®

ASHESI

ASHESI UNIVERSITY COLLEGE

Improving Scholarship Management Application for a Non-Governmental

Organization

APPLIED PROJECT

B.Sc. Computer Science

George Ocran

2017

ASHESI UNIVERSITY COLLEGE

Improving Scholarship Management Application for Non-Governmental

Organization

Applied Project

Applied Project submitted to the Department of Computer Science, Ashesi
University College in partial fulfilment of the requirements for the award of

Bachelor of Science degree in Computer Science

George Ocran

April 2017

DECLARATION

| hereby declare that this applied project is the result of my own original work and that no part
of it has been presented for another degree in this university or elsewhere.

Candidate’s Signature:

| hereby declare that preparation and presentation of this applied project were supervised in
accordance with the guidelines on supervision of applied project laid down by Ashesi
University College.

Supervisor’s Sighature:

Acknowledgements

A special thank you goes to my supervisor, Mr. Aelaf Dafla. Your support, guidance
and leadership were invaluable in making this project a reality. Thank you for not giving up on
me when the going got tough.

Also, a big thank you goes to my friends and especially my loving family. You are the
reason | have made it this far. Thank you for being patient with me and being a part of my life.

Ultimately, all this will not be a possibility if not for God. To You be all the glory.

Abstract

This project was carried out for an NGO which aims to improve the lives of children
and their families by providing scholarships to children who do not have the finances to get a
quality education. This NGO’s scholarship process was automated in order to improve the
scholarship management process. Although the software was successfully deployed, it is not as
widely used as expected and this threatens its success. Solving this problem is essential because
subsequent versions and new functionalities implemented obviously hinge on the software’s
usage. As such, this project targets software deployment, a critical activity of software
development process, as one of the possible causes of the lack of usage. Consequently, this
project outlined the best practices of software deployment from research that can be applied for
the deployment of the functionalities in this project and of future releases.

Another objective of this project was to add functionalities to the existing software to
cater for a wider user base. The functionalities that were added are for donors of the organization
in order to improve accountability and transparency and also to provide vital information for
donors for decision-making. The functionalities include being able to view a list of students
under a particular grant, viewing the various payments of the grant across the years amongst
others. These will also include graphs that will display various information regarding the

payments, communities and students.

Table of Contents

DECLARATION ...ttt n e e ns [
ADSTFACT ...ttt bbbttt bbb ene s I
Chapter 1: INTrOQUCTIONc..ooiiiiiiiii bbb 1
1.1 BACKGIOUNG.......iiiiiiieiiiieiet ettt bbbttt bbb 1
1.2 RElAEA WOTKot 2
1.3 MIOTIVALION ...t bbbt 7
Chapter 2: REQUITEMIENTSciiiieiieie ettt ste et ste et e s e s re et e s e e s beebeanaesteeneenee e 8
2.1 ReqUIremMents GatNeriNGcoeoieiiiiiiiesi e 8
2.2 APPLICALION USEIS ...ttt st b 8

2.3 USE CASES ANA SCENAIIOS.eeueeueeueetetestestesieese et et se et sttt st sse e e e e e e sbe bt sbesne s 9

2.4 Details of SCENAriOS frOM USE CASE........ooveuiiiiieiiiirieie ettt 9

2.5 SYStEM REQUITEIMENTS.cviiiiiiieie ettt st e e e staeste e e saeenas 10
2.5.1 Functional REQUITEMENTScceiiiiieie et 10
2.5.2 Non-Functional reqUIremMENTScocuiiiiiiiiiiee e 10
Chapter 3: System AFCRITECTUIEcoiiiiei e 12
3.1 The USer INTErface LAYErccvviiiiiie ettt 12
A AN o] o] [Tor=Yu [o] g I E= Y- PRSP 14
G R B L= B I YT PRSP SPRTPR 16
3.3.1 Database ArChItECIUIEcouiiiiiiiii s 17

Chapter 4: Implementation and TeSTING.........cooiiiriiiiiei e 18

4.1 Implementation Tools and LiDraries..........cccoiiieiininieeee 18
4.2 Implementation of Application FEAtUresScccocveiieieiie i 23
4.2.2 Viewing Grant Cost for CUITent YEArcccccveceveeieiiie i 27
4.2.3 Viewing Gender Statistics for Grant..........ccccccocvvieeiiiie i 29
4.2.4 Viewing List of Students for Grantccccoovveieeiiiin s 33
Chapter 5: Conclusions and ReCOMMENTALIONSccveiieiieiierieiiniseeieee e 37
5.1 CRAIENGES ... bbb 37
5.2 FULUIE WOTK ...ttt 37
5.3 CONCIUSION. ...ttt bbb ettt e 38

B RETEIEINCES ... bbb bbbttt ettt b bbb 40
A Y 8] 0 1=] 116 | T TP SO R ST TPTORP P PRPRORON 41

Chapter 1: Introduction

1.1 Background

This project is based on a Non-Governmental Organization (NGO) that specializes in
empowering children to ensure a better future for themselves and their families. One of the
ways this organization achieves this is through education. By providing scholarships, this NGO
allows girls and boys to access quality education to give them a better chance of enjoying a
higher standard of living in the future. The aim ultimate goal is to alleviate poverty for these
individuals and their families, to increase their chances of survival for themselves and for future
generations and to give them the platform to make a meaningful contribution to society.

The scholarship scheme was automated and scholarships are now awarded to students
using software. The software has been deployed and is in use by the organization, however not
to the extent that developers would have hoped. The focus of this project, thus, is to delve into
the reasons why software may not be widely adopted by the target users. Specifically, this paper
will explore software deployment in order to build features and deploy them effectively.

According to research, the software deployment process is a very important stage in the
software development process. Unkelos-Shpigel and Hadar (2013) emphasize this point by
pointing out that deployment warrants its own deployment architecture in the software
development cycle. Medvidovic and Malek (2011) also point out that the deployment
architecture can affect the non-functional requirements of software thereby affecting the
Quiality-of-Service (QoS). Similarly, Bloom and Clark (2008) also hammer on the importance
of software deployment on vendors and customers alike stating that “the ease, speed and success

of deployment are drivers of initial customer satisfaction, support calls and deployment costs.”

As such, it is important that the updates to the software that will be made in this project be
deployed efficiently and effectively to ensure the organization’s staff enjoy optimum software.

Another objective of this project is to provide features for donors for the NGO’s
scholarship operation. Since the organization relies on donations, it is important that their
scholarship disbursements be made readily available to all donors. This ensures that the
operation is transparent and accountable which projects an image of trustworthiness for the
organization. This will enable the organization to receive more funding and increase its impact.
Additionally, donors will have more flexibility and have more power in deciding which students
receive scholarships or which communities they would like to benefit from their donations. This
project aims to implement these features for donors bearing in mind that they hold the potential
to incentivize more donations and help the organization to have a bigger impact by providing
more opportunities for children and their families. Ultimately, it is hoped that this seemingly
small addition will improve the wellbeing of numerous people on the African continent in the

long term.

1.2 Related Work

Some research has been conducted into the challenges involved in software deployment.
Unkelos-Shpigel and Hadar (2013) conducted research involving deployment architects from
seven different firms to glean out factors that will lead to successful software development.
This research provided activities that would prove useful in the deployment of the features in
this project.

One of these activities is brainstorming. The research suggests that brainstorming

meetings be conducted at the time of software release in which major decisions involving all

process partners, including developers and deployment architects, are taken (Unkelos-Shpigel
and Hadar, 2013). This will be vital in the release of subsequent software updates with the
organization’s software. Decisions made at this stage will have the prior knowledge of previous
installations carried out at the organization. This will include the challenges faced at the time
and also customer experience with the deployment. This step will be crucial for successful
deployment and enhanced user experience.

Another important predictor to software deployment is the use of automated tools
(Unkelos-Shpigel and Hadar, 2013). An example of an automated tool is GNU Make. GNU
Make has a number of capabilities that make deployment easier. Amongst these is the ability to
build and install files without knowing the details of how it is done; this significantly reduces
the complexity of deployments (“gnu.org,” n.d.). Additionally, it can determine which files
need to be updated based on the source files and can also update files in the proper order in
case a file depends on another. This means that the entire program may not need to be
recompiled, saving time and computing resources (“gnu.org,” n.d.). GNU Make is also
conveniently language-independent and can be used to uninstall packages also (“gnu.org,” n.d.).
Automated tools greatly simplify the software deployment process by cutting down the amount
of human involvement during the deployment. This also reduces the likelihood of human errors
occurring during the process thus increasing the chances of a successful deployment.

Mantyl& and Vanhanen (2011) in their research obtain information of four successful
Finnish IT companies on their software deployment activities and challenges in order to answer
research questions. The first question they sought to answer is: What deployment activities exist
and how are they performed? The second was to find the main goals of software deployment

and the challenges associated with them.

The deployment activities were grouped into four: stakeholder communication,
installation preparations, installation and testing. Stakeholder communication involved
informing the stakeholder of the contents of the deployment as well as user training and support.
Installation preparations involved importing initial customer data, configuring and integrating
the software, creating a deployment package and scheduling a deployment date. For three out
of the four companies, a tool, such as GNU Make, was used in the creation of the deployment
package. Installation involved preinstall checks, the actual installation of the software and
ensuring that rolling back was possible if deployment was unsuccessful. The final activity,
testing, required that the software was tested at the vendor and the customer’s site. Depending
on the complexity of the software it may be impossible to test the software at the vendor’s site.
Additionally, testing was carried out at the customer’s site but only to a limited extent since the
testing tools are not available to the users to test. Testing of this project should be significantly
less complex. This is because dummy students can be added to the database and tested from the
development site. Testing should be fairly straightforward at the organization’s site after any
updates are made because all the information required for the new features are already contained
in the database.

The goals for the deployment can be divided into vendor goals and customer goals.
Vendor goals were to reduce deployment efforts and decrease the customers’ dependency on
individual experts. For these companies, customers required Commercial off-the-shelf (COTS)
software to be customized to suit their particular businesses or for a highly complex software
to be developed for their use. In these cases, the deployment effort will be great due to the
presence of many failure points. For this project, the deployment effort was considerably less

because the software was built solely for this organization. Also, the software is already

installed on their system thus new developments are only updates. Deploying updates are
typically less problematic than clean installs and this is evidenced by the fact that customers
usually “emphasize testing more during clean installs than updates” according to Mantyla and
Vanhanen (2011). In the case studies, companies that deployed the software required the
expertise of one highly knowledgeable worker who was always present. His or her absence
usually led to significant problems. These companies are resigned to keeping these individuals
because knowledge transfer to other employees is a laborious process (Mantyla & Vanhanen,
2011). Similarly, in deploying the new features, it is important that someone with prior
knowledge in the previous installation and with the development of the software be heavily
involved in its deployment. The reason for this is that problems that occur will be easier to
rectify.
Customers’ goals for deployment are:

1. Deployment requires little attention from them

2. Updates contain no undesired changes

3. The downtime is properly scheduled

Of these three goals in the context of this project, the most important of these three goals

is that the update contains no undesired change. This is very important because the software
has not been as widely adopted as hoped and making any uniformed change could further
damage its usage since customers generally do not want to change their current way of working
(Mantyla & Vanhanen, 2011), and if they must do so, they must be notified. As a result of this,
the layout and the existing functionalities have largely gone untouched in this project. The
changes that involved the use of a framework have been minimal in the sense that they have

been used in pages that present new functionalities to new users, specifically the functionalities

for the donors. It is important also that the other customer goals are not ignored. This is because
these also play a part in the customers’ likelihood of patronizing the software. Silent software
deployment may be an ideal way of making sure that installation will require no involvement
from a customer however more research is required to know how to use it for this project.

The features that were implemented for the donors required the display of a lot of
information on a single page. In order to get guidance on how to organize the information, an
existing scholarship management web application was consulted. A picture of this existing
solution can be seen in figure 1.1. From this application a few key observations were made.
One of these is the minimalist approach employed by the page which avoids distractions and
allows users to focus on the information. This was achieved by using muted background colors
on the page and reserving the bright colors for the graphs. The page also employs text bolding
and font sizes to good effect by highlighting information that is relevant and using larger fonts
to ensure that certain information is clear to the reader.

In addition to this, the page also carefully organizes the information. It does so by
placing all the relevant information and graphs in individual rectangles. These rectangles are
also spaced out carefully to mark a clear demarcation in the information that is being displayed
preventing the user from confusing different pieces of information. Also, the rectangles used to
display the information are of different sizes which subtly introduces asymmetry and breaks up
monotony.

The elements of Wizehive Scholarship Management application were carefully taken
into consideration when the user interface was created to provide the needed information as

well as provide a good user experience.

,_"" A° & © & zengine

Appications : Edit mode

Zen University Application Dashboard Applications by Folder

This dashboard summarizes important information that adminstrators wish to
view on a daily or weekly basis during the application period. it is fully
customizable by an administrator. Role-based permissions can be granted to
view or deny access to this dashboard.

. l l I
’ - P "
mem @ 8

2500.00

ust

Total Submissions

Figure 1.1 Wizehive scholarship management solution

1.3 Motivation

The aim of this project is to improve the scholarship management software utilized by
the NGO to make its scholarship delivery more efficient. One way of achieving this is to add
more functionality to the software to support a wider user base by catering for donors to utilize
the software. This will make the organization more accountable and trustworthy which will
improve chances of receiving donations and improving the lives of many more children and
families. Ultimately, the goal of this project is to help this NGO in empowering children and
give them the opportunity to increase their standard of living. The project aims to bring hope to

children and their families for a better future.

Chapter 2: Requirements

2.1 Requirements Gathering

Requirements for the application were gathered through my supervisor who was in
contact with the organization. We organized weekly meetings in which discussions were held
on the features to be implemented. From these discussions, the major users of the features as
well as the system and user requirements were identified. The major users of the features were
identified to be the donors. The system and user requirements were also gleaned through
analysis of the features.

Also, reports from the previous projects were reviewed. This provided a background of
the work that had already been done on the software. It also provided indicated the areas of the

software that could be improved.

2.2 Application Users

Within the scope of this project, the application users are the donors. The donors’ role

is to view information pertaining to the particular grant they provide to students.

2.3 Use cases and scenarios

View payment of grant for particular year

View payment of grant for current year

N

‘\\

View payment of grant since beginninD

Donor

View ligt of cumrent students on granD

i

View statistics pertaining to granD

Figure 1.1: Use case diagram for donor

2.4 Details of scenarios from use case

The table below gives further details about the requirement for the donor. It gives a description
of what the requirement involves, what data is involved, how the data is generated and
displayed. During implementation, this table serves as a guide to make sure that the feature is
implemented to meet user requirements. The other tables outlining the other requirements can

be found in the appendix.

©

Table 1.1: Tabular description of view payment of grant for particular year
requirement

View Payment of Grant for particular year

Actor Donor

Description Donor can view the amount of money that has been paid for
an entire financial year in the past or present

Data Cost of grant in Ghana Cedis

Stimulus Option selected by donor

Response Cost displayed on the screen

Comments The donor can only view information pertaining to their grant

2.5 System Requirements

The system requirements can be divided into two: the functional requirements and the non-

functional requirements.

2.5.1 Functional Requirements

e The software should provide important information to donors
The donor should be able to view the necessary information from the database and this
information has to be displayed in the appropriate format. The information regarding the
payments should be displayed as text to the donor. Information regarding the students should
be displayed as a list containing the relevant information. Information about the statistics should
be displayed using the appropriate graph so that the information will lend itself to analysis by

the user. Bar graphs and pie charts are examples of charts that are to be used.

2.5.2 Non-Functional requirements

Reliability

10

In the event that graphs are not displayed, possibly due to a failure in internet connection, the
information should still be displayed to the user either in text or table format.

Security

The system should ensure that only information pertaining to the grant in question is displayed.
Information regarding other grants should not be displayed to donors.

Ease of use

The user interface should be easy to use. Button labels and descriptions should be clear and

easy to understand.

11

Chapter 3: System Architecture

The scholarship management software was built by the previous developers using the
3-tier, layered architecture shown in figure 3.1. This architecture consists of three layers,
namely: the user interface, the application and database layers. In order for the application to

work effectively, these three layers need to communicate with each other.

User Interface Application Database

Internet

Figure 3.1: System Architecture

3.1 The User Interface Layer

This serves as the layer which allows users to make use of the system’s functionalities.
For instance, it is at this layer that the donor can view how much they have spent so far on
scholarships or the gender distribution for the scholarships that have been awarded. These
functionalities are accessed through a web browser such as Google Chrome and Mozilla
Firefox. The pages are rendered using HTML, CSS and JavaScript. Information displayed from
the screen using Ajax or PHP depending on the need to maintain a smooth user experience. If

the information to be displayed did not require the page to be refreshed, then Ajax can be

12

avoided, else if the information requires a page refresh, Ajax is used. Whether via Ajax or not,
information is sent to and from the application layer using an HTTP connection. If information
could not be retrieved, an error message will be displayed to the user. An example of a file that

is used in the user interface is grantdetails.php.

Students Costs Communities

Gender Statistics

Figure 3.2: User Interface

Figure 3.2 above shows the user interface. The tabs are used to categorize the different sections
of information that can be viewed by the user in a web browser. The tabbing was created using
the Bootstrap framework, colors were displayed using CSS and graphs were generated using
the Google Charts library. The graph shown is an example of a piece of information that is
obtained from the database. This information was acquired directly from the server and

displayed as a graph.

13

Ajax was used in order to provide a good user experience. In figure 3.3, the user is
presented with a drop down from which he or she can select a financial year to view its
associated cost. Ajax was used to prevent the page from requiring a reload before displaying
the cost. The effect is that the amount changes seamlessly as the user changes the value in the

drop down and an example of this is shown in figure 3.4.

Financial Year: | --Select--- ¥

0
GHS

Figure 3.3: Dropdown and payment in particular year

Financial Year: | FIN YEAR 2014 2015 v |

600
GHS

Figure 3.4: Selected year and payment for 2014/2015 financial year

3.2 Application Layer
The application layer sits between the data layer and the user interface and contains the
business logic of the software. This layer is where the web server operates and PHP functions

that produce information based on requests received from the user interface. These functions

14

are what communicate with the data layer to retrieve the information that is needed by the

donor, such as, the gender distribution of the sponsored students. The application layer

functions may either be client side or on a separate page. When the information retrieved does

not require Ajax, the script is written on the client side otherwise it is written in a separate script

An example of the file written as a separate script is ajaxgrants.php.

function get yearly cost for grant(){

Sfinancial_ year id=get_data ("financial year id");
ineclude ("donors.php") ;
Ss=new donors();
$row=$§s->get_yearly cost_ for grant ($financial year id);
if(!Srow)
echo "{\"result\":0,%\"message\":\"error while getting yearly cost {[$s—->error}\"}";
return;
t

eche "{\"result\":1,\"cost\":" . Srow["amount"™] . "}";

Figure 3.5: Code for displaying payment for a year in JSON

Figure 3.5 shows the code for providing the yearly cost for a particular grant which is displayed

using Ajax. The information produced is passed to the browser as a JSON object that is

displayed to the user via JQuery as seen in figure 3.7.

Pt ek b ek b ek ek ek

1 | T T

[T % T = e T W

i

en

o]

inaludg_pnce{"ax: donors.php") ;

Ss=new donors();
Srow=$s->get gender statistics($grant id);
Sgen=array () ;

Srow=S5s—>fetch() ;

=] while (Srow) {

Sgen[] = Srow;

Srow=S%s->fetch() ;

B }

Figure 3.6: Code showing information retrieval without Ajax

15

Figure 3.6 above is an example of retrieving information without Ajax. The information is

retrieved from the data layer via an application layer function. The function that does this is on

line 169.

725 H funetion get_yearly cost(){

726 var year id = $("#yesar id").val()

727 u="ext/ajaxgrants.php?cmd=2&financial year id="+year id+"&grant id="+<2?php
echo Sgrant_id?>;

728 ocbjResult=synchhjax (u) ;

725 [H if({objResult.result==0){

7 showError (cbjResult.message) ;

731 return;

S }

733 $ ("#grant cost for year").html (""+objResult['cost']+"");

734 F }

Figure 3.7: Code used to retrieve and display information using Ajax

3.3 Data Layer

This layer consists of the MySQL database server that stores all information pertaining
to the scholarships, students, schools, communities, etc. Any information that is displayed on
the user interface is retrieved from this layer. MySQL is a relational database thus all the
information is stored in tables and SQL queries are issued to retrieve information from either
one or multiple tables. Figure 3.8 shows a function that exists on the data layer. This capability
allows the application to pull information from many different tables to present as one view to

the donor.

16

115 ©
116

117
118 O
119

120
121 E
122
123 =

function get_yearly cost for grant($financial year id,$grant_id) {

$str_query="SELECT ifnull (sum(’
FROM

sc'_".olars'_".:i_:_::aymer::\ -amount) ,0) as amount
‘scholarship package’ inner join “scholarship payment' on

payment " .scholarshi

*scholarshi

package scholarsh

_package_id =
‘scholarship package’ .scholarship package_id inner join ‘payment request’
on “payment request®.payment regquest id =

‘scholarship payment’ .payment request payment request id inner join

"financial year® on “payment regquest®.financial year financial year id =

"financial year'.financial year id where “financial year’ .financial year id
=

= $financial year id and 1z = 'PAID'

“scholarship payment’ .status and

scholarship package’ .grant package grant package id =$grant id";

if (!$this->sql_ query($str_query)) {
S$this->error=$this—>log error(LOG LEVEL DB FAIL,1l,"error while getting

cost for financial year. see error {$this->error} for details.");
¥

return false;

}

return $this->fetch();

}

Figure 3.8: Function to retrieve payment for a particular year in data layer

3.3.1 Database Architecture

Figure 3.7 shows the tables from the database that were used. The diagram shows the foreign

key relationships between the tables involved. These relationships were essential to getting

the right information that was required by the donors.

e 712}
Brmoted THINTLT)
programne vaRCIAS)
el VARCHARLZ)

S RO

chos! sterdince_schiol_atendarcn J4TLi3)

S ENLNG.)

" pavment_reauest v
Ppament_request id INT(1)
-

—

e dave DTS

ogrsnes DT
request_statis ENUMY) V

e et e A BI0D||
amoumt (1) !
o nLY i

#verifesten_soaument VARCHAR(SD) [

*idstondoc ARCHARSS)

>
v
i
i

|
]
4
7 finandal_year T
oo e DTELT)
P
e s AT
e gt parETINE
»

" scholarship_package v
) scholarstip_payment v sculsnn sacase J4NTUL) gt packas 7
‘scholarship_paym ent_jd INT{21) start, fate DATETE rant_peckage_d INT (1)
aae paETDE e CATETIE | ———
s ML) s 0L N] oo vincount
ST Bl o1, O ancunt DECOMA (03) s smoued ECMAL (01
‘smount DECIMAL(10,01 scholash_bwe IMT(11)] sponsored_student v
i ot g gram seckage i 1T(11) oonmred st 4 IT(1T -
S—— sounsored_sudent sporsored_studentg INTCLL T T T T 1 student. frstmame VARCIR(4) Fy
¢ N 1 ddeane VRGUASS)
L m— schelarship_type _scholrship_tipe INT(11) [w’ ;ﬂs‘ !
b | . o — : St
i programares_suviogares < IT{LL) ! L | - pree————
[po e o, st 4 BT(1S) | et races VASHAR(S) [N
N cean stuser s 5 T3} -
| I [S SO o - e [y—
] scesunt_ra WABCHARTSS) I [Lprogramarea_g | e K G saterm i ent YARCAR
i te oL T ! i commurity 4 ITCIY) | . -
] L |) | st e VAOUR
et o WTT11)
! oo T | i , ! o0 samddocn e VARCHAR(Z)
i L | [7 i 0. mter sane vinoALS)
| | i i R 1 5 a0 mothes Jakve TIHVINTLY
i
| i | son mamer semisaten D(1)
| ‘ i ! LIEri et e RS
| T sehoul_atterdance. v I L1 e v ! calon oo STUAG | op et .
| PP — | i Programares i NT{11) 1 P VASCHAR(SS) 1 o N
. ! L] e P o "
--------------- = e - stentsichre 1EXT
iry_coms INT{314) S aaress v 5 L cescrotion VARCHAR(I0) pe—1 o
entr vt B ! rcgaraen e VRCHSRL1) j B | e
st e NG | » ! = 0 Sspnmtini
o VARURLSS) T ' ! - e
| N schodls ¥ | e AR
ument,_soss (LY i] 3 H | w0yl o
atece s S TTEL pmmmmmmmmmmm oo 4 | s (10 | | oo s i AU
! | sl _name VARCH ! o g elaisn VARCHARS
s st sponased ssent 1) i] e YRR [! g, e ACHAR)
—y | mmmmmmeeee B I sares vinoua() i e i o0 g sccipalon BT
w oS EE R |0 mc vacat) ! S ————
| comm ey communy 4 31(ss) | 1 st tehne 1 VARDARLSS)
! o ogrann rogramwna DTk —————— : saen e 2 WS
Iy | el _oa VARG 5) [[o st e rosranares 4 1YL
 commnity O a2t s, rome B ! g
p———ry I —— ! st gender GHRLS)
2 community_atagery E —— e WROUA(SS) | ot DATETINE
e p——r | oo e o e S — | e e A0
E Y L T N L
¥ comm uvty_cotegory_neme VARCHAR(3S) ot - L4 00_submessen_yes INT(11)}

Ersgramres progamares 4 T(11)
comm vty segory_pop_point VARCHAR(48] comunty_sategery_com mun'ty_caiegery_d INT(1L)
.

>

a0 amount DECINAL(00)

Figure 3.9: Tables from database used for obtaining data

17

Chapter 4: Implementation and Testing

This chapter delves into the implementation details for the different features. It begins
by detailing the different tools, frameworks and libraries that were used, how they were tested
and details how features were implemented. Following each feature are the tests that were

carried out to ensure that features worked correctly.

4.1 Implementation Tools and Libraries

Google Charts Library

This library was used to display data pulled from the server graphically in order to make
analysis and decision-making easier for donors. It provided a breadth of chart types that enable
displaying varied data to users. Another advantage is its ease of use, requiring simple JavaScript
to make use of them. It also allowed for the customization of charts to better suit websites. It
had the added bonus of being cross-platform for different browsers as well as hardware

including tablets, phones and desktops.

Bootstrap Framework

Bootstrap is a framework that is useful in building responsive features in HTML, JavaScript
and CSS (“Bootstrap,” n.d.). This framework was used in the implementation of the donors’

features because it provided the tools create a good user experience.

18

PhpMyAdmin and MySQL

PhpMyAdmin served as the web-based client for the administration of MySQL server. It
allowed for the basic functionality of database management including inserting, deleting and
updating data. This proved vital in both implementing the features and testing them. It was the
preferred option for database administration because it is web-based and has a user-friendly
interface making the implementation of the features easier. MySQL was the database server
that was used to manage the data stored in the database. Since MySQL was used in the
development of the previous features, it was more convenient to continue using as rather than

using another which could potentially cause compatibility issues.

XAMPP

This is a PHP development environment conveniently comes packaged with PHP, MySQL and
the Apache web server making development of web applications simpler. It also comes with a

control panel that can be used to switch services on and off with one click.

PHP

This is the server-side scripting language that was used to retrieve data from the database and
passed to the application layer. It was also used for coding the application logic. Despite being
free, PHP was used primarily because the previous developers used it and it served its purpose
of information storage, retrieval and production of dynamic content adequately. In addition to
this, its wide usage ensured that there was enough support whenever problems were

encountered.

19

Apache HTTP Server

The Apache HTTP web server is an open-source HTTP server for modern operating systems.
For this project, it served as the main facilitator between the application and database layer by
allowing communication through HTTP. Apache was used because it was used in the previous

development and also because it comes bundled with XAMPP.

HTML

Hypertext Markup Language was used for the creation of the web pages displayed the relevant
information on the client’s browser. It was responsible for displaying the information gathered

from the database. Tables, containers, buttons and text were displayed using HTML.

CSS and JQuery

Cascading Style Sheets were used to add styling to web pages written in HTML. Styling was
added in order to improve the application’s usability. Different colours, text font, shadow
effects and positioning of elements were used to create a more pleasing visual experience and
improve user experience.

JQuery is a JavaScript library that simplifies the use of JavaScript in client-side scripting
(“Jquery.org”, n.d.). JQuery was used to make calling HTML objects easier. It has the benefit

of working across multiple web browsers.

20

JavaScript

JavaScript is a client-side scripting language that is used to create dynamic content of otherwise

static HTML pages.

4.1.1 Testing of tools, libraries and frameworks

Table 4.1 the framework, library or tool that was tested, the test procedure and the outcome of
the test. In most of these tests the result was displayed visually. In those situations the figures

that display the result are stated and can be found in the appendix.

21

Table 4.1: Table showing tests and results for frameworks, tools and libraries

Framework / Library

Test

Result

Google Charts Library

Display line chart, bar chart
and pie chart with consistent
sample data. Test shown in
figure 4.1.1and 4.1.2

Line chart, bar chart and pie
chart displayed as expected
as shown in figure 4.1.3

Bootstrap Framework

Use tabbing to display
different content. Test code
is shown in figure 4.1.4

Different information
displayed as different tabs
were navigated. Results can
be seen in figures 4.1.5,
4.1.6and 4.1.7

PhpMyAdmin and MySQL?

Use select statement to view
a list of academic years in
database. SQL statement is:

SELECT * FROM regions

List of regions produced as
expected. Results shown in
figure 4.1.8

XAMPP and Apache HTTP
Server?

Navigate to the web server
home page using a web
browser. The URL is:

http://localhost:1234/

Web server successfully
displayed as seen in Figure
4.1.9

contains three <p> elements.
Two element have their
background and font colours
modified using CSS and
JQuery. The script can be
seen in figure 4.1.10

PHP Create a script to display text | Browser displays text as
in a browser. written in the test script.

HTML Create a page that displays Browser displays test as
text in a web browser. written in the test page.

CSS and JQuery Create an HTML page that Two of the three <p>

elements’ background and
font colors are successfully
changed using CSS and
JQuery. Figure 4.1.11 shows
the result

1 - This test proves the functionality of both MySQL and PhpMyAdmin. PhpMyAdmin
successfully executed the query. The select statement produced the expected information from

database

2 _ The testing of XAMPP and Apache Web Server were bundled due to convenience.
The sections below are the details for the implementation based on the system and user
requirements described in chapter two.

22

4.2 Implementation of Application Features

4.2.1 Viewing Grant Cost for Particular Year

When the page is loaded, the donor selects the costs tab to view all information pertaining to
costs. When the donor logs in, the page stores the grant id of the grant package associated with
the donor. This id is used to display all the information that is relevant to the particular grant.
The donor sees a dialog box as shown in the figure 4.1 and chooses the financial year that he or
she wants to view the cost of. Once the donor selects the financial year, the year’s id is retrieved
to the application layer using jQuery and passed to the application layer using Ajax as shown

in figure 4.2.

Financial Year: | --Select--- ¥

0
GHS

Figure 4.1: Dialog box to view payment for a particular year

E| $ (document) . ready (function() {
S ("#year_id") .on('change’,get_yearly_ cost);

r b

= function get yearly cost(){

542 var year_id = S$("f#year_ id").wval();

u="ext/ajaxgrants.php?cmd=2&financial year id="+year id+"&grant id="+<?php echc Sgrant_id?>;
objResult=synchljax (u) ;

(= if(objResult.result=—0) {

showError (cbjResult.mes=age) ;

return;

r }

$("#grant_cost_for_year") .html (""+objResult['cost']+"");

Figure 4.2: Value from dropdown passed to application layer using JQuery

23

On the application layer page ajaxgrants.php, the appropriate function is selected using a select

case from a parameter passed in the URL. In this case, the function in figure 4.3 is used to

retrieve the data:

~1 @ o

o P e I B B |
=1 & N o Wk D Wwom

1
W m

=

function get yearly cost for grant(){

$financial year id=get data("financial year id");
$grant_id=get_data("grant_id");

include ("donors.php") ;

$s=new donors|();

$row=$s->get_yearly cost_ for grant ($financial year id,$grant_id);

if (! Srow) {
echo "{\"result\":0, \"message\":\"error while getting yearly cost {§s-Ferror}\"}";
return;
}
echo "{\"result\":1,\"cost\":" . S$row["amount"] . "}";

Figure 4.3: Application layer function

This function retrieves the financial year id and grant id from the URL and passes them to the

data layer function, get_yearly cost_for_grant, as seen in figure 4.4. This function inserts the

ids into an SQL query that is used to retrieve the information from the SQL server.

107

109
110
111

112
113
114
115

function get_yearly cost_for_grant ($financial

FROM

CT ifnull (sum(' scholarshi

$str_gquery="SELE

t_payment_request_id
_year financial year_id =
‘.financial_ year_ id = $financial year id
“scholarship_package'.grant_package_grant_package_id =$grant_id";
if(!$this->sql_ query($str_query)) {
Sthis—>error=Sthis—>log_error (LOG_LEVEL DB FAIL,ll,"error while getting cost for finanecial

year. see error [$this->error} for details.");
return false;

}

return $this->fetch();

Figure 4.4: Data layer function containing SQL to retrieve the cost

24

The end result is shown in figure 4.5 where the cost for the financial year is shown. In this

instance, the financial year selected is that of 2014 to 2015 and the cost for that year was 600

Ghana Cedis:

Financial Year: | FIN YEAR 2014 2015

600
GHS

Figure 4.5: Updated dialog box containing payment for 2014/2015 financial year

Testing to view grant for a particular financial year

In order to test this feature, a query was written to display all the amounts paid for a grant and
matched against the result produced on the user interface. Figure 4.6 shows the result of the

query that was created. Figures 4.7 to 4.10 show the result of the user’s input on the user

interface.

financial year id year name yearly _amount
1 FY2010TO201 0
2 FA201MTO2012 0

3 FIN YEAR 2013 2016 500
4 FIN YEAR 2014 2015 600

Figure 4.6: SQL showing the financial year ids, financial years and amounts retrieved
from the database

25

Financial Year: |FIN YEAR 2014 2015

600
GHS

Figure 4.7: Dialog showing cost for 2014/2015

Financial Year: | FIN YEAR 2013 2016 +

500
GHS

Figure 4.8: Dialog showing cost for 2013/2016

Financial Year: | FY2010TOZ2011 v

0

Figure 4.9: Dialog showing cost for 2013/2016

26

Financial Year: | FA2011T702012 v

0
GHS

Figure 4.10: Dialog showing cost for 2011/2012

It should be noted that the years were input for testing purposes thus the years shown do not
represent the actual years in the organization’s database. From these diagrams it can be seen
that the costs displayed with the different values of the drop down are consistent with those of

the database meaning that this test was successful.

4.2.2 Viewing Grant Cost for Current Year

This information is displayed once the donor logs into the donor page. When the donor logs in,
the page stores the grant id of the grant package associated with the donor. This id is used to
display all the information. The id is passed to the application layer which inserts the id in a

function, get_current_year_cost_for_grant:

476 H <diwv class="small container small container right” id=nre
477 <h4>Current cost for the year</h4>

478 H <?php

475 includg_cnce{"%x:fi:::re.;h;"};

[1=9

Ss=new donors();

19

Srow=$s->get_current_year cost_for_ grant (Sgrant_id);

=9

echo "<h3>Srow[amount]</h3>";

[1=9

£ 2>

<h3>GHS</h3>

o o O o oo

[S VS I oS T S

19

Figure 4.11: Application layer function to get payment for current year

27

This function contains SQL that is used to retrieve the cost from the database, as seen in figure

4.12:

162 H function get current year cost_for grant ($grant_id){

163 $str_query="SELECT ifnull (sum(scholarship payment'.amount),0) as amount FROM
‘scholarship package' inner join ‘scholarship payment' on
‘scholarship payment’.scholarship package_scholarship package_id =
‘scholarship package'.scholarship package id inner join ‘payment request’ on
‘payment_request’.payment_request_id = “scholarship payment’.payment_request_payment resquest_id
inner join ‘financial year®' on ‘payment request’.financial year financial year id =
‘financial year'.financial year id where ‘financial year’.financial year_id = (SELECT
financial year id FROM ‘financial year' ORDER BY date start desc limit 1) and
‘scholarship payment'.status = '"PAID' and ‘scholarship package'.grant_package_grant_package_id =
Sgrant id";

164 H if (!$this->sql_gquery ($str_guery)) {

165 : S$this->error=$this->log_error (LOG_LEVEL DB FATL,11,"error while getting grant lifetime cost.

see error {$this-»error} for details.");

166 return false;

167 E }

168 return $this->fetch();

169 F 1

Figure 4.12: Data layer function containing SQL

The information is displayed in the browser as shown below:

Current cost for the year

600
GHS

Figure 4.13: User interface dialog box displaying current year’s payment

Testing for viewing grant cost for current year

To test this feature, the SQL used for the function in figure 4.14 was used to obtain information

directly from the database and the result displayed as shown in figure 4.15. It can be seen that

28

the result of the query is consistent with what is displayed on the user interface confirming that

the feature works and the test was successful.

SELECT ifnull (sum|(scholarship payment’ .amount),0) as amount FRCM
‘scholarship package’® inner join 'scholarship payment® on

. . . : . : . . : S
scholarship payment’.scholarship package scholarship package id =
"scholarship package’.scholarship package id inner join

‘payment request® on ‘payment request’.payment request id =

"scholarship payment’ .payment request payment request id inner

join "“financial year® on

w

payment request’.financial year financial year id =

.ot |

L1

financial year'.financial year id where

*financial year'.financial year id = Sfinancial year id and

bt

scholarship payment’.status = "PAID" and

]

=ch ship package’ .grant package grant package i1d = 5
scholarship package I | I N

Figure 4.14: SQL for obtaining payment for current year for grant with id 5

Current payment for the year

4100
GHS

Figure 4.15: Updated dialog box showing payment for current year

4.2.3 Viewing Gender Statistics for Grant

This information is displayed once the donor logs into the donor page. When the donor logs in,
the page stores the grant id of the grant package associated with the donor. This id is used to

display information relating to the gender. The id is passed to the application layer which inserts

29

the id in a function, get_gender_statistics, which can be found in the data layer. Figure 4.16

shows the application layer code that passes the id to the data layer. Figure 4.17 shows the

get_gender_statistics that can be found in the data layer.

[wp]
[¥a)

o | Sl T
| I | o I |
(0 B O S T o T C T

=

=

{1]
L1

"y

includg_cnce{"ex:fi:::rz.;h;);
Ss=new donors();
Srow=$s—>get gender statistics($grant id);
Sgen=array () ;
Srow=Ss—->fetch();
while (Srow) {

Sgen[] = Srow;

Srow=Ss—->fetch();

Figure 4.16: Application layer code to pass grant id to data layer

function get gender statistics($grant package id){

Sstr_query=

L ge_grant package_id = §grant package id group by sa.student gender"
if (1$this->sql query($str _query)){
$this—>error=S$this->log_error (LOG LEVEL DB FATL,11,"error while getting gender statistics. see error
[$this->error} for details.");
return false;
}
return true;

}

Figure 4.17: Data layer code containing SQL for retrieving information on gender

The function exists in the data layer and passes the grant id into an SQL query which retrieves

the information as an array. This array servers as the data that is used to generate the graph

using the Google Charts library. Once the charts library is loaded, the data is passed to it, and

the options for the graph are set. Finally, the id for the container for the graph is retrieved using

JQuery and the graph is drawn:

30

102 google.charts.load ("current", {packages:["corechart"]1}):;
103 google.charts.setOnLoadCallback (drawGenderChart) ;

104 google.charts.setOnLoadCallback (drawParentChart) ;

105

106 [H function drawGenderChart () {

107

108 var data = google.visualization.arrayToDataTable ([

109 ['Gender', 'Number'],

110 [gender[0] .gender, parselInt (gender[0].count)],

111 [gender[l] .gender, parselInt (gender[l].count)]

112 1) ;

113

112 [var options = {

115 title: '"Gender Statistics'

116 F };

117

118 var chart = new google.visualization.PieChart (document.getElementById('genderGraph'));
115 chart.draw(data, options);

120 F }

Figure 4.18: User interface code to draw chart. Gender variable contains two arrays,
each identifying the gender and the count

In figure 4.18 the gender and the count is contained in the gender array as seen on line 110 and

111. The outcome of above code is seen figure 4.19 shown below:

Gender Statistics

Figure 4.19: Graph showing gender distribution for grant in question

31

Testing for gender statistics

To test this feature, an SQL query was written directly into the database to generate the students,
together with some of their details, whose fees are paid with a particular grant. This query is
shown in figure 4.21. In this case the grant id that was used was the grant number 5. The result
of the query is shown in figure 4.20 below:

student_applicant_id app_grant_id student firsthame student lastname gender

1 5 Janet Amoah F
2 5 Jim Okloo M
851 5 Kwesi Amamre M

Figure 4.20: Result of test SQL query to get information about sponsored students and
their gender

"SELECT sa.student applicant id, sa.app grant id,

]
t

sa.student firstname, sa.student lastname,

M
H
s |
Q
i)
b
]
=
ui}
H
[
i
8]
8]
5}
[
[f1]
i

L
m
H

[
s}

7]
[

w oo
[
5

1]
m m
=]
m
I

m w m m i.J.I
o o oo

(8]

5

=]
o P v M= |

— Cn

L
v}

U]

Figure 4.21: Test SQL query to generate information about sponsored students

The query returns three students, two of who are male and one female. The percentages
calculated based from these numbers are very similar to those that are displayed in the graph.
From this result, we can see that the graph displays the correct information thus making our test

a SUccess.

32

4.2.4 Viewing List of Students for Grant

This information is displayed once the donor logs into the donor page. When the donor logs in,
the page stores the grant id of the grant package associated with the donor. This id is used to
display the list of students who are current beneficiaries of the grant. The id is passed to the
application layer which then passes it on to the data layer. The data layer retrieves the
information via the get grant_student_list function. Once obtained, this information is
displayed in the HTML table styled with Bootstrap. Figures 4.22 and 4.23 show the code and

the table output respectively.

693 E <table id="tableStudents" class="table table-striped">
= <tr class="default report title”>
<th>First Name</th>
<th>*Middle Name</th>
697 <th>Last Name</th>
698 <th*Scholarship End Date</th>
<th>Schocl Name</th>
<th>Status</th>
= </tr>
<?php
includg_cnce{"%x:fi:::re.;h;“};

[==]

[
{T]
11

Ss=new donors();

¥ BY R S

Srow=§s—>get grant student list($grant id);
= while (Srow) {

echo "<tr>";

1 o

echo "<td>{Srow['student firstname']}</td>"

oo

echo "<t

>{%row["=student_middlename"]}

1
]

echo “ﬁ:AJ{Srow[Tstudent_lastname*]}ﬁf:i}";

F
I

echo “{:i}{Ser['end_date']}<f:i}“;

[y

712 echo "<t J{Srow['school_name‘]}{f:i}";
713 echo "<td>{Srow["status"]}</td>";

714 echo "</tr>";

715 Srow=S8s->fetch();

716 }

71 = P>

718 i </table>

Figure 4.22: User interface layer code used to display information about sponsored
students

33

First Name Middle Name Last Name Scholarship End Date School Name Status

Kwesi Maxwell Amamre 2017-09-01 00:00:00 Swedru School of Business PAID
Jim Kwame Okloo 2014-00-00 00:00:00 Methodist Sinior High PAID
Janet Esi Amoah 2017-02-20 00:00:00 Swedru Senior High PENDING
Jane Obiri 2017-04-12 00:00:00 ADONTEN SHS PAID
Jane Obiri ADONTEN SHS PAID
Jason Mintah Mfantseman Girls Senior High PAID
Getrude Amponsah Swedru Senior High PAID
Victor Agbla Ankrah Salga Senior High School PAID
Rose Sammia Baidu Jabez Educational Institute PAID
Godwin Nana Manhyia ANFOEGA SHS PAID
Jim Kwame Okloo 2014-00-00 00:00:00 Manya Krobo Senior High PAID

Figure 4.23: Table of sponsored students

It is important to note that the scholarship end dates will ordinarily not be blank. They are blank

only for testing purposes.

Testing for viewing list of students for grant

In order to test this feature, a student was added to the database under a specific grant. This
required some data to be added to the database. Consequently, a new student was added as a
student applicant before being added as a sponsored student under the grant. A scholarship
package was created for that student to provide details regarding the scholarship and making an
entry into the scholarship payment table which provides details of the payment for the particular
scholarship package such as the amount. Once this data is entered, the student’s information
was displayed in addition to the other students. Figure 4.24 shows the details of the student

entered through the software.

34

Scholarship Management

Program Area/Unit: Ezstzm ¥ | Application Vear : 2013
AKUAPIM NORTH || ~seka- v

[ampaduh Brdget ™
ke ® Female 18/05/2004
Mother Name Senvaa ® sive O nor lve Trader v
Fatherllame i ® sive O hot Alive Farmer v
Guardian Name not sppliczhle ¥ not sppliczhle v
Address P.0. Bac (24 J 0244534440 02400000000
Guollu J5H ¥ | add schol Aqggregate Grade 23

Referee School Admitted To: JUABEN SH, ASHANTI ¥ | add schoal Sponsared Chid No: check

Prudential Staff? o Relation to Prudential Staff: not zoplczble ¥

submit

Figure 4.24: Details of newly entered student applicant

The student was then added into the sponsored student table. This was done using the SQL

query in figure 4.25.

INSERT INTO ~plan_ghana’ .’ sponsored_student’ (" sponsored_student_id", 'student_firstname’, "student_middlename’, 'student_lastname’, 'student picture’, "student_grades’,
“sthdent_applicant_student_applicant _id™, ~student resident programarea_id™, " community comeunity id™, “group_id’) VALUES (NULL, 'Bridget', 'vaa', 'Ampaduh’, WULL, NULL,
's6e’, '2°, 'Se3’, MULL);

[Inline] [Edit] [Create PHP Code |

Figure 4.25: Student added as a sponsored student

Next, the SQL query shown in figure 4.26 was used to add a scholarship package pertaining
to the student. Finally, the SQL query in figure 4.27 was used to add a scholarship payment
on behalf of the student. Now, when the user interface is loaded, the student’s details are

added to the original table from figure 4.23. The updated table can be seen in figure 4.28.

INSERT INTO “plan_ghana . scholarship_package® (' scholarship_package id , ~start_date’, ‘end_date’, status’, "annual_amount’, "scholarship_type’,
“grant_package_grant_package_id", sponsored_student_sponsored_student_id", *scholarship_type_scholarship_type , “group_id) VALUES ('2@@', '2016-18-83 @@:8@:ee', '2817-
10-@3 ee:ee:ea’, '1', '6ee’, '2', 's', '208', '2', NULL);

[Inline] [Edit] [Create PHP Code]

Figure 4.26: Scholarship package created for student

35

INSERT INTO “plan_ghana . scholarship_payment™ (scholarship_payment_id , “date’, “status’, "refund_amount’, “amount, “memo”, "year’,
“schoiarship_package_scholarship_package_id", ~programarea_residentarea_id , "programarea_payingarea_id , °payment_request_payment_request_id*, “bankname, 'account_no”,
*schools_school id™, "group_id’) VALUES (NULL, '2016-86-87 @@:@@:e8', 'PAID', NULL, '68@', NULL, NULL, "2@8', '2', NULL, '13', 'Merchant Bank', NULL, '52°, NULL);

[Inline] [Edit] [Create PHP Code]

Figure 4.27: Scholarship payment made on student’s behalf

First Name Middle Name Last Name Scholarship End Date School Name Status
Kwesi Maxwell Amamre 2017-09-01 00:00:00 Swedru School of Business PAID
Jim Kwame Okloo 2014-00-00 00:00:00 Methodist Sinior High PAID
Janet Esi Amoah 2017-02-20 00:00:00 Swedru Senior High PENDING
Jane Obiri 2017-04-12 00:00:00 ADONTEN SHS PAID
Jane Obiri ADONTEN SHS PAID
Jason Mintah Mfantseman Girls Senior High PAID
Getrude Amponsah Swedru Senior High PAID
Victor Agbla Ankrah Salga Senior High School PAID
Rose Sammia Baidu Jabez Educational Institute PAID
Godwin Nana Manhyia ANFOEGA SHS PAID
Jim Kwame Qkloo 2014-00-00 00:00:00 Manya Krobo Senior High PAID
Bridget Yaa Ampaduh 2017-10-03 00:00:00 JUABEN SHS, ASHANTI PAID

Figure 4.28: Table showing details of newly added student

36

Chapter 5: Conclusions and Recommendations

5.1 Challenges

One main challenge with the implementation was writing the SQL queries. This
involved joining multiple tables and including conditions and groupings that did not always
work well together. As a result, retrieving data was a complicated process that would often
result in data that looked correct but was in fact wrong. Adding to the difficulty was the lack of
foreign key constraints on the provided database. The lack of foreign key constraints required
that most inputs be double-checked to ensure that the correct data was input across all the tables

to ensure that results of tests were consistent.

5.2 Future Work

The user interface can be improved in order to create a better user experience for the
donors. Research needs to be undertaken to gain insights into how to create web pages that
involve a lot data and how to present that data to the users in the most effective manner.

The non-functional requirement of reliability could not be achieved in this project. In
future versions of this application, reliability should be ensured to allow donors to view data in
the event of failure of the Google Charts library.

In addition, information needs to be provided on donors’ phones. The bootstrap
framework can be used to make the page responsive to different screen sizes. Another pressing
need is to be able to display information to donors if graphs cannot be properly displayed on
phones. A suitable means to display information should be found in the event that this happens.

The donor page also can be used as a platform for donors to communicate with

recipients, their parents or guardians. This would help ensure that donors know how some of

37

their students are faring and would also help donors keep regular contact with students that they
take a personal interest in.

Furthermore the donors can gain more value from the data if data mining is employed.
As the number of scholarship offerings grows and the data increases, data mining tools can be
employed in order to provide insightful information that can aid donors in making more
informed decisions. For example, connections between student grades and program areas may
be made in order to determine why students from particular areas may or may not be as
successful as others. This may prompt research and may provide further opportunities for the

organization and donors to make an impact beyond offering scholarships.

5.3 Conclusion

This project set out to include an important group of users into the NGO’s application:
the donors. It provided useful features that allowed donors to view information that would help
them in the decision-making and also improve the organization’s trustworthiness. These
features included being able to view payments made for a particular financial year, for the
current financial year and for entire grant’s lifetime. Using text or graphs depending on the data,
trends and data were made available to donors in a clear and concise manner.

Additionally, information pertaining to students was also displayed to the donor. This
information included gender statistics of the students, the number of communities that grant
serves and also provides a list of students currently enjoying the scholarship. This information
is essential for donors because it enables them to directly see the impact of their contribution.

Based on the test results, it is safe to say that the project succeeded in achieving its goal.

38

The project also set out to propose activities to undertake during deployment. The aim was to
ultimately improve the usage of the application. In this light, the project suggested activities

and software that would be useful in the deployment of subsequent versions.

39

6 References

Bloom, L., & Clark, N. (2008). IT-Management Software Deployment: Field Findings and
Design Guidelines. Retrieve March 25, 2017, from
http://delivery.acm.org/10.1145/1480000/1477985/a8-bloom.pdf

Bootstrap: The world’s most popular mobile-first and responsive front-end framework. (n.d.).

Retrieved May 2, 2017, from http://getbootstrap.com/

Gnu.org. (n.d.). Retrieved April 26, 2017, from https://www.gnu.org/software/make/

Jquery.org. (n.d.). Retrieved April 10, 2017, from https://jquery.com/

Mantyla, M. V., & Vanhanen, J. (2011). Software Deployment Activities and Challenges - A
Case Study of Four Software Product Companies. In 2011 15th European Conference
on Software Maintenance and Reengineering (pp. 131-140).
https://doi.org/10.1109/CSMR.2011.19

Unkelos-Shpigel, N., & Hadar, 1. (2013). A multitude of requirements and yet sole
deployment architecture: Predictors of successful software deployment. In Twin Peaks
of Requirements and Architecture (TwinPeaks), 2013 2nd International Workshop on
the (pp. 19-23). https://doi.org/10.1109/TwinPeaks.2013.6614719

40

http://delivery.acm.org/10.1145/1480000/1477985/a8-bloom.pdf
http://getbootstrap.com/
https://www.gnu.org/software/make/
https://doi.org/10.1109/CSMR.2011.19
https://doi.org/10.1109/TwinPeaks.2013.6614719

7 Appendix

Table 1.1: Tabular description of feature to view payment of grant for particular year

View Payment of Grant for current year

Actor Donor

Description Donor can view the amount of money that has been paid till
date for the current financial year

Data Payment of grant in Ghana Cedis

Stimulus Displayed on page load

Response Cost displayed on the screen

Comments The donor can only view information pertaining to their

grant

Table 1.2: Tabular description of view payment of grant since first payment

requirement

View Payment of Grant since first payment

Actor Donor

Description Donor can view the amount of money that has been paid till
date since the inception of the grant

Data Payment of grant in Ghana Cedis

Stimulus Displayed on page load

Response Cost displayed on the screen

Comments The donor can only view information pertaining to their

grant

Table 1.3: Tabular description of view list of current students requirement

View List of current students on the grant

Actor Donor

Description Donor can view a list of students whose fees are currently
funded by the grant. This list will contain information such
as the students’ full name, school, expected scholarship end
date and status of payment

Data Information pertaining to students

Stimulus Displayed on page load

Response Information displayed on the screen

Comments The donor can only view information pertaining to students

41

Table 1.4: Tabular description of view payment of grant for particular year

requirement

View Statistics pertaining to grant

Actor

Donor

Description

Donor can view statistics based on how the grant has been
disbursed. Information includes the gender distribution of
sponsored students, type of communities that have been
awarded grants, occupations of students’ guardians, etc.

Data Information pertaining to students, communities and schools
Stimulus Displayed on page load
Response Information displayed on screen
Comments The donor can only view information pertaining to their
grant
26 google.charts.load ("current”, {packages:["corechart"]}):;
27 google.charts.setOnLoadCallback (drawBarGraph) ;
28 google.charts.setOnloadCallback (drawLineGraph) ;
29 google.charts.setOnloadCallback (drawPieChart) ;
:; =] function drawBarGraph() {
32 var data = google.visualization.arrayToDataTable ([
3 [N ", "Zmount'],
4 e
5 I
] ['T
7 1:
; =] var options = {
0 title: 'Bar Chart Test"
1 }i
; var chart = pnew google.visualization.BarChart (document.getElementById(bargraph'));
chart.draw(data, optiomns);
H
= function drawLineGraph() {
var data = google.visualization.arrayToDataTable ([
["Number', "Amount'],

Figure 4.1.1: Test code for displaying graph using Google Charts

42

52
53
54
55 H
56
57
58
59
60
61 -
62
63 [
64
65
66
67
68
69
70
71 H
72
73
74
75
76
77k

Three

}

['Three', 3],

1)

var options = {
title: 'Line Chart Test’'
Ti
var chart = new google.visualization.LineChart (document.getElementById('linegraph')) ;

chart.draw(data, options);

function drawPieChart () {

var data = google.visualization.arrayToDataTable ([
['Number', 'Amount'],
["Cne", 1],
['Two®, 21,
['Three', 3],

1):

var options = {
title: "Pie Chart Test’

+i

var chart = new google.visualization.PieChart (document.getElementById('piegraph')) ;

chart.draw(data, options);

Figure 4.1.2: Test code for displaying graph using Google Charts

Bar Chart Test

. Line Chart Test
4 Pie Chart Test
3 ® One
Three ® Two
Amount: 3 O Three
2
1
3 4 a
One Two Three

Figure 4.1.3: Test results for displaying graph using Google Charts

43

10
11
12
13
14
15

M %) B3 B2 B3 B2 [l
Ln s [TV R S R T (=2

%)
=31

ko B2
-]

(=]

=] <div class="container">

<!—— Nawv tabs ——>
El <ul class="nav nav-tabs" role="tablist">

<1li role="presentation" class="active"><a href="#first"
aria-controls="first" role="tab" data-toggle="tab">First
<li role="presentation"><a href="#second" aria-controls="second"
role="tab" data-toggle="tab">Second</1li>

<11 role="presentation"><a href="#third" aria-contreols="third" role
="tab" data-toggle="tab">Third</1li>

<11 role="presentation"><a href="#fourth" aria-controls="fourth"

role="tab" data-toggle="tab">Fourth</1i>

P
<!-- Tab panes —-->
= <div class="tab-content">

<div role="tabpanel” class="tab-pane active" i1d="first">
This
iz the first tab</div>
<div role="tabpanel" class="tab-pane" id="second">
This is the
second tab</div>
<div role="tabpanel" class="tab-pane" id="third">
This is the
third tab</div>
<div role="tabpanel” class="tab-pane" id="fourth">
This is the
fourth tab</diwv>

P </div>

B </div>

Figure 4.1.4: Test code to create tabbing effect with Bootstrap Framework

First Second Third Fourth

This is the first tab

Figure 4.1.5: Test result for creating tab effect in Bootstrap Framework

44

First Second Third Fourth

This is the second tab

Figure 4.1.6: Test result for creating tab effect in Bootstrap Framework

First Second Third Fourth

This is the third tab

Figure 4.1.7: Test result for creating tab effect in Bootstrap Framework

45

SELECT * FROM “regions’

Mumber of rows: | 25 r Filter rows: | Search this table
Sort by key: | None v
+ Options
—] — w+ RegionlD Region
[g Edit e Copy @ Delete 1| Greater Accra
| & Edit e Copy @ Delete 2| Ashanti
[] g7 Edit 3c Copy @ Delete 3 Eastemn
| & Edit e Copy @ Delete 4 Westemn
[g Edit e Copy @ Delete 5| Morthern
| & Edit e Copy @ Delete 6| Upper East
[g Edit e Copy @ Delete T|Upper West
] g7 Edit & Copy @ Delete 8 Volta
[g Edit e Copy @ Delete 9|Brong Ahafo
| & Edit e Copy @ Delete 10 Central

Figure 4.1.8: Test SQL query and result for phpMyAdmin and MySQL

46

@ localhost:1234/xampp/

XAMPP for Windows

Try out the new XAMPP welcome page

English / Dautsch / Francais / Nadarlands / Polski / Italiane / Norwagian / Espafiol / 11 -/ Portugués (Brasil) || 41

XAMPP
5.6.3
[PHP: 5.6.3] We are working on a new Welcome page for XAMPP and we need your help! You can you can see the current version at Dashboard. We are improving our current "FAQs” and adding new "How to"
guides. We posted some suggestions for new guides at ApacheFriends forum. If you have any comments or suggestions for the new welcome page, please don't hesitate to post in the forum. Your
feedback will help us improve XAMPP!. If you have any comments or suggestions for the new welcome page, please don't hesitate to post in the forum. Your feedback will help us improve XAMPPI

Documentation
Components Welcome to XAMPP for Windows!
Applications Congratulations:
Php You have successfully installed XAMPP on this system!

nfo()
€D Collection
Biorhythm For OpenSSL support please use the test certi with https://127.0.0.1 or https://localhost
Instant Art
Phone Book Goed luck, Kay Vogelgesang + Kai "Oswald’ Seidler

Now you can start using Apache and Ce. You should first try §Statusg on the left navigation to make sure everything works fine.

J2ee Install applications on XAMPP using Bitnami
Info

Tomeat examples Apache Friends and Bitnami are cooperating to make dozens of open source applications available on XAMPP, for free. Bitnami-packaged applications include Wordpress, Drupal, Joomla! and dozens of

others and can be deployed with one-click installers. Visit the Bitnami XAMPP page for details on the currently available apps.

i.whpMyAdin n
FileZilla FTP
Webalizer

Mail
XAMPP Hosting

XAMPP provides an ideal local development environment, but is not meant for production deployments. We want to make hosting PHP applications created with XAMPP as easy as possible. Visit our
Hosting page for reading our documentation.

Figure 4.1.9: Test result for Apache Server and XAMPP

1 <html>
2 E <head>
3 <script
4 src="https://code.jquery.com/Iquery-3.2.1.3s"
5 integrity="sha256-DZAnKJ/6XZ9si04Hgrsxu/8sT717jelzLy3oi35EouyE=""
6 crossorigin="ancnymous"></script>
7
8 B <style>
g #Dss_mcd.-{
10 color:red;
11 background-color:yellow;
12 1
13 E </style>
14 <seript>
15 S (document) . ready (function() {
16 S ("#jquery mod") .css ({"background-color": "green", "ecolor": "white"}):
17 r h:
18 F </script>
19 E </head>
20 O <pody>
21 <p>P tag with no modification</p>
22 O <p id="css med">P tag modified with css<p>
23 <p id="jquery mod">P tag modified with jquery</p>
28 | </body>

25 ~</html>

Figure 4.1.10: Code for testing jQuery and CSS

@ localhost:1234/plan-master/tests/css_jquery_testhtm

P tag with no modification
P tag modified with css

IP tag modified with jquery

Figure 4.1.11: Test result of CSS and jQuery test

47

