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Abstract  

The modern-day automobile is no longer just an analog and mechanical entity. Currently, the 

most basic of vehicular functions have been computerized. The dedicated hardware assigned 

to these tasks are electronic control units (ECU). Automobiles consist of a number of ECUs 

networked together to ensure proper functioning of the vehicle. The overall safety of the vehicle 

relies on real-time communication between the ECUs. Intra-vehicular communication is 

possible because of the Controller Area Network (CAN). ECUs are responsible for detecting 

skids, performing anti-lock braking and providing vehicle diagnostic information. Access to 

CAN bus could prove useful to mechanics, replacing the trial and error method of identifying 

vehicle faults. Described in this paper is a hardware and software design of a prototype system 

that provides real-time CAN bus data. Leveraging on the available CAN bus data, the prototype 

system will provide vehicle performance data over time. This information should aid in the 

detection of early detection of vehicle irregularities. 
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Chapter 1: Introduction. 

1.1 Introduction. 

In Ghana, there is arguably no appliance more prevalent than the automobile. The 

estimated national population has grown by 69.3% from  1991 to  2011, while the estimated 

population of registered  vehicles has increased by  828.2% during that period [1]. With the 

invention of the Electronic Control Unit (ECU), application-specific computers found their 

way into vehicles. Early implementations of the ECU controlled simple engine function. This 

resulted in the overall improvement in fuel efficiency and vehicle performance while lowering 

carbon emissions.  The results and performance delivered by ECUs caused its widespread 

adoption in the automobile industry. 

Modern automobiles now more than ever, rely heavily on the integration of application-

specific computers for various vehicular functions. The overall safety of vehicles relies on real-

time communication between vehicle sensors and control units. From activities such as 

steering, braking, and engine management, computers have come to play a pivotal role in 

monitoring and controlling the state of a vehicle.  

Prior to the development of the CAN network, sensors and control units required 

dedicated point-to-point connection to communicate with each other [2]. As consumers 

demanded more and more from their vehicles, the number of sensors and control units 

increased. Consequently, this meant more point-to-point connections, which would increase 

the complexity and cost of wiring. The introduction of a single central network bus system 

greatly reduced wiring costs and increased overall efficiency in terms of communication speeds 

between ECUs on the network.  

Data is constantly being transmitted over the CAN network. Since the CAN protocol 

lacks any form of security, direct access to the network via the datalink connector allows one 
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to view CAN packets [3]. In the case of any vehicular malfunction, the corresponding ECU 

stores a code that is indicative of the fault and in some cases reports this fault by displaying it 

on the instrument cluster [4] . The availability of vehicle diagnostic fault codes and vehicle 

performance data allows for fault detection. Equipping vehicle owners and mechanics with the 

ability to monitor vehicle performance over time provides several benefits. Principal among 

these, are enabling the early detection of faults thus avoiding prolonged vehicle downtime and 

ensuring accurate vehicle diagnoses.  

1.2 Background 

Automobiles are an integral part of the life of the average Ghanaian. Individuals from 

all walks of life, commute to their various destinations for leisure, business or to conduct 

transactions. Automobiles constitute the major means by which individuals locomote. The 

prevalence of automobiles makes the role mechanics play vital. It is therefore of concern how 

mechanics service faulty vehicles. Accurate vehicle diagnosis does not only shorten the 

downtime of vehicles, it also reduces the cost vehicle owners incur.  

From interviews conducted, information suggests that the majority of mechanics 

trained through apprenticeship system rely on experience and guess work to diagnose vehicles. 

Their approach to identifying a probable cause of a vehicular malfunction is based on 

speculation and past experience. These mechanics subscribe to the trial-and error approach 

where, for a given fault attempts are made to investigate all possible causes of the fault.  A 

method of elimination is then used to narrow down toward the root cause of the actual fault.  

This approach is ineffective since it wastes the time of both the vehicle owner and 

mechanic. In some cases, vehicle owners incur unnecessary costs as a result of vehicle repairs.  

This guess-and-check approach stems from the training majority of mechanics in the system 

receive. Under this system, an individual shadow a superior and is trained to perform 

specialized vehicle repairs. Mechanics trained under this system are limited in their capacity to 
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carry out maintenance and repair works on other vehicle types they have not been exposed to. 

As such making them less equipped to service more modern vehicles.  

  For these informally trained mechanics to stay relevant, there is the need to adapt to 

changing trends. Vehicles are becoming increasingly complex as more and more vehicle 

functions are computerized. Consequently, mechanics being churned out into the system are 

ill-equipped through the apprenticeship training system. Skills acquired under the 

apprenticeship system apply to a small segment of vehicles that are gradually fading. 

Transferring this knowledge to other vehicles poses a lot of problems as vehicles from different 

manufactures are typically incompatible. The intense competition in the automotive industry 

encourage the use propriety technology and processes. Therefore, only specific service stations 

that are affiliates of specific auto manufacturers are trained to properly service and repair 

modern vehicles. The services such companies offer come at a significant cost. Therefore, the 

majority of the vehicles in circulation are serviced by mechanics who do not use the proper 

tools and in some cases lack the requisite skill to offer quality services. These concerns present 

an opportunity where technology can be used to supplement the skills of mechanics to 

effectively execute their duties. On the other hand, equipping vehicle owners with such tools 

that can report the performance of their vehicles enables proactive and predictive measures to 

be taken to avoid unscheduled vehicle failure. This provides owners with the added benefit of 

possibly identifying and preempting unplanned vehicle failure.  

1.3 Objectives 

The goal of this project is to develop a system that monitor vehicle parameters, making 

the information accessible to the user. This is done by: 

• Prototyping an embedded system that is able to monitor real-time vehicle 

parameters. 
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• Incorporating IoT functionality for remote vehicle data access via a web platform. 

• Setting up a web server and a database for logging vehicle parameters. 

• Setting up a web interface from which users can view vehicle parameters being 

monitored. 

1.4 Expected Outcome 

The project seeks to develop a printed-circuit board housing the required components 

to interface with the CAN network of a vehicle via the datalink connector. The IoT-enabled 

hardware monitors CAN traffic and transfers the data to a database. A web application fetches 

the data from the database and makes it available to a user in real-time. The data is presented 

in a graphical format to facilitate easy analyses of vehicle performance. 

1.5 Delimitations 

• The sole focus of the project is developing a proof of concept system as close to a 

complete end-user product as possible. 

• The focus of product development is centered on functionality and trades of security 

where necessary. 

• The only communication protocol handled is the CAN protocol. 

• OBD communication is limited monitoring specific vehicle parameters. 
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Chapter 2: Literature Review  

2.1 Introduction 

The CAN bus network is a centralized multi-master bus developed by a German 

company Robert BOSCH GmbH in 1986 [5].  The popularity of the CAN network surged when 

Federal and state agency namely; National Highway Traffic Safety Administration (NHTSA) 

in collaboration with the California Air Resources Board (CARB) required standard procedure 

to monitor vehicle’s emission control systems. As a result, manufacturers implemented the On-

Board Diagnostics protocol (OBD) [6].  OBD refers to a vehicle’s ability to diagnose itself in 

the event of vehicular malfunction. The second generation of OBD (OBD-II) is currently in 

use in modern vehicles. Since the OBD is a reference point for accessing data from various 

vehicle sensors and control units, it was necessary to device a means of linking all these 

independent components. The need for a centralized network that interconnected the various 

sensors and their corresponding control units created the Controller Area Network (CAN). 

 The CAN network facilitates the exchange of smaller packets relative to traditional 

networks lines such as Ethernet or USB [7].  In the CAN network, messages are broadcasted 

to every control unit on the network. The relevance of a message is subject to the recipient 

ECU. An example of a data packet that could be broadcasted over the CAN network include 

commands such as “initiate front vehicle wipers” or "roll down windows." Such messages 

would be irrelevant to an ECU monitoring engine temperature [8]. There are other networks 

that are responsible for channeling other types of data between network nodes in a vehicle. 

Such networks are the Local Interconnect Network (LIN), designed to complement the CAN 

network. Media Oriented System Transport (MOST), designed for multimedia devices and 

FlexRay, designed for time-sensitive communication [9]. Of interest to this project is the CAN 

bus network.  



6 

 

Since 2008, all production vehicles are required to use CAN network as the OBD-II 

communication protocol [10]. These application-specific computers communicate using 

specific codes. There are a set of standardized codes used for OBD. Any given code consists 

of two segments. The first segment of the code is the mode of operation followed by a 

parameter identifier (PID). For each mode, there are a given set of PIDs that request specific 

information. For example, using mode ‘01’ and a PID of ‘0D’, the CAN network knows that 

the current vehicle speed is being requested [10]. As a result, the corresponding ECU replies 

with vehicle speed in hexadecimal format which would have to be converted to its decimal 

equivalent.  

There are 10 diagnostic modes described by the OBD-II standard SAE J1979 [11]. Of 

interest to this project is mode 1. A PID request with mode of 1, requests for current vehicle 

data. In order to extract real-time vehicle data, all vehicle requests made have modes set to 1.    

The table below shows the standard OBD-II PIDs. In the table below, the expected length of 

any given response is provided, in addition to formulas for converting the response into 

intelligible data. 

PID 

(Hex) 

Data Bytes Description Min 

Value 

Max 

Value 

Units Formula 

0x01 2 Engine RPM 0 16383.75 rpm (256A+B)/4 

0x0C 1 Speed 0 255 Km/h A 

0x0D 1 Temperature -40 215 oC A - 40 

Table 2.1 Standard OBD-II PIDs with conversion formula  

Source: Adapted from [12] 

There are two types of CAN packets namely, standard and extended CAN packets. 

Extended packets are similar to standard packets except that extended packets have a lengthier 

field for storing arbitration ID. Messages broadcasted over the CAN bus are also referred to as 
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frames. There are four types of frames that can be monitored on the CAN bus; Data, Error, 

Overload and Remote frames [13]. Each CAN bus frame consists of seven (7) principal 

constituents: 

1. Start of Frame bit (SOF): The SOF bit prompts the bus of an incoming data frame. 

2. Arbitration ID: The arbitration ID is a section of the packet that identifies the device 

attempting to communicate over the bus. The arbitration ID is used to decide which 

node gets priority to broadcast over the bus. 

3. Identifier extension (IDE): This bit distinguishes between a standard and extended 

arbitration ID. It is 0 for a standard data frame and 1 for an extended data frame. 

4. Data Length Code (DLC): This determines the size of the data to be transferred. 

5. Data: This is the actual data to be transmitted with a maximum size of 8 bytes.  

6. CRC Field: This fiend contains the error-checking code to determine whether the 

incoming message received contains no errors. The CAN protocol uses 15-bit CRC 

polynomial for error-checking and detection. 

7. End of Frame (EOF): This indicates the end of a CAN packet. 

 

 

2.2 Related Works 

Salunkhe, Pravin P Kamble, Rohit Jadhavin in the paper Design and Implementation of 

CAN bus Protocol for Monitoring Vehicle Parameters implement a CAN bus network 

consisting of three nodes [14]. The implementation measures vehicle speed and monitors the 

brake status of a vehicle. The values of these parameters are accessed remotely via a web 

SOF 11-bit 

ID 

RTR IDE R0 DLC 0-8 

Bytes 

CRC ACK EOF IFS 

Table 1.2: Standard 11-bit data CAN frame. 
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interface. The design consists of two Raspberry Pi 2 and a PiCAN module. In the set-up, each 

Raspberry Pi 2 acts as single board computer. The Raspberry Pi 2 is a microcontroller that is 

the recipient of CAN packets for processing. The PiCAN module acts as the interface between 

the physical CAN bus and the Raspberry Pi 2. The PiCAN module consists of the MCP2551 

and the MCP2515. The MCP2551 is a transceiver that intercepts and interprets voltage signals 

on the CAN bus. The MCP2515 is a CAN controller with three subsystems that help it perform 

three key roles. The first is the CAN module which handles transmission and receptions of 

packets. It also contains the control logic module for the control, configuration, and operations 

of the CAN controller. Lastly, the SPI protocol block of the CAN controller handles serial 

communication between the CAN controller and the microcontroller via the transmitter (Tx) 

and receiver (Rx) GPIO pins.  

In the setup, the authors construct a CAN network using the Raspberry Pi as the nodes. 

A Hall sensor is used to measure vehicle speed. The Hall Effect sensor is placed near a test 

wheel and measures the magnitude of the magnetic force as the wheel rotates. The speed of the 

wheel is computed and is used to approximate the velocity of the vehicle. A simple switch is 

used to imitate brake status. Toggling the switch indicates whether the brake is depressed or at 

rest. A Raspberry Pi is set up as a server. It receives data from the other two Raspberry Pi nodes 

broadcasting vehicle speed and brake status. The data is uploaded to a webpage hosted on the 

Raspberry Pi. From the webpage, the brake status and velocity can be monitored. 

HaiPing Sun, Hong Zeng, JiaLi Guo in their paper, Bus Data Acquisition and Remote 

Monitoring System Based on CAN Bus and GPRS investigate the feasibility of CAN bus data 

acquisition and remote monitoring over a GPRS connection [15]. The design focuses on 

monitoring real-time CAN bus data and remotely communicating the information to a database 

via a GSM module. The authors propose the design of an embedded system that interfaces with 

a vehicle over the CAN network.  The proposed design allows the embedded hardware to 
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communicate with an external database. The design features a remote monitoring station that 

allows commands to be sent to the embedded hardware.  The hardware implementation uses a 

TJA1040 CAN transceiver, STM32 microcontroller which comes standard with an integrated 

CAN controller and a GTM900C GSM/GPRS module. The TJA1040 CAN transceiver plays a 

similar role to that of the MCP 2551. The transceiver is responsible to interpreting the signals 

of the CAN bus for processing by the STM32 microcontroller. GTM900C acts as a gateway 

allowing data to be transferred to the database and commands to be received from the 

monitoring station. The paper documents a design for interfacing with the CAN bus node and 

the GSM/GPRS module. The program executing on the CAN node handles initialization of the 

CAN bus node, transmission, and reception of data from the CAN bus. The software to also 

interface with the GSM/GPRS handles GPRS packet transmission between the server and the 

module. 

Authors Renjun Li, Chu Liu and Feng Luo in their paper, A Design for Automotive CAN 

Bus Monitoring System propose and implement a CAN bus monitoring system for automotive 

applications[16]. The hardware supports two independent CAN communication channels and 

is compatible with both high-speed and low-speed CAN communication. The hardware also 

supports logging of CAN messages for post-analysis. Other features include the ability to send 

and receive CAN frames, large on-board RAM for temporary storage of CAN data and a listen-

only mode, for monitoring the bus. The main components that support the system are LM2596 

a step-down converter, which acts as the systems power supply unit. A 16-bit MC9S12DP256 

Freescale semiconductor microcontroller, with integrated CAN controller. This 

microcontroller interfaces with PDIUSBD12 Phillips Semiconductor which serves as USB 

interface module and a TJA1050 CAN transceiver. The system interfaces with a vehicle via an 

ODB 2 to DB9 cable. In the implementation, the authors simulate a CAN node using Kvaser 

system. CAN communication is established between the prototype hardware and the Kvaser 
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system and packet transfer is monitored via a developed PC application. The authors propose 

a feasible design as illustrated through implementation.  

E. Ceuca, A. Tulbure, A. Taut, O. Pop, I. Farkas in the paper Embedded System for 

Remote Monitoring of OBD Bus present a design for monitoring vehicle speed via the vehicle’s 

CAN bus network [17]. The transmission system is implemented with a GSM/GPRS hardware 

that reports the location of the vehicle in addition to equipping the monitoring system with the 

ability to transfer data to a server remotely. The CAN network monitoring hardware is based 

on the AVG 4000. The design connects to a target vehicle using a DB9 to OBD-II connector 

cable. The design allows real-time capture of vehicle data via and vehicle coordinates. The 

design allows the investigation of a correlation between vehicle location with vehicle 

performance.  The use of the GSM/GPRS module is effective as the wide area network 

coverage ensures internet connectivity via GPRS connection. This ensures that data can 

transferred to the central database remotely. Additionally, the use of a battery ensures that 

satellite connection with the GSM/GPRS module persists even if the engine of the target 

vehicle is turned off. 

2.3 Gaps and Improvements.  

Salunkhe, Pravin P Kamble, Rohit Jadhavin successfully simulate the CAN network. 

The implementation allows data to be transferred between nodes on the network. Whereas the 

simulation works well, the authors fail to test, the system on an actual vehicle. This limits the 

application of the work done. In order to interact and receive vehicle data such as engine RPM 

and brake status, commands have to be issued to the vehicle nodes of interest using parameter 

identifiers (PIDs). PIDs allow external nodes connected to the CAN bus to request and receive 

data over the CAN bus. Also, authors HaiPing Sun, Hong Zeng, JiaLi Guo in their work fail to 

show any evidence of actual implementation. The depicted hardware system is not developed 

and thus not tested.  
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For authors, E. Ceuca, A. Tulbure, A. Taut, O. Pop, I. Farkas, their work focuses on 

investigating a correlation between vehicle location and performance. However, the 

implementation focuses more on vehicle tracking as supposed to monitoring OBD parameters. 

Little detail is provided to understand the underlying mechanism the OBD hardware monitor.  

Finally, authors Renjun Li, Chu Liu and Feng Luo present a hardware system for 

monitoring the CAN network. However, in testing, the authors simulate CAN nodes using the 

Kvaser product as supposed to connecting the system to a real-life CAN network. For the 

purposes of this capstone implementation, an embedded system will be developed and tested. 

The hardware design will be well documented, and the prototype will be connected to a live 

CAN network. The hardware system will request CAN packets using PIDs to obtain real-time 

information of the target vehicle. Data received will be communicated to a webserver to be 

displayed on the web application and subsequently stored in a database. 
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Chapter 3: Design 

3.1 Overview  

After reviewing existing designs in the previous chapter, this chapter elaborates on the 

components and the design of the overall system. This chapter focuses on component selection, 

and the justification of choice. The chapter also discusses the requirements specification of the 

system elaborating on some use cases and illustrating how the various components come 

together. 

3.2 Thesis Design Objective 

- To design an embedded system that is capable of monitoring CAN bus traffic. 

- To keep the cost of fabrication of the design at a minimum. 

- To develop a hardware system capable of interpreting CAN packets. 

- To develop abstracted view of the entire system. 

3.3 System Overview 

For this section, both the functional and non-functional requirements of the hardware 

system are described. Also, a use case for the overall system is illustrated. 

3.3.1 Functional Requirements 

In this suction, the capabilities and roles of the system are defined. The functional 

requirements of the system are stated below. 

- The embedded system should monitor the CAN bus network for data frames. 

- The hardware system should request for vehicle speed, engine rpm and coolant 

temperature. 

- The embedded system should display vehicle speed, engine rpm and coolant 

temperature on the LCD. 
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- The system should upload the data frames of interest to the cloud via GPRS internet 

connection. 

- The system should populate the database with vehicle data. 

- The web application should display graphical vehicle performance over time. 

3.3.2 Non-Functional Requirements 

This section provides a rubric that guides the functional requirements stated above. 

- Performance: The system should provide a user with vehicle performance data once 

connected to power source. 

- Speed: The GSM module should provide internet connectivity via GPRS connection 

with tolerable latency. 

- Usage: The system should function properly during periods of prolonged usage.  

- Accuracy: The system will provide accurate vehicle performance data. 
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3.3.3 Use Case. 

The principal actor is the owner and user of the hardware system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Use case of the overall system 
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3.3.4 Flowchart 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4 Component Selection 

This section discusses the hardware selection criteria that was used in deciding on what 

components to include in the final system design. The literature review informed the available 

components to be considered for use. A Pugh matrix was used to select the final component 

that ended up in the hardware design. 

Figure 3. 2 Flowchart showing operation of the overall system 
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3.4.1 Pugh Matrix 

The Pugh matrix is a decision-making model that allows a designer to select from a 

group of alternatives based on prespecified criteria [18]. The tables below are the Pugh matrices 

constructed to select the key components of the prototype hardware.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.1: A list of keys for interpreting the Pugh 

matrices 

Table 3.2: Pugh matrix showing the selection of microcontroller 

Table 3.3: Pugh matrix showing the selection of connectivity module 
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3.4.2 Hardware Components 

In this section the selected hardware components and their functions are discussed.   

Component Role 
Atmega 328-P The Atmega328P belongs to the 8-bit CMOS 

logic family of AVR microcontrollers. It is 
based on the enhanced RISC Reduced 
Instruction Set Computer architecture 
(RISC).  This microcontroller  acts as the 
brain of the hardware system [19]. 

SIM800L GSM/GPRS SIM800L is a GSM/GPRS module with 
capabilities that allow for GPRS internet 
connectivity. It comes in a package that 
makes it ideal for use. The module supports 
quadband frequency, making it ideal for 
long-range connectivity. The SIM800L 
module equips the hardware system with IoT 
capability, allowing data to be uploaded to 
the web [20]. 

MCP2515 The MCP2515 is a stand-alone CAN 
controller. The component acts as the 
interface between the CAN transceiver and 
the microcontroller. This component handles 
functions such as filtering unwanted 
messages reducing the overhead of the 
microcontroller [21] 
 

Table 3.4: Pugh matrix showing the selection of CAN controller 
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MCP2561 The MCP2561 is a CAN transceiver that 
converts data frames on the CAN bus into 
differential voltage signals and differential 
voltage signals to their corresponding binary 
representations which make up a data frame. 
It interfaces with the CAN controller, and the 
physical two-wire CAN High and Low [22].  
 

LM7805 The LM7805 is an integrated-circuit voltage 
regulator. This device is a DC-DC voltage 
regulator that can take a minimum supply 
input voltage of 7V and maximum input 
voltage of 25V giving an output of 5V at a 
maximum current of 1.5A [23]. 
 

AZ1084 The AZ1084 is a low voltage drop-out power 
regulator. This device is another DC-DC 
voltage regulator with a maximum dropout 
voltage of 1.5V at 5A load current. The 
GSM/GPRS module draws as much as 2A 
during pushing operations. The AZ1084 
meets the requirements of the system [24] 
 

Table 3. 5: A description of components and functions 

3.4.3 Software 

Software Package Role 

Arduino IDE The Arduino IDE is used in programming the 
microcontroller of the hardware system. 
Using the IDE enables quick and easy 
implementation of sketches. These sketches 
are then uploaded unto the microcontroller  
 

MQTT MQTT is a machine-to-machine message-
based protocol that allows devices to share 
information [25]. 

MySQL Database for storing data. 

Table 3. 6: A description of software applications. 
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3.5 Architectural Diagram  

This section discusses at a high-level the subcomponents of the hardware prototype and 

how these components interact with one another. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 3. 3: High-level overview of the overall system 
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3.5.1 Contextual Diagram  

 

Figure 3.4: CAN bus architecture with prototype node 
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Chapter 4: Implementation. 

This chapter documents the approaches in achieving the design objectives of the 

project. The chapter elaborates on the development process of the overall system. 

4.1 Scoping CAN Bus 

The CAN bus operates on two twisted pair wires CAN High (CANH) and CAN Low 

(CANL). The resting voltage levels of the respective signal lines are 2.5V for both CANH and 

CANL [26]. Measuring the CAN lines of the target vehicle (Honda Accord 2016), the voltage 

for the CANH signal line was 2.7V and 2.27V for CANL. These voltages were measured 

relative to signal ground line as supposed to chassis ground. This is because of the isolation of 

the signal ground line from noise. When a signal is transmitted over the CAN bus, the voltage 

on the CANH increases by 1V to 3.5V and the voltage on CANL also decreases by 1V to 1.5V. 

This method of communication is used for its robustness and greater immunity to 

electromagnetic interference (EMI) and crosstalk. The figure below shows a signal captured 

Figure 4. 1: Real-time capture of CAN signal from target vehicle 
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using Analog Discovery 2 while scoping CANH (Scope Channel 1, Orange) and CANL (Scope 

Channel 2, Blue) signals of the target vehicle. This image was recorded after starting the engine 

of the target vehicle to initiate CAN bus communication.  

4.2 Hardware Design 

The hardware design required extensive reading in areas of embedded systems and 

design. After selecting the various components that were required to realize the design 

objectives., the datasheets of each component were obtained. The datasheets of each 

component had to be studied to understand how each component would be interfaced with one 

another. The datasheets also provided application circuits for each key component. The 

datasheets showed the value of passive components such as capacitors, resistors and crystal 

oscillators and how these components should be combined to ensure proper functioning of the 

integrated circuit (IC). A key learning point was interfacing the GSM module to the 

microcontroller. Since both devices operated at different voltage levels, there was the need to 

step-down the communication signals from the microcontroller to the GSM module. This was 

achieved by logic-level shifting operation.  

The schematic design of the circuit was realized using Eagle CAD software. A Proteus 

simulation of the circuit was done concurrently. The Proteus simulation only featured the 

power supply sections of the schematic. This was due to the limited library components offered 

with the Proteus suite. The next logical step was to test the schematic connections on a 

breadboard. However, because only surface-mount components were provided, only a printed 

circuit board (PCB) realization was feasible. Due to the complex nature of the schematic, a 

single layer PCB was not feasible. As such, the board had to be shipped to China for printing 

with a turn-around time of two-weeks. The first prototype PCB measures 81.26 mm by 63.17 

mm. 
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4.2.1 Circuit Schematic 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: Schematic diagram of prototype node 
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4.2.2 PCB Design 

 

 

 

 

Figure 4. 3: PCB design showing board layers top(red) and bottom(blue) 
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After the schematic design, the next stage of the hardware design was arranging the 

various components on the PCB board. As can be seen above, the components were arranged 

to conform to the schematic design. This was done to ensure the shortest path between 

interconnected components. A process known as routing was used to define current paths 

between components. Since the PCB had two layers, vias were used to interconnect 

components on different layers of the board.  

4.2.3 Soldering 

  The expected PCB after the PCB manufacturing process has been conducted is shown 

below. The diagram shows traces, vias and footprint of the various components that would be 

soldered onto the board. 

 

Soldering required the use of lead paste and solid lead for holding the components in 

place on the PCB board. Using soldering iron, solid lead was used to solder Dual In-line 

Package (DIP) components. As for the lead paste, hot-air from a soldering station was used to 

adhere surface-mount components on to the PCB.  

Figure 4. 5: Expected PCB layout (front) Figure 4. 4: Expected PCB layout (bottom) 
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After all components were mounted, the PCB board was tested to ensure proper 

functioning of each component. Continuity between components were tested between using a 

multimeter. It was observed that, there were two separate grounds. This challenge was rectified 

by soldering a wire to bridge both grounds. After testing continuity, the power section of the 

PCB was tested. As expected the LM7805 with the aid of decoupling capacitors stepped down 

the supply voltage to the expected 5V for distribution to other subcomponents. The AZ1084 

also produced an output voltage of 4V for supply to the GSM module. However, in testing 

whether the GSM module was functioning properly, it was observed that, the GSM module 

was unable to maintain network reception regardless of the sim card inserted. Upon 

investigation, it was observed that the traces connecting the GSM module to its power supply 

were not thick enough to deliver the required current to drive the module.  

The setup also included an LCD that acted as a display for the system. On the LCD, the 

vehicle parameters being requested would be printed.  The I2C LCD requires only two pins for 

operation. The LCD was interfaced with the microcontroller using Analog pins 4 and 5, the 

Figure 4. 7: PCB board after soldering (front) Figure 4. 6: PCB board after soldering (back) 
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SDA and SCL pins of the microcontroller respectively. Analog pins 4 and 5 support the I2C 

communication protocol. The microcontroller communicated to the LCD via the I2C protocol. 

 

 

 

 

 

 

 

 

 

 

 

4.4 Revised Design 

After reviewing the first prototype, revisions were made to the design of the hardware. 

To keep in-line with the design objectives stated earlier, modifications were made to the 

existing design where necessary. The new design of the hardware system took into 

consideration the availability components and the simplification of the overall design. The new 

design features subcomponents in smaller package sizes to achieve a smaller board design.  In 

the new design, the microcontroller comes in a smaller package (QFP). The choice of crystal 

oscillators used has integrated capacitors.  

Also, the GSM module is placed as close to the power source as possible. Thick traces 

are used to ensure ample power is supplied to the GSM module. In the new design, provision 

is made for in-circuit programming to enable easy configuration and programming of the 

microcontroller.  Additionally, a reset push-button is included to reset the microcontroller in 

Figure 4.8: PCB interfaced with I2C LCD 
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case of any program goes out of control. Terminal blocks are used to replace the DB9-

connector since a cable to interface the two connectors are unavailable. The final design 

measures 69.83 mm by 35.23 mm.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9: Expected PCB 2 design (front) 

Figure 4.10: Expected PCB 2 design (bottom) 
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4.4.1 Redesigned Circuit Schematic 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4. 11: Schematic diagram of revised prototype node 
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4.4.2 Redesigned PCB Design 

Figure 4.12: PCB layout design of revised prototype node 



31 

 

4.5 OBD-II Connector 

All vehicles since 1998 are required to have an OBD-II connector. By law, the 

connector is required to be around the steering column [27]. The ODB-II specification defines 

this standardized hardware interface for use in OBD-II applications.  

 

 

 

 

 

5: Signal ground  6: CAN High  

14: CAN Low  16: Battery voltage (12V) 

Table 4.1: Pinout for CAN bus connection via OBD-II connector 

A cable connector is used to interface the OBD-II connector to the hardware system. 

Below is an image of the fabricated cable for interfacing the new hardware system to the OBD-

II connector. 

 

 

 

 

 

 

 

  

 

Figure 4.13: OBD-II connector  

Source: Adapted from [28] 

Figure 4.14: Fabricated OBD-II cable connector 
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4.6 Software 

The application software used in programming the microcontroller is the Arduino IDE. 

The program implemented on the microcontroller executes the following tasks. The program 

initializes the CAN network with at a board rate of 500Kbps which is the standard data rate  

used in communicating over the CAN network. Since the CAN traffic is continually 

broadcasted, filters are set on the two registers of the CAN controller to allow only interested 

messages through to be processed by the microcontroller. A routine periodically checks for 

incoming messages. If any message is available, the message is stored in a buffer and its length 

and ID are printed to the LCD screen. The message is then converted to decimal and computed 

using one of the formulas to obtain the desired value. 

4.6.1 Web Application 

The web application is created from an already existing web template. Using credentials 

provided by Cloud MQTT, the platform is set up to receive dummy data being pushed via the 

GSM module unto the Cloud MQTT broker. An API call fetches this data and periodically 

updates the web application on refreshing the page. Since the online broker comes with an 

integrated database, the cloud MQTT broker handles database population. 
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Chapter 5: Results 

This chapter describes testing and evaluation of the hardware and software system. The 

target vehicle on which the hardware system was tested is a Honda Accord 2016.  

5.1 Detection of Parameters 

In testing the prototype hardware, the system was connected to the datalink connector 

and the target vehicle was started to initiate CAN bus communication. There were several 

instances where the hardware failed to initialize. However, after successful initialization of the 

hardware, the data printed on the LCD screen was not as expected. 

Figure 5. 1: CAN bus with failed initialization Figure 5. 2: CAN bus with successful initialization 
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5.2 Data on Cloud 

Due to the lack of correct data coupled with the insufficient power supplying the GSM 

module, the set up was unable to push data. The data received could not be pushed to the MQTT 

platform. To test that the web platform was receiving data, dummy data was pushed via a 

different GSM module to the MQTT cloud broker.   

Figure 5.4: Results of pushing data to MQTT cloud using GSM module 

Figure 5.3: Interface for web application 
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Chapter 6: Conclusion 

The hardware system developed in this project illustrates how technology can be used 

to supplement the skills of an existing and growing labor force. With this hardware system, it 

is possible to monitor real-time vehicle data. With such data, it is possible to proactively 

monitor vehicle performance. This enables one to predict and preempt unscheduled and 

unforeseen vehicle downtime. This is only possible as a result of the availability of vehicle data 

over the CAN bus. As cars are fitted with more and more sensors, varied data would be 

available over the bus. Allowing for much more comprehensive vehicle data and analysis. With 

the advent of machine learning, it would be possible to have a repository where models could 

be trained with aggregated vehicle data. This would mean vehicles could be more specific in 

diagnosing faults it notices.  

6.1 Limitations 

The designed hardware system cannot make sense of any other vehicle parameter aside 

the three parameters it was designed to monitor. Due to the use of the GSM module, latency 

may vary depending on the strength of the network reception. The hardware system relies only 

on the power supply of the vehicle. As a result, it is only functional while connected to the 

vehicle. The hardware system cannot retrieve DTCs stored in any ECU.  

6.2 Challenges 

In the execution of this project, there were several limitations that hindered the smooth 

execution of the project. The first of which is the need to outsource the PCB for milling and 

manufacturing. This was not only costly in terms of the time, but also the personal costs that 

went into having the boards printed and delivered. Another limitation that restricted the depth 

of research that could be done was the inaccessibility of certain document concerning the scope 

of the subject matter being investigated. ISO documents that defined vehicle standards in 
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addition to other standardized codes were inaccessible. An example being the inability to 

request vehicle identification number (VIN) because the PID code for requesting this 

information is proprietary. This information affected the database design as in place of the VIN, 

the vehicle car number had to be used. The unavailability of DIP components to perform bread 

board testing prior to PCB design affected the ability to thoroughly test the hardware before 

moving to a PCB prototype.  

6.3 Future Works 

In spite of the limitations above, future works include enabling the hardware system to 

retrieve DTCs which are indicative of a given vehicle fault. Increasing the number of vehicle 

parameters being measured and thus expanding the functionality of the system. Logging GPS 

coordinates which could provide insightful details as to what point in a journey a fault first 

occurred. Additionally, a mobile application can be developed to replace the need for a web 

application. Also, the GSM module can inform a user via text message whenever a DTC is 

stored. 
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