

ASHESI UNIVERSITY

PROTOTYPING A CAN BUS NODE FOR PREDICTIVE VEHICLE

MAINTENANCE.

CAPSTONE PROJECT

B.Sc. Computer Engineering

MAC-NOBLE BRAKO-KUSI

2019

ASHESI UNIVERSITY

PROTOTYPING A CAN BUS NODE FOR PREDICTIVE VEHICLE

MAINTENANCE.

CAPSTONE PROJECT

Capstone Project submitted to the Department of Engineering, Ashesi

University in partial fulfilment of the requirements for the award of

Bachelor of Science degree in Computer Engineering.

Mac-Noble Brako-Kusi

2019

i

DECLARATION

I hereby declare that this capstone is the result of my own original work and that no part of it

has been presented for another degree in this university or elsewhere.

Candidate’s Signature:

……………………………………………………………………………………………

Candidate’s Name:

……………………………………………………………………………………………

Date:

……………………………………………………………………………………………

I hereby declare that preparation and presentation of this capstone were supervised in

accordance with the guidelines on supervision of capstone laid down by Ashesi University

College.

Supervisor’s Signature:

……………………………………………………………………………………………

Supervisor’s Name:

……………………………………………………………………………………………

Date:

……………………………………………………………………………………………

ii

Acknowledgements

I would like to thank my supervisor, Dr. Robert Sowah, for his immense support and input. I

would also like to thank the faculty of engineering for the tools provided, that made the

execution of this project possible.

iii

Abstract

The modern-day automobile is no longer just an analog and mechanical entity. Currently, the

most basic of vehicular functions have been computerized. The dedicated hardware assigned

to these tasks are electronic control units (ECU). Automobiles consist of a number of ECUs

networked together to ensure proper functioning of the vehicle. The overall safety of the vehicle

relies on real-time communication between the ECUs. Intra-vehicular communication is

possible because of the Controller Area Network (CAN). ECUs are responsible for detecting

skids, performing anti-lock braking and providing vehicle diagnostic information. Access to

CAN bus could prove useful to mechanics, replacing the trial and error method of identifying

vehicle faults. Described in this paper is a hardware and software design of a prototype system

that provides real-time CAN bus data. Leveraging on the available CAN bus data, the prototype

system will provide vehicle performance data over time. This information should aid in the

detection of early detection of vehicle irregularities.

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. II

ABSTRACT .. III

CHAPTER 1: INTRODUCTION. .. 1

1.1 INTRODUCTION. ... 1

1.2 BACKGROUND.. 2

1.3 OBJECTIVES ... 3

1.4 EXPECTED OUTCOME ... 4

1.5 DELIMITATIONS ... 4

CHAPTER 2: LITERATURE REVIEW ... 5

2.1 INTRODUCTION .. 5

2.2 RELATED WORKS ... 7

2.3 GAPS AND IMPROVEMENTS. .. 10

CHAPTER 3: DESIGN ... 12

3.1 OVERVIEW ... 12

3.2 THESIS DESIGN OBJECTIVE ... 12

3.3 SYSTEM OVERVIEW.. 12

3.3.1 Functional Requirements ... 12

3.3.2 Non-Functional Requirements .. 13

3.3.3 Use Case. .. 14

3.3.4 Flowchart .. 15

3.4 COMPONENT SELECTION .. 15

3.4.1 Pugh Matrix ... 16

3.4.2 Hardware Components .. 17

3.4.3 Software .. 18

3.5 ARCHITECTURAL DIAGRAM .. 19

3.5.1 Contextual Diagram ... 20

v

CHAPTER 4: IMPLEMENTATION. .. 21

4.1 SCOPING CAN BUS .. 21

4.2 HARDWARE DESIGN ... 22

4.2.1 Circuit Schematic ... 23

4.2.2 PCB Design ... 24

4.2.3 Soldering ... 25

4.4 REVISED DESIGN .. 27

4.4.1 Redesigned Circuit Schematic .. 29

4.4.2 Redesigned PCB Design ... 30

4.5 OBD-II CONNECTOR .. 31

4.6 SOFTWARE ... 32

4.6.1 Web Application .. 32

CHAPTER 5: RESULTS ... 33

5.1 DETECTION OF PARAMETERS .. 33

5.2 DATA ON CLOUD .. 34

CHAPTER 6: CONCLUSION .. 35

6.1 LIMITATIONS ... 35

6.2 CHALLENGES ... 35

6.3 FUTURE WORKS ... 36

REFERENCES .. 37

vi

List of Figures

Figure 3. 1 Use case of the overall system .. 14

Figure 3. 2 Flowchart showing operation of the overall system .. 15

Figure 3. 3: High-level overview of the overall system .. 19

Figure 3.4: CAN bus architecture with prototype node ... 20

Figure 4. 1: Real-time capture of CAN signal from target vehicle .. 21

Figure 4. 2: Schematic diagram of prototype node ... 23

Figure 4. 3: PCB design showing board layers top(red) and bottom(blue) 24

Figure 4. 4: Expected PCB layout (bottom) .. 25

Figure 4. 5: Expected PCB layout (front) ... 25

Figure 4. 6: PCB board after soldering (back) .. 26

Figure 4. 7: PCB board after soldering (front) .. 26

Figure 4.8: PCB interfaced with I2C LCD ... 27

Figure 4.9: Expected PCB 2 design (front) ... 28

Figure 4.10: Expected PCB 2 design (bottom) ... 28

Figure 4. 11: Schematic diagram of revised prototype node ... 29

Figure 4.12: PCB layout design of revised prototype node ... 30

Figure 4. 13: OBD-II connector ... 31

Figure 4.14: Fabricated OBD-II cable connector .. 31

Figure 5. 1: CAN bus with failed initialization ... 33

Figure 5. 2: CAN bus with successful initialization .. 33

Figure 5. 4: Interface for web application ... 34

Figure 5. 3: Results of pushing data to MQTT cloud using GSM module 34

vii

List of Tables

Table 2.1 Standard OBD-II PIDs with conversion formula ..6

Table 3.1: A list of keys for interpreting the Pugh matrices .. 16

Table 3.2: Pugh matrix showing the selection of microcontroller ... 16

Table 3.3: Pugh matrix showing the selection of connectivity module 16

Table 3.4: Pugh matrix for selection of CAN controller ... 17

Table 3. 5: A description of components and functions .. 18

Table 3. 6: A description of software applications. ... 18

Table 4.1: Pinout for CAN bus connection via OBD-II connector .. 31

1

Chapter 1: Introduction.

1.1 Introduction.

In Ghana, there is arguably no appliance more prevalent than the automobile. The

estimated national population has grown by 69.3% from 1991 to 2011, while the estimated

population of registered vehicles has increased by 828.2% during that period [1]. With the

invention of the Electronic Control Unit (ECU), application-specific computers found their

way into vehicles. Early implementations of the ECU controlled simple engine function. This

resulted in the overall improvement in fuel efficiency and vehicle performance while lowering

carbon emissions. The results and performance delivered by ECUs caused its widespread

adoption in the automobile industry.

Modern automobiles now more than ever, rely heavily on the integration of application-

specific computers for various vehicular functions. The overall safety of vehicles relies on real-

time communication between vehicle sensors and control units. From activities such as

steering, braking, and engine management, computers have come to play a pivotal role in

monitoring and controlling the state of a vehicle.

Prior to the development of the CAN network, sensors and control units required

dedicated point-to-point connection to communicate with each other [2]. As consumers

demanded more and more from their vehicles, the number of sensors and control units

increased. Consequently, this meant more point-to-point connections, which would increase

the complexity and cost of wiring. The introduction of a single central network bus system

greatly reduced wiring costs and increased overall efficiency in terms of communication speeds

between ECUs on the network.

Data is constantly being transmitted over the CAN network. Since the CAN protocol

lacks any form of security, direct access to the network via the datalink connector allows one

2

to view CAN packets [3]. In the case of any vehicular malfunction, the corresponding ECU

stores a code that is indicative of the fault and in some cases reports this fault by displaying it

on the instrument cluster [4] . The availability of vehicle diagnostic fault codes and vehicle

performance data allows for fault detection. Equipping vehicle owners and mechanics with the

ability to monitor vehicle performance over time provides several benefits. Principal among

these, are enabling the early detection of faults thus avoiding prolonged vehicle downtime and

ensuring accurate vehicle diagnoses.

1.2 Background

Automobiles are an integral part of the life of the average Ghanaian. Individuals from

all walks of life, commute to their various destinations for leisure, business or to conduct

transactions. Automobiles constitute the major means by which individuals locomote. The

prevalence of automobiles makes the role mechanics play vital. It is therefore of concern how

mechanics service faulty vehicles. Accurate vehicle diagnosis does not only shorten the

downtime of vehicles, it also reduces the cost vehicle owners incur.

From interviews conducted, information suggests that the majority of mechanics

trained through apprenticeship system rely on experience and guess work to diagnose vehicles.

Their approach to identifying a probable cause of a vehicular malfunction is based on

speculation and past experience. These mechanics subscribe to the trial-and error approach

where, for a given fault attempts are made to investigate all possible causes of the fault. A

method of elimination is then used to narrow down toward the root cause of the actual fault.

This approach is ineffective since it wastes the time of both the vehicle owner and

mechanic. In some cases, vehicle owners incur unnecessary costs as a result of vehicle repairs.

This guess-and-check approach stems from the training majority of mechanics in the system

receive. Under this system, an individual shadow a superior and is trained to perform

specialized vehicle repairs. Mechanics trained under this system are limited in their capacity to

3

carry out maintenance and repair works on other vehicle types they have not been exposed to.

As such making them less equipped to service more modern vehicles.

 For these informally trained mechanics to stay relevant, there is the need to adapt to

changing trends. Vehicles are becoming increasingly complex as more and more vehicle

functions are computerized. Consequently, mechanics being churned out into the system are

ill-equipped through the apprenticeship training system. Skills acquired under the

apprenticeship system apply to a small segment of vehicles that are gradually fading.

Transferring this knowledge to other vehicles poses a lot of problems as vehicles from different

manufactures are typically incompatible. The intense competition in the automotive industry

encourage the use propriety technology and processes. Therefore, only specific service stations

that are affiliates of specific auto manufacturers are trained to properly service and repair

modern vehicles. The services such companies offer come at a significant cost. Therefore, the

majority of the vehicles in circulation are serviced by mechanics who do not use the proper

tools and in some cases lack the requisite skill to offer quality services. These concerns present

an opportunity where technology can be used to supplement the skills of mechanics to

effectively execute their duties. On the other hand, equipping vehicle owners with such tools

that can report the performance of their vehicles enables proactive and predictive measures to

be taken to avoid unscheduled vehicle failure. This provides owners with the added benefit of

possibly identifying and preempting unplanned vehicle failure.

1.3 Objectives

The goal of this project is to develop a system that monitor vehicle parameters, making

the information accessible to the user. This is done by:

• Prototyping an embedded system that is able to monitor real-time vehicle

parameters.

4

• Incorporating IoT functionality for remote vehicle data access via a web platform.

• Setting up a web server and a database for logging vehicle parameters.

• Setting up a web interface from which users can view vehicle parameters being

monitored.

1.4 Expected Outcome

The project seeks to develop a printed-circuit board housing the required components

to interface with the CAN network of a vehicle via the datalink connector. The IoT-enabled

hardware monitors CAN traffic and transfers the data to a database. A web application fetches

the data from the database and makes it available to a user in real-time. The data is presented

in a graphical format to facilitate easy analyses of vehicle performance.

1.5 Delimitations

• The sole focus of the project is developing a proof of concept system as close to a

complete end-user product as possible.

• The focus of product development is centered on functionality and trades of security

where necessary.

• The only communication protocol handled is the CAN protocol.

• OBD communication is limited monitoring specific vehicle parameters.

5

Chapter 2: Literature Review

2.1 Introduction

The CAN bus network is a centralized multi-master bus developed by a German

company Robert BOSCH GmbH in 1986 [5]. The popularity of the CAN network surged when

Federal and state agency namely; National Highway Traffic Safety Administration (NHTSA)

in collaboration with the California Air Resources Board (CARB) required standard procedure

to monitor vehicle’s emission control systems. As a result, manufacturers implemented the On-

Board Diagnostics protocol (OBD) [6]. OBD refers to a vehicle’s ability to diagnose itself in

the event of vehicular malfunction. The second generation of OBD (OBD-II) is currently in

use in modern vehicles. Since the OBD is a reference point for accessing data from various

vehicle sensors and control units, it was necessary to device a means of linking all these

independent components. The need for a centralized network that interconnected the various

sensors and their corresponding control units created the Controller Area Network (CAN).

 The CAN network facilitates the exchange of smaller packets relative to traditional

networks lines such as Ethernet or USB [7]. In the CAN network, messages are broadcasted

to every control unit on the network. The relevance of a message is subject to the recipient

ECU. An example of a data packet that could be broadcasted over the CAN network include

commands such as “initiate front vehicle wipers” or "roll down windows." Such messages

would be irrelevant to an ECU monitoring engine temperature [8]. There are other networks

that are responsible for channeling other types of data between network nodes in a vehicle.

Such networks are the Local Interconnect Network (LIN), designed to complement the CAN

network. Media Oriented System Transport (MOST), designed for multimedia devices and

FlexRay, designed for time-sensitive communication [9]. Of interest to this project is the CAN

bus network.

6

Since 2008, all production vehicles are required to use CAN network as the OBD-II

communication protocol [10]. These application-specific computers communicate using

specific codes. There are a set of standardized codes used for OBD. Any given code consists

of two segments. The first segment of the code is the mode of operation followed by a

parameter identifier (PID). For each mode, there are a given set of PIDs that request specific

information. For example, using mode ‘01’ and a PID of ‘0D’, the CAN network knows that

the current vehicle speed is being requested [10]. As a result, the corresponding ECU replies

with vehicle speed in hexadecimal format which would have to be converted to its decimal

equivalent.

There are 10 diagnostic modes described by the OBD-II standard SAE J1979 [11]. Of

interest to this project is mode 1. A PID request with mode of 1, requests for current vehicle

data. In order to extract real-time vehicle data, all vehicle requests made have modes set to 1.

The table below shows the standard OBD-II PIDs. In the table below, the expected length of

any given response is provided, in addition to formulas for converting the response into

intelligible data.

PID

(Hex)

Data Bytes Description Min

Value

Max

Value

Units Formula

0x01 2 Engine RPM 0 16383.75 rpm (256A+B)/4

0x0C 1 Speed 0 255 Km/h A

0x0D 1 Temperature -40 215 oC A - 40

Table 2.1 Standard OBD-II PIDs with conversion formula

Source: Adapted from [12]

There are two types of CAN packets namely, standard and extended CAN packets.

Extended packets are similar to standard packets except that extended packets have a lengthier

field for storing arbitration ID. Messages broadcasted over the CAN bus are also referred to as

7

frames. There are four types of frames that can be monitored on the CAN bus; Data, Error,

Overload and Remote frames [13]. Each CAN bus frame consists of seven (7) principal

constituents:

1. Start of Frame bit (SOF): The SOF bit prompts the bus of an incoming data frame.

2. Arbitration ID: The arbitration ID is a section of the packet that identifies the device

attempting to communicate over the bus. The arbitration ID is used to decide which

node gets priority to broadcast over the bus.

3. Identifier extension (IDE): This bit distinguishes between a standard and extended

arbitration ID. It is 0 for a standard data frame and 1 for an extended data frame.

4. Data Length Code (DLC): This determines the size of the data to be transferred.

5. Data: This is the actual data to be transmitted with a maximum size of 8 bytes.

6. CRC Field: This fiend contains the error-checking code to determine whether the

incoming message received contains no errors. The CAN protocol uses 15-bit CRC

polynomial for error-checking and detection.

7. End of Frame (EOF): This indicates the end of a CAN packet.

2.2 Related Works

Salunkhe, Pravin P Kamble, Rohit Jadhavin in the paper Design and Implementation of

CAN bus Protocol for Monitoring Vehicle Parameters implement a CAN bus network

consisting of three nodes [14]. The implementation measures vehicle speed and monitors the

brake status of a vehicle. The values of these parameters are accessed remotely via a web

SOF 11-bit

ID

RTR IDE R0 DLC 0-8

Bytes

CRC ACK EOF IFS

Table 1.2: Standard 11-bit data CAN frame.

8

interface. The design consists of two Raspberry Pi 2 and a PiCAN module. In the set-up, each

Raspberry Pi 2 acts as single board computer. The Raspberry Pi 2 is a microcontroller that is

the recipient of CAN packets for processing. The PiCAN module acts as the interface between

the physical CAN bus and the Raspberry Pi 2. The PiCAN module consists of the MCP2551

and the MCP2515. The MCP2551 is a transceiver that intercepts and interprets voltage signals

on the CAN bus. The MCP2515 is a CAN controller with three subsystems that help it perform

three key roles. The first is the CAN module which handles transmission and receptions of

packets. It also contains the control logic module for the control, configuration, and operations

of the CAN controller. Lastly, the SPI protocol block of the CAN controller handles serial

communication between the CAN controller and the microcontroller via the transmitter (Tx)

and receiver (Rx) GPIO pins.

In the setup, the authors construct a CAN network using the Raspberry Pi as the nodes.

A Hall sensor is used to measure vehicle speed. The Hall Effect sensor is placed near a test

wheel and measures the magnitude of the magnetic force as the wheel rotates. The speed of the

wheel is computed and is used to approximate the velocity of the vehicle. A simple switch is

used to imitate brake status. Toggling the switch indicates whether the brake is depressed or at

rest. A Raspberry Pi is set up as a server. It receives data from the other two Raspberry Pi nodes

broadcasting vehicle speed and brake status. The data is uploaded to a webpage hosted on the

Raspberry Pi. From the webpage, the brake status and velocity can be monitored.

HaiPing Sun, Hong Zeng, JiaLi Guo in their paper, Bus Data Acquisition and Remote

Monitoring System Based on CAN Bus and GPRS investigate the feasibility of CAN bus data

acquisition and remote monitoring over a GPRS connection [15]. The design focuses on

monitoring real-time CAN bus data and remotely communicating the information to a database

via a GSM module. The authors propose the design of an embedded system that interfaces with

a vehicle over the CAN network. The proposed design allows the embedded hardware to

9

communicate with an external database. The design features a remote monitoring station that

allows commands to be sent to the embedded hardware. The hardware implementation uses a

TJA1040 CAN transceiver, STM32 microcontroller which comes standard with an integrated

CAN controller and a GTM900C GSM/GPRS module. The TJA1040 CAN transceiver plays a

similar role to that of the MCP 2551. The transceiver is responsible to interpreting the signals

of the CAN bus for processing by the STM32 microcontroller. GTM900C acts as a gateway

allowing data to be transferred to the database and commands to be received from the

monitoring station. The paper documents a design for interfacing with the CAN bus node and

the GSM/GPRS module. The program executing on the CAN node handles initialization of the

CAN bus node, transmission, and reception of data from the CAN bus. The software to also

interface with the GSM/GPRS handles GPRS packet transmission between the server and the

module.

Authors Renjun Li, Chu Liu and Feng Luo in their paper, A Design for Automotive CAN

Bus Monitoring System propose and implement a CAN bus monitoring system for automotive

applications[16]. The hardware supports two independent CAN communication channels and

is compatible with both high-speed and low-speed CAN communication. The hardware also

supports logging of CAN messages for post-analysis. Other features include the ability to send

and receive CAN frames, large on-board RAM for temporary storage of CAN data and a listen-

only mode, for monitoring the bus. The main components that support the system are LM2596

a step-down converter, which acts as the systems power supply unit. A 16-bit MC9S12DP256

Freescale semiconductor microcontroller, with integrated CAN controller. This

microcontroller interfaces with PDIUSBD12 Phillips Semiconductor which serves as USB

interface module and a TJA1050 CAN transceiver. The system interfaces with a vehicle via an

ODB 2 to DB9 cable. In the implementation, the authors simulate a CAN node using Kvaser

system. CAN communication is established between the prototype hardware and the Kvaser

10

system and packet transfer is monitored via a developed PC application. The authors propose

a feasible design as illustrated through implementation.

E. Ceuca, A. Tulbure, A. Taut, O. Pop, I. Farkas in the paper Embedded System for

Remote Monitoring of OBD Bus present a design for monitoring vehicle speed via the vehicle’s

CAN bus network [17]. The transmission system is implemented with a GSM/GPRS hardware

that reports the location of the vehicle in addition to equipping the monitoring system with the

ability to transfer data to a server remotely. The CAN network monitoring hardware is based

on the AVG 4000. The design connects to a target vehicle using a DB9 to OBD-II connector

cable. The design allows real-time capture of vehicle data via and vehicle coordinates. The

design allows the investigation of a correlation between vehicle location with vehicle

performance. The use of the GSM/GPRS module is effective as the wide area network

coverage ensures internet connectivity via GPRS connection. This ensures that data can

transferred to the central database remotely. Additionally, the use of a battery ensures that

satellite connection with the GSM/GPRS module persists even if the engine of the target

vehicle is turned off.

2.3 Gaps and Improvements.

Salunkhe, Pravin P Kamble, Rohit Jadhavin successfully simulate the CAN network.

The implementation allows data to be transferred between nodes on the network. Whereas the

simulation works well, the authors fail to test, the system on an actual vehicle. This limits the

application of the work done. In order to interact and receive vehicle data such as engine RPM

and brake status, commands have to be issued to the vehicle nodes of interest using parameter

identifiers (PIDs). PIDs allow external nodes connected to the CAN bus to request and receive

data over the CAN bus. Also, authors HaiPing Sun, Hong Zeng, JiaLi Guo in their work fail to

show any evidence of actual implementation. The depicted hardware system is not developed

and thus not tested.

11

For authors, E. Ceuca, A. Tulbure, A. Taut, O. Pop, I. Farkas, their work focuses on

investigating a correlation between vehicle location and performance. However, the

implementation focuses more on vehicle tracking as supposed to monitoring OBD parameters.

Little detail is provided to understand the underlying mechanism the OBD hardware monitor.

Finally, authors Renjun Li, Chu Liu and Feng Luo present a hardware system for

monitoring the CAN network. However, in testing, the authors simulate CAN nodes using the

Kvaser product as supposed to connecting the system to a real-life CAN network. For the

purposes of this capstone implementation, an embedded system will be developed and tested.

The hardware design will be well documented, and the prototype will be connected to a live

CAN network. The hardware system will request CAN packets using PIDs to obtain real-time

information of the target vehicle. Data received will be communicated to a webserver to be

displayed on the web application and subsequently stored in a database.

12

Chapter 3: Design

3.1 Overview

After reviewing existing designs in the previous chapter, this chapter elaborates on the

components and the design of the overall system. This chapter focuses on component selection,

and the justification of choice. The chapter also discusses the requirements specification of the

system elaborating on some use cases and illustrating how the various components come

together.

3.2 Thesis Design Objective

- To design an embedded system that is capable of monitoring CAN bus traffic.

- To keep the cost of fabrication of the design at a minimum.

- To develop a hardware system capable of interpreting CAN packets.

- To develop abstracted view of the entire system.

3.3 System Overview

For this section, both the functional and non-functional requirements of the hardware

system are described. Also, a use case for the overall system is illustrated.

3.3.1 Functional Requirements

In this suction, the capabilities and roles of the system are defined. The functional

requirements of the system are stated below.

- The embedded system should monitor the CAN bus network for data frames.

- The hardware system should request for vehicle speed, engine rpm and coolant

temperature.

- The embedded system should display vehicle speed, engine rpm and coolant

temperature on the LCD.

13

- The system should upload the data frames of interest to the cloud via GPRS internet

connection.

- The system should populate the database with vehicle data.

- The web application should display graphical vehicle performance over time.

3.3.2 Non-Functional Requirements

This section provides a rubric that guides the functional requirements stated above.

- Performance: The system should provide a user with vehicle performance data once

connected to power source.

- Speed: The GSM module should provide internet connectivity via GPRS connection

with tolerable latency.

- Usage: The system should function properly during periods of prolonged usage.

- Accuracy: The system will provide accurate vehicle performance data.

14

3.3.3 Use Case.

The principal actor is the owner and user of the hardware system.

Figure 3.1 Use case of the overall system

15

3.3.4 Flowchart

3.4 Component Selection

This section discusses the hardware selection criteria that was used in deciding on what

components to include in the final system design. The literature review informed the available

components to be considered for use. A Pugh matrix was used to select the final component

that ended up in the hardware design.

Figure 3. 2 Flowchart showing operation of the overall system

16

3.4.1 Pugh Matrix

The Pugh matrix is a decision-making model that allows a designer to select from a

group of alternatives based on prespecified criteria [18]. The tables below are the Pugh matrices

constructed to select the key components of the prototype hardware.

Table 3.1: A list of keys for interpreting the Pugh

matrices

Table 3.2: Pugh matrix showing the selection of microcontroller

Table 3.3: Pugh matrix showing the selection of connectivity module

17

3.4.2 Hardware Components

In this section the selected hardware components and their functions are discussed.

Component Role
Atmega 328-P The Atmega328P belongs to the 8-bit CMOS

logic family of AVR microcontrollers. It is
based on the enhanced RISC Reduced
Instruction Set Computer architecture
(RISC). This microcontroller acts as the
brain of the hardware system [19].

SIM800L GSM/GPRS SIM800L is a GSM/GPRS module with
capabilities that allow for GPRS internet
connectivity. It comes in a package that
makes it ideal for use. The module supports
quadband frequency, making it ideal for
long-range connectivity. The SIM800L
module equips the hardware system with IoT
capability, allowing data to be uploaded to
the web [20].

MCP2515 The MCP2515 is a stand-alone CAN
controller. The component acts as the
interface between the CAN transceiver and
the microcontroller. This component handles
functions such as filtering unwanted
messages reducing the overhead of the
microcontroller [21]

Table 3.4: Pugh matrix showing the selection of CAN controller

18

MCP2561 The MCP2561 is a CAN transceiver that
converts data frames on the CAN bus into
differential voltage signals and differential
voltage signals to their corresponding binary
representations which make up a data frame.
It interfaces with the CAN controller, and the
physical two-wire CAN High and Low [22].

LM7805 The LM7805 is an integrated-circuit voltage
regulator. This device is a DC-DC voltage
regulator that can take a minimum supply
input voltage of 7V and maximum input
voltage of 25V giving an output of 5V at a
maximum current of 1.5A [23].

AZ1084 The AZ1084 is a low voltage drop-out power
regulator. This device is another DC-DC
voltage regulator with a maximum dropout
voltage of 1.5V at 5A load current. The
GSM/GPRS module draws as much as 2A
during pushing operations. The AZ1084
meets the requirements of the system [24]

Table 3. 5: A description of components and functions

3.4.3 Software

Software Package Role

Arduino IDE The Arduino IDE is used in programming the
microcontroller of the hardware system.
Using the IDE enables quick and easy
implementation of sketches. These sketches
are then uploaded unto the microcontroller

MQTT MQTT is a machine-to-machine message-
based protocol that allows devices to share
information [25].

MySQL Database for storing data.

Table 3. 6: A description of software applications.

19

3.5 Architectural Diagram

This section discusses at a high-level the subcomponents of the hardware prototype and

how these components interact with one another.

 Figure 3. 3: High-level overview of the overall system

20

3.5.1 Contextual Diagram

Figure 3.4: CAN bus architecture with prototype node

21

Chapter 4: Implementation.

This chapter documents the approaches in achieving the design objectives of the

project. The chapter elaborates on the development process of the overall system.

4.1 Scoping CAN Bus

The CAN bus operates on two twisted pair wires CAN High (CANH) and CAN Low

(CANL). The resting voltage levels of the respective signal lines are 2.5V for both CANH and

CANL [26]. Measuring the CAN lines of the target vehicle (Honda Accord 2016), the voltage

for the CANH signal line was 2.7V and 2.27V for CANL. These voltages were measured

relative to signal ground line as supposed to chassis ground. This is because of the isolation of

the signal ground line from noise. When a signal is transmitted over the CAN bus, the voltage

on the CANH increases by 1V to 3.5V and the voltage on CANL also decreases by 1V to 1.5V.

This method of communication is used for its robustness and greater immunity to

electromagnetic interference (EMI) and crosstalk. The figure below shows a signal captured

Figure 4. 1: Real-time capture of CAN signal from target vehicle

22

using Analog Discovery 2 while scoping CANH (Scope Channel 1, Orange) and CANL (Scope

Channel 2, Blue) signals of the target vehicle. This image was recorded after starting the engine

of the target vehicle to initiate CAN bus communication.

4.2 Hardware Design

The hardware design required extensive reading in areas of embedded systems and

design. After selecting the various components that were required to realize the design

objectives., the datasheets of each component were obtained. The datasheets of each

component had to be studied to understand how each component would be interfaced with one

another. The datasheets also provided application circuits for each key component. The

datasheets showed the value of passive components such as capacitors, resistors and crystal

oscillators and how these components should be combined to ensure proper functioning of the

integrated circuit (IC). A key learning point was interfacing the GSM module to the

microcontroller. Since both devices operated at different voltage levels, there was the need to

step-down the communication signals from the microcontroller to the GSM module. This was

achieved by logic-level shifting operation.

The schematic design of the circuit was realized using Eagle CAD software. A Proteus

simulation of the circuit was done concurrently. The Proteus simulation only featured the

power supply sections of the schematic. This was due to the limited library components offered

with the Proteus suite. The next logical step was to test the schematic connections on a

breadboard. However, because only surface-mount components were provided, only a printed

circuit board (PCB) realization was feasible. Due to the complex nature of the schematic, a

single layer PCB was not feasible. As such, the board had to be shipped to China for printing

with a turn-around time of two-weeks. The first prototype PCB measures 81.26 mm by 63.17

mm.

23

4.2.1 Circuit Schematic

Figure 4.2: Schematic diagram of prototype node

24

4.2.2 PCB Design

Figure 4. 3: PCB design showing board layers top(red) and bottom(blue)

25

After the schematic design, the next stage of the hardware design was arranging the

various components on the PCB board. As can be seen above, the components were arranged

to conform to the schematic design. This was done to ensure the shortest path between

interconnected components. A process known as routing was used to define current paths

between components. Since the PCB had two layers, vias were used to interconnect

components on different layers of the board.

4.2.3 Soldering

 The expected PCB after the PCB manufacturing process has been conducted is shown

below. The diagram shows traces, vias and footprint of the various components that would be

soldered onto the board.

Soldering required the use of lead paste and solid lead for holding the components in

place on the PCB board. Using soldering iron, solid lead was used to solder Dual In-line

Package (DIP) components. As for the lead paste, hot-air from a soldering station was used to

adhere surface-mount components on to the PCB.

Figure 4. 5: Expected PCB layout (front) Figure 4. 4: Expected PCB layout (bottom)

26

After all components were mounted, the PCB board was tested to ensure proper

functioning of each component. Continuity between components were tested between using a

multimeter. It was observed that, there were two separate grounds. This challenge was rectified

by soldering a wire to bridge both grounds. After testing continuity, the power section of the

PCB was tested. As expected the LM7805 with the aid of decoupling capacitors stepped down

the supply voltage to the expected 5V for distribution to other subcomponents. The AZ1084

also produced an output voltage of 4V for supply to the GSM module. However, in testing

whether the GSM module was functioning properly, it was observed that, the GSM module

was unable to maintain network reception regardless of the sim card inserted. Upon

investigation, it was observed that the traces connecting the GSM module to its power supply

were not thick enough to deliver the required current to drive the module.

The setup also included an LCD that acted as a display for the system. On the LCD, the

vehicle parameters being requested would be printed. The I2C LCD requires only two pins for

operation. The LCD was interfaced with the microcontroller using Analog pins 4 and 5, the

Figure 4. 7: PCB board after soldering (front) Figure 4. 6: PCB board after soldering (back)

27

SDA and SCL pins of the microcontroller respectively. Analog pins 4 and 5 support the I2C

communication protocol. The microcontroller communicated to the LCD via the I2C protocol.

4.4 Revised Design

After reviewing the first prototype, revisions were made to the design of the hardware.

To keep in-line with the design objectives stated earlier, modifications were made to the

existing design where necessary. The new design of the hardware system took into

consideration the availability components and the simplification of the overall design. The new

design features subcomponents in smaller package sizes to achieve a smaller board design. In

the new design, the microcontroller comes in a smaller package (QFP). The choice of crystal

oscillators used has integrated capacitors.

Also, the GSM module is placed as close to the power source as possible. Thick traces

are used to ensure ample power is supplied to the GSM module. In the new design, provision

is made for in-circuit programming to enable easy configuration and programming of the

microcontroller. Additionally, a reset push-button is included to reset the microcontroller in

Figure 4.8: PCB interfaced with I2C LCD

28

case of any program goes out of control. Terminal blocks are used to replace the DB9-

connector since a cable to interface the two connectors are unavailable. The final design

measures 69.83 mm by 35.23 mm.

Figure 4.9: Expected PCB 2 design (front)

Figure 4.10: Expected PCB 2 design (bottom)

29

4.4.1 Redesigned Circuit Schematic

Figure 4. 11: Schematic diagram of revised prototype node

30

4.4.2 Redesigned PCB Design

Figure 4.12: PCB layout design of revised prototype node

31

4.5 OBD-II Connector

All vehicles since 1998 are required to have an OBD-II connector. By law, the

connector is required to be around the steering column [27]. The ODB-II specification defines

this standardized hardware interface for use in OBD-II applications.

5: Signal ground 6: CAN High

14: CAN Low 16: Battery voltage (12V)

Table 4.1: Pinout for CAN bus connection via OBD-II connector

A cable connector is used to interface the OBD-II connector to the hardware system.

Below is an image of the fabricated cable for interfacing the new hardware system to the OBD-

II connector.

Figure 4.13: OBD-II connector

Source: Adapted from [28]

Figure 4.14: Fabricated OBD-II cable connector

32

4.6 Software

The application software used in programming the microcontroller is the Arduino IDE.

The program implemented on the microcontroller executes the following tasks. The program

initializes the CAN network with at a board rate of 500Kbps which is the standard data rate

used in communicating over the CAN network. Since the CAN traffic is continually

broadcasted, filters are set on the two registers of the CAN controller to allow only interested

messages through to be processed by the microcontroller. A routine periodically checks for

incoming messages. If any message is available, the message is stored in a buffer and its length

and ID are printed to the LCD screen. The message is then converted to decimal and computed

using one of the formulas to obtain the desired value.

4.6.1 Web Application

The web application is created from an already existing web template. Using credentials

provided by Cloud MQTT, the platform is set up to receive dummy data being pushed via the

GSM module unto the Cloud MQTT broker. An API call fetches this data and periodically

updates the web application on refreshing the page. Since the online broker comes with an

integrated database, the cloud MQTT broker handles database population.

33

Chapter 5: Results

This chapter describes testing and evaluation of the hardware and software system. The

target vehicle on which the hardware system was tested is a Honda Accord 2016.

5.1 Detection of Parameters

In testing the prototype hardware, the system was connected to the datalink connector

and the target vehicle was started to initiate CAN bus communication. There were several

instances where the hardware failed to initialize. However, after successful initialization of the

hardware, the data printed on the LCD screen was not as expected.

Figure 5. 1: CAN bus with failed initialization Figure 5. 2: CAN bus with successful initialization

34

5.2 Data on Cloud

Due to the lack of correct data coupled with the insufficient power supplying the GSM

module, the set up was unable to push data. The data received could not be pushed to the MQTT

platform. To test that the web platform was receiving data, dummy data was pushed via a

different GSM module to the MQTT cloud broker.

Figure 5.4: Results of pushing data to MQTT cloud using GSM module

Figure 5.3: Interface for web application

35

Chapter 6: Conclusion

The hardware system developed in this project illustrates how technology can be used

to supplement the skills of an existing and growing labor force. With this hardware system, it

is possible to monitor real-time vehicle data. With such data, it is possible to proactively

monitor vehicle performance. This enables one to predict and preempt unscheduled and

unforeseen vehicle downtime. This is only possible as a result of the availability of vehicle data

over the CAN bus. As cars are fitted with more and more sensors, varied data would be

available over the bus. Allowing for much more comprehensive vehicle data and analysis. With

the advent of machine learning, it would be possible to have a repository where models could

be trained with aggregated vehicle data. This would mean vehicles could be more specific in

diagnosing faults it notices.

6.1 Limitations

The designed hardware system cannot make sense of any other vehicle parameter aside

the three parameters it was designed to monitor. Due to the use of the GSM module, latency

may vary depending on the strength of the network reception. The hardware system relies only

on the power supply of the vehicle. As a result, it is only functional while connected to the

vehicle. The hardware system cannot retrieve DTCs stored in any ECU.

6.2 Challenges

In the execution of this project, there were several limitations that hindered the smooth

execution of the project. The first of which is the need to outsource the PCB for milling and

manufacturing. This was not only costly in terms of the time, but also the personal costs that

went into having the boards printed and delivered. Another limitation that restricted the depth

of research that could be done was the inaccessibility of certain document concerning the scope

of the subject matter being investigated. ISO documents that defined vehicle standards in

36

addition to other standardized codes were inaccessible. An example being the inability to

request vehicle identification number (VIN) because the PID code for requesting this

information is proprietary. This information affected the database design as in place of the VIN,

the vehicle car number had to be used. The unavailability of DIP components to perform bread

board testing prior to PCB design affected the ability to thoroughly test the hardware before

moving to a PCB prototype.

6.3 Future Works

In spite of the limitations above, future works include enabling the hardware system to

retrieve DTCs which are indicative of a given vehicle fault. Increasing the number of vehicle

parameters being measured and thus expanding the functionality of the system. Logging GPS

coordinates which could provide insightful details as to what point in a journey a fault first

occurred. Additionally, a mobile application can be developed to replace the need for a web

application. Also, the GSM module can inform a user via text message whenever a DTC is

stored.

37

References

[1] C. A. Hesse and J. B. Ofosu, “COMPARATIVE ANALYSIS OF REGIONAL

DISTRIBUTION OF THE RATE OF ROAD TRAFFIC CASUALTIES IN GHANA

Key Words : Road traffic , Casualty and Accidents,” no. March 2014, p. 10, 2015.

[2] C. Roderick, “InfoSec Reading Room Developments in Car Hacking,” 2015.

[3] Valasek Chris and M. Charlie,

“IOActive_Adventures_in_Automotive_Networks_and_Control_Units.pdf,” 2013.

[4] C. Smith, The Car Hacker’s Handbook (2016).pdf. .

[5] Sewell Direct "A Brief Explanation of CAN Bus", Available:URL

https://sewelldirect.com/learning-center/canbus-technology [Accessed 20 February

2019]

 [6] Wojdyla Ben "How it Works: The Computer Inside Your Car", Available: URL

https://sewelldirect.com/learning-center/canbus-technology [Accessed 20 February

2019]

 [7] S. Corrigan, “Introduction to the Controller Area Network (CAN),” Texas Instruments,

2016.

 [8] C. Valasek and C. Miller, “Adventures in Automotive Networks and Control Units,”

Tech. White Pap., p. 99, 2013.

 [9] A. Sawant, S. Dr. Lenina, and J. Dhananjay, “CAN , FlexRay , MOST versus Ethernet

for Vehicular,” Int. J. Innov. Adv. Comput. Sci., vol. 7, no. 4, pp. 336–339, 2018.

38

 [10] A. Hentschel, “Design of an information system for vehicle diagnostic trouble codes

Computer Systems and Networks Design of an information system for vehicle

diagnostic trouble codes,” 2013.

[11] A. Engineers, “SAE J1979: E/E Diagnostic Test Modes,” vol. 552, no. 1, p. 121, 2002.

 [12] "OBD-II PIDs." Wikipedia. Wikimedia Foundation, 28 May 2013. URL:

http://en.wikipedia.org/wiki/OBD-II_PID

 [13] N. Navet, “Controller area network,” IEEE Potentials, vol. 17, no. 4, pp. 12–14, 1998.

 [14] A. A. Salunkhe, P. P. Kamble, and R. Jadhav, “Design and implementation of CAN bus

protocol for monitoring vehicle parameters,” 2016 IEEE Int. Conf. Recent Trends

Electron. Inf. Commun. Technol. RTEICT 2016 - Proc., pp. 301–304, 2017.

 [15] H. P. Sun, H. Zeng, and J. L. Guo, “Bus data acquisition and romote monitoring system

based on CAN bus and GPRS,” 2011 Int. Conf. Consum. Electron. Commun. Networks,

CECNet 2011 - Proc., pp. 1094–1097, 2011.

 [16] R. Li, C. Liu, and F. Luo, “A Design for Automotive CAN Bus Monitoring System,”

pp. 1–5, 2008.

 [17] E. Ceuca, A. Tulbure, A. Taut, O. Pop, and I. Farkas, “Embedded System for Remote

Monitoring of OBD Bus,” Proc. 36th Int. Spring Semin. Electron. Technol., pp. 305–

308, 2013.

 [18] Decision-making-Confidence "How To Use THe Pugh Matrix", Available:URL

https://www.decision-making-confidence.com/pugh-matrix.html [Accessed 21 January

2019]

39

 [19] Atmel Microchip, “8-bit AVR Microcontroller with 32K Bytes In-System

Programmable Flash, ATmega328P datasheet,” [Revised April 2018].

 [20] SIMCom, “SIM800L Hardware Design V1.0, SIM800L datasheet,” [Revised August

2013].

 [21] Atmel Microchip,"Stand-alone CAN Controller with SPI Interface", “MCP2515

datasheet,” [Revised May 2014].

 [22] Atmel Microchip,"High-speed CAN Transceiver", "MCP2561 datasheet,"[Revised

April 2014].

[23] Diodes Incorporated, “Low Dropout Linear regulator”, “AZ1084 datasheet,” [Revised

October 2013].

[24] Texas Instrument, “Positive Voltage Regulator”, “LM7805 datasheet”, May 1976

[Revised May 2003].

[25] MOTT.org "MQTT", Available:URL http://mqtt.org/ [Accessed 4 April 2019]

[26] VW, “Data transfer on CAN data bus II Drivetrain CAN data bus Convenience /

infotainment CAN data bus.”

[27] I. Aris, M. F. Zakaria, S. M. Abdullah, and R. M. Sidek, “Development of OBD-II Driver

Information System,” Int. J. Eng. Technol., vol. 4, no. 2, pp. 253–259, 2007.

[28] OBDII "The Connector", Available:URL http://www.obdii.com/connector.html

[Accessed 8 April 2019]

40

