module [Beetle 

BLE] 
1 14.90 

Printed Circuit Board (PCB 1 1.00 
3D-Printed Case 1 2.00 

TOTAL  35.4442 

Table 3-2  

As seen from Table 3-2, the materials cost of this seizure detection watch will be $35.4442 which 

is approximately $35. This amount in Ghana Cedis is GHc178.66 and it is highly affordable for 

middle-income families in Ghana. Low-income families in Ghana will also be able to afford this 

watch if they follow a good payment plan. 

3.3.1.2 Size  

Ideally, the size of the 3D printed case, for unobtrusive and continuous monitoring will 

mimic the dimensions of the Apple Watch Series 4 with a Stainless Steel Case; as a reference. The 

dimensions of the Apple Watch Series 4 are as follows: Height = 44mm, Width = 38mm and Depth 

= 10.7mm. Consequently, the dimensions of the PCB should be 2-4mm less than the height and 

width of the case. Figure 3-1 and Figure 3-2 (a) and (b) are the Apple Watch Series 4 (with a 

Stainless Steel Case) and the top and bottom view of the 3D model of the casing of the prototype 

of the seizure detection watch; respectively. 
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     Figure 3-1. [20]      Figure 3-2. (a) Top of Case (b) Bottom of Case. 

3.3.1.3 Weight [Portability] 

Ideally, using the Apple Watch Series 4 (with a Stainless Steel Case) as a reference, the 

weight of the seizure detection watch should be ±5g	of	47.90g; where 47.90g is the weight of the 

Apple Watch. The weight of a PCB (without all electronic components soldered unto it) as 

provided by EasyEDA, ranges from 1oz to 2oz. In grams, the range is as follows: 28.30g – 56.70g. 

Thus, the weight of the case should be such that the collective weight of the seizure detection 

watch should be in the range of ±5.00g	of	47.90g.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a b 



	 	 24	

Chapter 4: Implementation 

4.1 Design Factors 

4.1.1 Size [Dimensions] 

 In regards to the size of the seizure detection watch, the dimensions of the PCB produced 

in EasyEDA were greater than the ideal dimensions stated in Chapter 3. Consequently, the 3D 

printed case had larger dimensions than the dimensions proposed in using the Apple Watch Series 

4 as a reference. The measured dimensions of the PCB generated from EasyEDA are as follows: 

Length = 74.3mm and Width = 72.14mm. As seen from these values, the length of the PCB is 

30.3mm lengthier than the length of the Apple Watch and 31.14mm wider than the width of the 

Apple Watch. Below in Figure 4-1(a) is the PCB schematic designed from the circuit schematic in 

Figure 1-2 by EasyEDA. In order to accommodate the PCB, the dimensions of the 3D printed case 

of the seizure detection watch were as follows: Length = 78.00 mm and Width = 76.00 mm. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-1(a).  Designed PCB schematic                  
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4.1.2 Weight [Portability] 

The weight of the PCB was measured to be 28.60g which is 0.30g heavier than 28.30g. 

According to the Tech Specifications of the Arduino Nano from the Arduino Store, the weight of 

this microcontroller is 7g. Due to a constraint in resources, the delivery of the Beetle BLE (of range 

50m) never occurred. In its place, the HC-05 Bluetooth module; of range 10m was utilized. The 

weight of the HC-05 is 10g, according to its tech specifications. Considering the weights of the 

five resistors used and the operational amplifier to be negligible, the collective weight of the PCB 

(with all electronic components soldered) is 45.60g. The measured weight of the 3D Printed Case 

is 6.25g. Collectively, the weight of the seizure detection watch, made up of the PCB, all electronic 

components and the 3D printed case is 51.85g. Therefore, the weight of this seizure detection 

watch is well within the range of ±5.00g	of	47.90g.  

4.2 Proof of Concept  

 Ideally, to showcase the entire operational logical structure of the seizure detection watch, 

it should be placed on the dorsal side of the user’s wrist to continuously measure and monitor the 

variation of the user’s skin conductance; and alert the user’s parent(s)/caregiver(s) when the onset 

of a GTC seizure is detected. Due to the fact that at this stage, the watch is a prototype, it was not 

placed on any human being for proof of concept and data collection. In order to prove that the 

functionality of the watch’s circuit, as proposed in Chapter 1, the circuit in Figure 4-2 (a) will be 

utilized.  

   

 

 

 

                                                      
Figure 4-2(a). Seizure 
Detection Watch Circuit 
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Figure 4-2(b). Resistors in series representing varying skin resistance 

4.2.1 Measurement of EDA & Seizure Dispatch Alert via HC-05 

The two electrodes in Figure 4-2 (a) will be replaced by resistors of different values. That 

is to say that the variation in skin resistance due to the neuronal activity in the SNS (Sympathetic 

Nervous System), will be represented as the variation of resistors of different values as seen in 

Figure 4-2 (b). The values of conductance will be calculated as resistance varies to prove that a 

decrease in skin resistance increases skin conductance; and vice versa.  

Conductance is defined as the inverse of resistance where, 𝐺 = 	 ?
Z
; G is skin conductance 

in µS and R is resistance in Ω	(ohms) [1]. Resistance is defined by Ohm’s law as the following 

equation, R = 	 \
]
. Substituting R in the conductance formula, the resulting formula is as follows: 

G = ]
\
. For proof of concept, the channel 1 scope of the Analog Discovery was used to read the 

output voltage from the output pin of the operational amplifier and the current entering and exiting 

the op-amp, was calculated using the formula below; as resistance varied.  

∙ I = \`abcde/?g
hei

; where VKCjkFl = 3.7	V and Rln =
?ggop×?ggop
?ggopq?ggop

+ ?ggop×h
?ggopqh

.  
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The formula Rln represents the equivalent resistance of an unbalanced Wheatstone Bridge Circuit 

[24]. 

R (kΩ) Rln	(kΩ) VCjB	(V) I	(µA) G	(µS) 

10 59.09 3.03 6.26 2.07 

43 80.07 2.95 4.62 1.57 

76 93.18 2.86 3.97 1.39 

109 102.15 2.78 3.62 1.30 

Table 4-1  

From Table 4-1, it is observed that an increase in skin resistance produces a decrease in 

skin conductance and vice versa. A GTC seizure alert is to be sent to the phone of the user’s 

parent(s)/caregiver(s) via a Bluetooth module (HC-05). The seizure alert is received through an 

application named Event Detection Alert. This application was created on the MIT-App Inventor 

website and this application runs on lines of code (represented as blocks) that pair the Bluetooth 

module to the parent(s)/caregiver(s) phone and enables the user to receive information from the 

Arduino Nano via the Bluetooth module. The code blocks used to create the application can be 

seen in the Appendix. Initially, a pseudo-MATLAB algorithm was going to be utilized to dispatch 

an ongoing seizure alert but due to the limitations in interfacing the HC-05 with a phone in 

MATLAB, the algorithm was written in Arduino IDE (Integrated Development Environment). To 

elaborate, before using any type of Bluetooth module in MATLAB, the module must be paired 

with the laptop MATLAB is running on. Consequently, it becomes impossible to pair the 
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Bluetooth module with a phone in order to receive data from the Arduino via the Bluetooth module 

to the phone. The pseudo-algorithm written in Arduino IDE can be seen in the Appendix. 

 

 
 

 

 
 

 
 

 

 
 

 
 
 

Figure 4-3(a). Ongoing Seizure Event Alert dispatched to parent(s)/caregiver(s) phone 
 
 
 
 
 
 
 
 
 

 

 

 

 
Figure 4-3(b). No Seizure Event Alert dispatched to parent(s)/caregiver(s) phone 
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4.2.2 Filtration, De-convolution, Feature Extraction & Training of Machine Learning Algorithms 

Before a seizure alert is dispatched to the parent(s)/caregiver(s) phone, the incoming SC 

signals attained from the Wheatstone Bridge Circuit first get filtered by a filter designed in 

MATLAB. Their temporal and spectral features then get extracted by four MATLAB functions 

and their extracted features are sent through a trained machine learning algorithm for seizure 

detection. This section will showcase the software implementation of the filter and the results 

obtained from training twenty-five machine-learning algorithms provided by MATLAB for 

seizure detection.  

In Chapter 2, according to literature, the frequency bandwidth of EDA signals is in the 

following range: 0 to 2 Hz. To ensure that all the signals get adequately processed, a Finite Impulse 

Response (FIR) band-pass filter was designed. The band-pass filter is a filter that allows signals 

between two specific frequencies to pass, but significantly attenuates signals at other frequencies 

from passing [21]. In designing this type of filter (in MATLAB) for the incoming SC signals, 

certain vital parameter choices needed to be made. They were the filter structure, the pass-band 

frequency range and stop-band frequency threshold. The filter structure was chosen as FIR instead 

of Infinite Impulse Response (IIR) because FIR filters are always stable as compared to IIR filters 

which are not always stable. The pass-band frequency range was chosen as 0.1-2 Hz; so that all 

signals with frequency components lower than 0.1 Hz and higher than 2 Hz get heavily attenuated.  

Ideally, this frequency range is enough in designing this filter but the stop-band frequency 

threshold is required because realistically, all filters are unable to perfectly attenuate all signals 

beyond or below the chosen cut-off frequency. The stop-band frequency threshold used in the 

design was 0.03 Hz. That is, an additional 0.03 Hz allowance was assigned to the filter’s pass-

band frequency range. Therefore, realistically, the band-pass filter designed only allows signals 

with frequency bandwidths within this range: 0.07 to 2.03 Hz to pass through without getting 
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attenuated. Figure 4-3 shows the Magnitude Response of the software implementation of the FIR 

band-pass filter. See the Appendix for the signal processing code. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4-3. Magnitude Response (dB) of FIR band-pass filter 

 

Table 4-2 showcases vital information on the characteristics of the FIR band-pass filter. 

Stable Linear Phase Design Algorithm 

Yes Yes Equiripple 

Table 4-2. Characteristics of the designed FIR band-pass filter 

The phase response of a filter is conventionally preferred to be linear because it will not distort the 

wave-shape of the filtered signal [22]. Equiripple, the design algorithm of the FIR band-pass filter 

causes the attenuated signals with frequency bandwidths higher than 2.03Hz (including the 
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threshold frequency of 0.03Hz) to continuously alternate at a magnitude of -60dB. The standard 

de-convolution MATLAB code purposed to separate the phasic and tonic components of a skin 

conductance signal, written by Alberto Greco and Luca Citi can be seen in the Appendix. In the 

training of the twenty-five machine learning algorithms provided by the Classification Learner 

Application in MATLAB, 80 resting and seizure EEG signals in total, each a minute long were 

utilized due to the fact that the seizure watch was not used in data collection and due to the 

unavailability of EDA signal databases. These signals were obtained from a physiological database 

known as PhysioNet. Two temporal and two spectral features of the 80 EEG signals were extracted 

and their values were recorded in an excel spreadsheet file.  

The two temporal features extracted were maximum peak and peak-to-peak distance. The 

maximum peak function in MATLAB finds the maximum amplitude of a signal. The peak-to-peak 

distance function in MATLAB obtains it value from a signal by subtracting the amplitude of 

signal’s maximum peak from the amplitude of the signal’s minimum peak; along the y-axis. The 

two spectral features extracted were mean frequency and bandwidth power. The mean frequency 

function used in this section of the algorithm estimates the mean normalized frequency. The 

bandwidth power function returns the average power of a signal. See code for feature extraction 

on an EEG signal in the Appendix. Table 4-3 shows the results of the feature extraction process 

on one of the 80 EEG signals. 

Maximum Peak 
 

Peak-to-Peak 

Distance 

Mean Frequency Bandwidth Power 

59.357 96.856 
 

0.1058 
 

88.3075 
 

Table 4-3 
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After extraction, the respective signals from all 80 people were classified as representing a seizure 

or not. An excerpt from the excel file can be seen in Table 4-4. 

Maximum Peak 
 

Peak-to-Peak 
Distance 

Mean 
Frequency 

Bandwidth 
Power 

Class 
 

59.357 
 

96.856 
 

0.1058 
 

88.3075 
 

No Seizure 
 

509.89 
 

842.979 
 

0.0456 
 

5148.90 
 

Seizure 
 

Table 4-4 

The arrangement of data in this file was done to train the twenty-five machine learning algorithms 

to determine which algorithm had the highest prediction accuracy. After training the models with 

the data set, two models had the highest training prediction accuracy of 85.0%. They were the 

Medium Tree Model and the Linear SVM (Support Vector Machine) Model. 

Type of Model Training Time (sec) Prediction Speed (obs/sec) 

Medium Tree 19.53 300 

Linear SVM 23.462 710 

Table 4-5 

From Table 4-5, it is seen that the trained Medium Tree Model has the lowest training time 

and prediction speed as compared to the trained Linear SVM model. Despite this, training time 

and prediction speed were not good deterministic factors to indicate which trained model, in 
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comparison to each other, would have the highest prediction accuracy when fed with new data 

sets. Therefore, Chapter 5 shows the results obtained when two different data sets where fed to 

both trained models to determine which one was more accurate in detecting the onset of seizures. 

The model with the highest prediction accuracy will be the recommended choice model for 

detecting the onset of GTC seizures in epileptic patients. 
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Chapter 5: Results 

5.1 Introduction 

The purpose of the seizure detection algorithm is to perform band-pass filtering, de-

convolution of the EDA signal to obtain its phasic component (SCR signal), feature extraction 

(temporal and spectral feature) and classification of the features extracted from the SCR signal; all 

in order to detect the onset of GTC seizures. However, in this Chapter, all signals utilized (to 

showcase filtering and classification of these features for seizure detection) were EEG signals 

obtained from a physiological signal database known as PhysioNet.  

5.2 Signal Processing – Filtering  

 Figure 5-1 below shows the plot of a non-seizure EEG signal before and after passing 

through the FIR band-pass filter implemented in MATLAB.  

 

 

 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5-1 
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5.3 Determining the prediction accuracy of the trained Medium Tree & Linear SVM Models 

In determining which trained model was more accurate in detecting the onset of a seizure, 

two different data sets containing the extracted features of EEG signals, were fed into the two 

trained models. The first set contained data on the extracted features of twenty non-seizure EEG 

signals. The second data set was made up of ten seizure EEG signals. Figure 5-2 shows the first 

data set made up of twenty non-seizure signals represented with bar charts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-2 
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Figure 5-3 shows the second data set made up of ten seizure EEG signals represented with bar 

charts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-3 

Upon feeding the data in the first and second data set into the two trained models (Medium Tree 

& SVM), the results in Table 5-3 were obtained. The seizure detection code and results using the 

two trained models can be seen in the Appendix. 

Trained Models Medium Tree  Linear SVM  

1st Data Set [20 Non-
seizure EEG signals] 

16/20 18/20 

2nd  Data Set [10 Seizure 
EEG signals] 

7/10 4/10 

Prediction Accuracy  16+7/30 = 23/30 18+4/30 = 22/30 
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Table 5-1 

 
From Table 5-1, the prediction accuracy of the trained Medium Tree model was found to 

be higher than the prediction accuracy of the trained Linear SVM model. For the first data set, 

containing twenty non-seizure EEG signals, the Medium Tree model falsely detected four seizures 

while the Linear SVM model falsely detected only two seizures. For the second data set, containing 

ten seizure EEG signals, the Medium Tree model was unable to detect only three seizures; whereas 

the Linear SVM model was unable to detect six seizures. In using these two data sets, the trained 

Medium Tree model was found to have the highest cumulative prediction accuracy. An accuracy 

of 76.7%. As a result of this, the Medium Tree model was the recommended choice for a good 

seizure detection algorithm. Hence, this model could be trained with SC signal data for the 

detection of the onset of GTC seizures; when EDA databases are made available.  

 

 

 

 

 
 
 
 
 
 
 
 
 
 

Prediction Accuracy (in 
percentage) 

76.7% 73.3% 
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Chapter 6: Conclusion 

6.1 Discussions 

Due to the lack of numerous seizure EEG signals on PhysioNet, the training data set 

utilized, contained 56 non-seizure EEG signals and 24 seizure EEG signals. Consequently, this 

data set caused the Medium Tree model to be biased towards non-seizure signals. Since this project 

is centered on using skin conductance (SC) signals to detect the onset of GTC seizures, to avoid 

working with a biased model, it should be trained with an equal amount of non-seizure and GTC 

seizure signals. Additionally, the training data set should contain more than 80 signals to improve 

seizure prediction accuracy. Since SC signals are psycho-physiological signals, unlike EEG signals 

which are purely physiological signals, the Medium Tree model might no longer be the 

recommended choice for a good seizure detection algorithm. 

6.2 Limitations 

A limitation of this project was the unavailability of SC signal databases. As a result of 

this, a data set containing the feature extraction of SC signals was unavailable and hence not used 

in training the machine learning algorithms provided by MATLAB. Another limitation faced had 

to do with using MATLAB as the chosen programming platform for signal acquisition, signal 

processing, the de-convolution of the SC signals, the training of a chosen machine learning 

algorithm, the use of that algorithm to classify de-convoluted SC signals as seizures or non-

seizures and finally, the dispatch of a seizure detection alert via a Bluetooth module; to a phone. 

Due to certain connection protocols using MATLAB, the dispatch of a seizure event alert to a 

phone via a Bluetooth module could not happen. The Classification Learner App in MATLAB 

allows the user to only use a batch data set to both train and use a model for predictive applications. 
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Additionally, MATLAB does not have libraries that support the continuous training of the user’s 

choice of model to constantly increase prediction accuracy.  

6.3 Future works 

In future works, an accelerometer could be implemented in the watch’s circuitry to improve 

seizure detection since the watch is supposed to detect the onset of GTC seizures. Regarding the 

electronic components used in the circuit of this prototype, for future works, alternative 

components which are smaller in size can be utilized in order to fabricate the case and PCB of the 

watch using the Apple Watch Series 4 dimensions as a reference. For future works, a programming 

platform capable of running the following operations in real-time will be used. They are the 

acquisition of EDA data in packets (using an on-board MicroSD card), the filtering of this data, 

extraction of both temporal and spectral features from these packets of data, the seizure/non-

seizure classification of these packets of data using a machine-learning algorithm and finally, the 

dispatch of a seizure event alert in the case of an ongoing seizure and vice versa via a Bluetooth 

module of large range. 
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Appendix 

1. 	This pseudo-algorithm is written in Arduino IDE and uploaded unto the Arduino Nano to 

demonstrate the event alert dispatch via the HC-05 when the onset of a GTC seizure is detected.  

#include <SoftwareSerial.h> 

SoftwareSerial BTserial(0, 1); // RX | TX 

//Inputs 

int sensorPin = A0; 

int sensorValue = 0; 

void setup() { 

BTserial.begin(9600);  

} 

void loop() { 

//Read the analog value 

float sensorValue = analogRead(sensorPin); 

//Divide by 205 to obtain a range from 0 to 5V 

float sV = sensorValue/205; 

BTserial.println(sensorValue); 

BTserial.println(sV); 

//A voltage greater or equal to 2.88V indicates a low 'skin' resistance; 

representing that there has  

//been a significant increase in skin conductance 

if (sV >= 2.88) {       

  BTserial.println("JENNY IS HAVING A SEIZURE!"); 

} 

//A voltage less than 2.88V indicates a high 'skin' resistance; 

representing that there has been a 
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//significant decrease in skin conductance 

else if (sV <= 2.88) { 

  BTserial.println("    "); 

} 

delay(5000);  

} 

 

2. The code blocks used to create the app on the website, MIT App Inventor. Assistance from 

The Roboindia team was employed in creating this app [25]. 
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3. Band-pass Filter Design & Implementation  

%%BAND-PASS FILTER DESIGN 
Fstop1 = 0.07;  % First Stopband Frequency 

Fpass1 = 0.1;   % First Passband Frequency 

Fpass2 = 2;     % Second Passband Frequency 

Fstop2 = 2.03;  % Second Stopband Frequency 

Astop1 = 60;    % First Stopband Attenuation (dB) 

Apass  = 1;     % Passband Ripple (dB) 

Astop2 = 60;    % Second Stopband Attenuation (dB) 

Fs     = 8;     % Sampling Frequency 

     

h = fdesign.bandpass('fst1,fp1,fp2,fst2,ast1,ap,ast2', Fstop1, Fpass1, 

... 

        Fpass2, Fstop2, Astop1, Apass, Astop2, Fs); 

     

Hd = design(h, 'equiripple', ... 

     'MinOrder', 'any'); 

     

set(Hd,'PersistentMemory',true); 

 

%%PASSING EEG SIGNAL THROUGH BAND-PASS FILTER 

%Extracting data from non-seizure EEG signal 

fid = fopen('samplesfilter.csv','r'); 

readData = textscan(fid,'%f %f','HeaderLines',2,'Delimiter',','); 

x_Data = readData{1,1}(:,1); 

y_Data = readData{1,2}(:,1); 

 

y = doFilter(y_Data); 

figure(1) 

subplot(2,1,1) 

plot(y_Data) 

grid on 

title('EEG Signal') 

xlabel('Number of Samples') 

ylabel('Magnitude(uV)') 
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subplot(2,1,2) 

plot(y) 

grid on 

title('Band-pass Filtered EEG Signal') 

xlabel('Number of Samples') 

ylabel('Magnitude(uV)') 

  

4. Data and Feature Extraction Code 

%Open data file 

fid = fopen('samples-1.csv','r'); 

%Read data in csv file 

readData = textscan(fid,'%f %f','HeaderLines',2,'Delimiter',','); 

%Extract data from readData 

xData = readData{1,1}(:,1); 

yData = readData{1,2}(:,1); 

%Plot data 

figure(1) 

plot(xData,yData,'b') 

grid on 

axis tight 

xlabel('Elapsed Time (s)') 

ylabel('EEG Fp1 (uV)') 

title('EEG Signal - Patient 01') 

 

%%EXTRACT BOTH TEMPORAL AND SPECTRAL FEATURES FROM EEG SIGNAL 

%Temporal Features 

MAX_pk = max(yData) 

pp_D = peak2peak(yData) 

%Spectral Features 

freq = meanfreq(yData) 

p = bandpower(yData)  

 

5. De-convolution MALTAB code written by Luca Citi & Alberto Greco [23] 

function [r, p, t, l, d, e, obj] = cvxEDA(y, delta, varargin) 
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%CVXEDA Convex optimization approach to electrodermal activity 
processing 
%   This function implements the cvxEDA algorithm described in 
"cvxEDA: a 
%   Convex Optimization Approach to Electrodermal Activity Processing" 
%(http://dx.doi.org/10.1109/TBME.2015.2474131 also available from the 
%   authors' homepages). 
% 
%   Syntax: 
%   [r, p, t, l, d, e, obj] = cvxEDA(y, delta, tau0, tau1, delta_knot, 
%                                    alpha, gamma, solver) 
% 
%   where: 
%      y: observed EDA signal (we recommend normalizing it: y = 
zscore(y)) 
%      delta: sampling interval (in seconds) of y 
%      tau0: slow time constant of the Bateman function (default 2.0) 
%      tau1: fast time constant of the Bateman function (default 0.7) 
%      delta_knot: time between knots of the tonic spline function 
(default 10) 
%      alpha: penalization for the sparse SMNA driver (default 0.0008) 
%      gamma: penalization for the tonic spline coefficients (default 
0.01) 
%      solver: sparse QP solver to be used, 'quadprog' (default) or 
'sedumi' 
% 
%   returns (see paper for details): 
%      r: phasic component 
%      p: sparse SMNA driver of phasic component 
%      t: tonic component 
%      l: coefficients of tonic spline 
%      d: offset and slope of the linear drift term 
%      e: model residuals 
%      obj: value of objective function being minimized (eq 15 of 
paper) 
 
% 
______________________________________________________________________
________ 
% 
% File:                         cvxEDA.m 
% Last revised:                 22 Oct 2015 r68 
% 
______________________________________________________________________
________ 
% 
% Copyright (C) 2014-2015 Luca Citi, Alberto Greco 
% 
% This program is free software; you can redistribute it and/or modify 
it under 
% the terms of the GNU General Public License as published by the Free 
Software 
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% Foundation; either version 3 of the License, or (at your option) any 
later 
% version. 
% 
% This program is distributed in the hope that it will be useful, but 
WITHOUT 
% ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 
or FITNESS 
% FOR A PARTICULAR PURPOSE. See the GNU General Public License for 
more details. 
% 
% You may contact the author by e-mail (lciti@ieee.org). 
% 
______________________________________________________________________
________ 
% 
% This method was first proposed in: 
% A Greco, G Valenza, A Lanata, EP Scilingo, and L Citi 
% "cvxEDA: a Convex Optimization Approach to Electrodermal Activity 
Processing" 
% IEEE Transactions on Biomedical Engineering, 2015 
% DOI: 10.1109/TBME.2015.2474131 
% 
% If you use this program in support of published research, please 
include a 
% citation of the reference above. If you use this code in a software 
package, 
% please explicitly inform the end users of this copyright notice and 
ask them 
% to cite the reference above in their published research. 
% 
______________________________________________________________________
________ 
 
% parse arguments 
params = {2, 0.7, 10, 8e-4, 1e-2, 'quadprog'}; 
i = ~cellfun(@isempty, varargin); 
params(i) = varargin(i); 
[tau0, tau1, delta_knot, alpha, gamma, solver] = deal(params{:}); 
 
n = length(y); 
y = y(:); 
 
% bateman ARMA model 
a1 = 1/min(tau1, tau0); % a1 > a0 
a0 = 1/max(tau1, tau0); 
ar = [(a1*delta + 2) * (a0*delta + 2), 2*a1*a0*delta^2 - 8, ... 
       (a1*delta - 2) * (a0*delta - 2)] / ((a1 - a0) * delta^2); 
ma = [1 2 1]; 
 
% matrices for ARMA model 
i = 3:n; 
A = sparse([i i i], [i i-1 i-2], repmat(ar, n-2, 1), n, n); 
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M = sparse([i i i], [i i-1 i-2], repmat(ma, n-2, 1), n, n); 
 
% spline 
delta_knot_s = round(delta_knot / delta); 
spl = [1:delta_knot_s delta_knot_s-1:-1:1]'; % order 1 
spl = conv(spl, spl, 'full'); 
spl = spl / max(spl); 
% matrix of spline regressors 
i = bsxfun(@plus, (0:length(spl)-1)'-floor(length(spl)/2), 
1:delta_knot_s:n); 
nB = size(i, 2); 
j = repmat(1:nB, length(spl), 1); 
p = repmat(spl(:), 1, nB); 
valid = i >= 1 & i <= n; 
B = sparse(i(valid), j(valid), p(valid)); 
 
% trend 
C = [ones(n,1) (1:n)'/n]; 
nC = size(C, 2); 
 
% Solve the problem: 
% .5*(M*q + B*l + C*d - y)^2 + alpha*sum(A,1)*p + .5*gamma*l'*l 
% s.t. A*q >= 0 
 
if strcmpi(solver, 'quadprog') 
    % Use Matlab's quadprog 
    H = [M'*M, M'*C, M'*B; C'*M, C'*C, C'*B; B'*M, B'*C, 
B'*B+gamma*speye(nB)]; 
    f = [alpha*sum(A,1)'-M'*y; -(C'*y); -(B'*y)]; 
 
    [z, obj] = quadprog(H, f, [-A zeros(n,length(f)-n)], zeros(n, 1), 
... 
        [], [], [], [], [], optimset('Algorithm', 'interior-point-
convex', ... 
        'TolFun', 1e-13)); 
    %z = qp([], H, f, [], [], [], [], zeros(n,1), [A 
zeros(n,length(f)-n)], []);  
    obj = obj + .5 * (y' * y); 
elseif strcmpi(solver, 'sedumi') 
    % Use SeDuMi  
    U = [A, sparse(n,nC), -speye(n), sparse(n,n+nB+4); ... 
         M, C, sparse(n,n+2), -speye(n), sparse(n,2), B; ... 
         sparse(1,2*n+nC), 1, sparse(1,n+nB+3); ... 
         sparse(1,3*n+nC+2), 1, sparse(1,nB+1)]; 
    b = [sparse(n,1); y; 1; 1]; 
    c = sparse([n+nC+(1:n), 2*n+nC+2, 3*n+nC+4], ... 
               1, [alpha*ones(1,n), 1, gamma], 3*n+nC+nB+4, 1); 
    K = struct('f', n+nC, 'l', n, 'r', [2+n 2+nB]); 
    pars.eps = 1e-6; 
    pars.chol.maxuden = 1e2; 
    z = sedumi(U, b, c, K, pars); 
    obj = c' * z; 
    %objd = b' * s; 
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end 
 
l = z(end-nB+1:end); 
d = z(n+1:n+nC); 
t = B*l + C*d; 
q = z(1:n); 
p = A * q; 
r = M * q; 
e = y - r - t; 
 
end 
 

6. Seizure Detection Function – Using Trained Models [Medium Tree & Linear SVM] 

%Structure 'trainedModel_MediumTree' exported from Classification 

Learner. To make predictions on a new table, T1.  

T1 = findaccuracy1; 

yfit = trainedModel_MediumTree.predictFcn(T1) 

 
RESULTS OBTAINED AFTER FEEDING FIRST DATA SET [20 NON-SEIZURE EEG 
SIGNALS] INTO TRAINED MEDIUM TREE MODEL: 
>> testmodel 
 
yfit =  
 
  20×1 categorical array 
 
     No Seizure  
     No Seizure  
     No Seizure  
     No Seizure  
     No Seizure  
     No Seizure  
     No Seizure  
     No Seizure  
     Seizure  
     No Seizure  
     No Seizure  
     No Seizure  
     Seizure  
     Seizure  
     No Seizure  
     Seizure  
     No Seizure  
     No Seizure  
     No Seizure  
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     No Seizure  
 
%Make predictions on a new table, T2. 

T2 = findaccuracy2; 

yfit = trainedModel_MediumTree.predictFcn(T2) 

 
RESULTS OBTAINED AFTER FEEDING SECOND DATA SET [10 SEIZURE EEG SIGNALS] 
INTO TRAINED MEDIUM TREE MODEL: 
 
>> testmodel 
 
yfit =  
 
  10×1 categorical array 
 
     No Seizure  
     Seizure  
     Seizure  
     Seizure  
     Seizure  
     Seizure  
     No Seizure  
     No Seizure  
     Seizure  
     Seizure  
 
%Structure 'trainedModel_SVM' exported from Classification Learner. To 

make predictions on a new table, T1.  

T1 = findaccuracy1; 

yfit = trainedModel_SVM.predictFcn(T1) 

 
RESULTS OBTAINED AFTER FEEDING FIRST DATA SET [20 NON-SEIZURE EEG 
SIGNALS] INTO TRAINED LINEAR SVM MODEL: 
 
>> testmodel 
 
yfit =  
 
  20×1 categorical array 
 
     No Seizure  
     No Seizure  
     No Seizure  
     No Seizure  
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     No Seizure  
     No Seizure  
     No Seizure  
     No Seizure  
     No Seizure  
     No Seizure  
     No Seizure  
     No Seizure  
     No Seizure  
     Seizure  
     Seizure  
     No Seizure  
     No Seizure  
     No Seizure  
     No Seizure  
     No Seizure  
 
%Make predictions on a new table, T2. 

T2 = findaccuracy2; 

yfit = trainedModel_SVM.predictFcn(T2) 

 
RESULTS OBTAINED AFTER FEEDING SECOND DATA SET [10 SEIZURE EEG SIGNALS] 
INTO TRAINED LINEAR SVM MODEL: 
 
>> testmodel 
 
yfit =  
 
  10×1 categorical array 
 
     Seizure  
     No Seizure  
     No Seizure  
     No Seizure  
     Seizure  
     No Seizure  
     No Seizure  
     Seizure  
     Seizure  
     No Seizure  
 
7. MATLAB Generated Code of the Trained Medium Tree Model 

function [trainedClassifier, validationAccuracy] = 
trainClassifier(trainingData) 
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% [trainedClassifier, validationAccuracy] = 
trainClassifier(trainingData) 
% The function above returns a trained classifier and its accuracy. 
This code recreates the classification model trained in Classification 
Learner app.  
% 
%  Input: 
%      trainingData: a table containing the same predictor and      %      
response columns as imported into the app. 
% 
%  Output: 
%      trainedClassifier: a struct containing the trained  
%   classifier. 
%      The struct contains various fields with information about the   
%      trained classifier. 
% 
%      trainedClassifier.predictFcn: a function to make predictions  
%   on new data. 
%      validationAccuracy: a double containing the accuracy in  
%   percent. 
% To make predictions with the returned 'trainedClassifier' on new 
data % T2, use 
% yfit = trainedClassifier.predictFcn(T2) 
% 
% T2 must be a table containing at least the same predictor columns as 
%used during training.  
 
% Auto-generated by MATLAB on 01-Apr-2019 00:40:09 
  
% Extract predictors and response 
% This code processes the data into the right shape for training the 
% model. 
inputTable = trainingData; 
predictorNames = {'MaxPeak', 'Peak2PeakDistance', 'MeanFrequency', 
'BandwidthPower'}; 
predictors = inputTable(:, predictorNames); 
response = inputTable.Class; 
isCategoricalPredictor = [false, false, false, false]; 
  
% Train a classifier 
% This code specifies all the classifier options and trains the 
classifier. 
classificationTree = fitctree(... 
    predictors, ... 
    response, ... 
    'SplitCriterion', 'gdi', ... 
    'MaxNumSplits', 100, ... 
    'Surrogate', 'off', ... 
    'ClassNames', categorical({'No Seizure'; 'Seizure'})); 
  
% Create the result struct with predict function 
predictorExtractionFcn = @(t) t(:, predictorNames); 
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treePredictFcn = @(x) predict(classificationTree, x); 
trainedClassifier.predictFcn = @(x) 
treePredictFcn(predictorExtractionFcn(x)); 
  
% Add additional fields to the result struct 
trainedClassifier.RequiredVariables = {'BandwidthPower', 'MaxPeak', 
'MeanFrequency', 'Peak2PeakDistance'}; 
trainedClassifier.ClassificationTree = classificationTree; 
trainedClassifier.About = 'This struct is a trained model exported 
from Classification Learner R2019a.'; 
trainedClassifier.HowToPredict = sprintf('To make predictions on a new 
table, T, use: \n  yfit = c.predictFcn(T) \nreplacing ''c'' with the 
name of the variable that is this struct, e.g. ''trainedModel''. \n 
\nThe table, T, must contain the variables returned by: \n  
c.RequiredVariables \nVariable formats (e.g. matrix/vector, datatype) 
must match the original training data. \nAdditional variables are 
ignored. \n \nFor more information, see <a 
href="matlab:helpview(fullfile(docroot, ''stats'', ''stats.map''), 
''appclassification_exportmodeltoworkspace'')">How to predict using an 
exported model</a>.'); 
  
% Extract predictors and response 
% This code processes the data into the right shape for training the 
% model. 
inputTable = trainingData; 
predictorNames = {'MaxPeak', 'Peak2PeakDistance', 'MeanFrequency', 
'BandwidthPower'}; 
predictors = inputTable(:, predictorNames); 
response = inputTable.Class; 
isCategoricalPredictor = [false, false, false, false]; 
  
% Perform cross-validation 
partitionedModel = crossval(trainedClassifier.ClassificationTree, 
'KFold', 5); 
  
% Compute validation predictions 
[validationPredictions, validationScores] = 
kfoldPredict(partitionedModel); 
  
% Compute validation accuracy 
validationAccuracy = 1 - kfoldLoss(partitionedModel, 'LossFun', 
'ClassifError'); 
 
 


