

ASHESI UNIVERSITY COLLEGE

Improving Scholarship Management Application for a Non-Governmental

Organization

APPLIED PROJECT

B.Sc. Computer Science

George Ocran

2017

Page | 1

Branding and Identity Guide

The Ashesi brand and logo are integral parts of our worldwide image and identity. We must be

careful of how and where the Ashesi is used to ensure we maintain the integrity of our

organization.

This guide has been developed to help you clearly understand our policies towards the use of

the Ashesi logo in a variety of mediums, as well as type faces and a color palate to help you

produce materials that maintain the brand’s integrity. We would request that you seek

approval from the Ashesi University College Marketing Committee before creating any media

that reproduces the Ashesi logo.

Contents
The Logo .. 2

Using the Logo .. 3

Clear Space and Logo Design .. 5

Unacceptable Logo Uses ... 6

The Ashesi Seal .. 7

Color Palette ... 8

Fonts.. 8

Mission Statement .. 9

ASHESI UNIVERSITY COLLEGE

Improving Scholarship Management Application for Non-Governmental

Organization

Applied Project

Applied Project submitted to the Department of Computer Science, Ashesi

University College in partial fulfilment of the requirements for the award of

Bachelor of Science degree in Computer Science

George Ocran

April 2017

i

DECLARATION

I hereby declare that this applied project is the result of my own original work and that no part

of it has been presented for another degree in this university or elsewhere.

Candidate’s Signature:

……………………………………………………………………………………………

Candidate’s Name:

 ……………………………………………………………………………………………

Date: ……………………………………………………………………………………………

I hereby declare that preparation and presentation of this applied project were supervised in

accordance with the guidelines on supervision of applied project laid down by Ashesi

University College.

Supervisor’s Signature:

……………………………………………………………………………………………

Supervisor’s Name:

……………………………………………………………………………………………

Date: ……………………………………………………………………………………………

ii

Acknowledgements

A special thank you goes to my supervisor, Mr. Aelaf Dafla. Your support, guidance

and leadership were invaluable in making this project a reality. Thank you for not giving up on

me when the going got tough.

Also, a big thank you goes to my friends and especially my loving family. You are the

reason I have made it this far. Thank you for being patient with me and being a part of my life.

Ultimately, all this will not be a possibility if not for God. To You be all the glory.

iii

Abstract

This project was carried out for an NGO which aims to improve the lives of children

and their families by providing scholarships to children who do not have the finances to get a

quality education. This NGO’s scholarship process was automated in order to improve the

scholarship management process. Although the software was successfully deployed, it is not as

widely used as expected and this threatens its success. Solving this problem is essential because

subsequent versions and new functionalities implemented obviously hinge on the software’s

usage. As such, this project targets software deployment, a critical activity of software

development process, as one of the possible causes of the lack of usage. Consequently, this

project outlined the best practices of software deployment from research that can be applied for

the deployment of the functionalities in this project and of future releases.

Another objective of this project was to add functionalities to the existing software to

cater for a wider user base. The functionalities that were added are for donors of the organization

in order to improve accountability and transparency and also to provide vital information for

donors for decision-making. The functionalities include being able to view a list of students

under a particular grant, viewing the various payments of the grant across the years amongst

others. These will also include graphs that will display various information regarding the

payments, communities and students.

iv

Table of Contents

DECLARATION ... i

Abstract ... ii

Chapter 1: Introduction .. 1

1.1 Background ... 1

1.2 Related Work .. 2

1.3 Motivation ... 7

Chapter 2: Requirements .. 8

2.1 Requirements Gathering ... 8

2.2 Application Users ... 8

2.3 Use cases and scenarios .. 9

2.4 Details of scenarios from use case ... 9

2.5 System Requirements... 10

2.5.1 Functional Requirements ... 10

2.5.2 Non-Functional requirements .. 10

Chapter 3: System Architecture ... 12

3.1 The User Interface Layer .. 12

3.2 Application Layer .. 14

3.3 Data Layer .. 16

3.3.1 Database Architecture .. 17

v

Chapter 4: Implementation and Testing .. 18

4.1 Implementation Tools and Libraries .. 18

4.2 Implementation of Application Features ... 23

4.2.2 Viewing Grant Cost for Current Year .. 27

4.2.3 Viewing Gender Statistics for Grant ... 29

4.2.4 Viewing List of Students for Grant ... 33

Chapter 5: Conclusions and Recommendations ... 37

5.1 Challenges ... 37

5.2 Future Work ... 37

5.3 Conclusion ... 38

6 References .. 40

7 Appendix .. 41

1

Chapter 1: Introduction

1.1 Background

This project is based on a Non-Governmental Organization (NGO) that specializes in

empowering children to ensure a better future for themselves and their families. One of the

ways this organization achieves this is through education. By providing scholarships, this NGO

allows girls and boys to access quality education to give them a better chance of enjoying a

higher standard of living in the future. The aim ultimate goal is to alleviate poverty for these

individuals and their families, to increase their chances of survival for themselves and for future

generations and to give them the platform to make a meaningful contribution to society.

The scholarship scheme was automated and scholarships are now awarded to students

using software. The software has been deployed and is in use by the organization, however not

to the extent that developers would have hoped. The focus of this project, thus, is to delve into

the reasons why software may not be widely adopted by the target users. Specifically, this paper

will explore software deployment in order to build features and deploy them effectively.

According to research, the software deployment process is a very important stage in the

software development process. Unkelos-Shpigel and Hadar (2013) emphasize this point by

pointing out that deployment warrants its own deployment architecture in the software

development cycle. Medvidovic and Malek (2011) also point out that the deployment

architecture can affect the non-functional requirements of software thereby affecting the

Quality-of-Service (QoS). Similarly, Bloom and Clark (2008) also hammer on the importance

of software deployment on vendors and customers alike stating that “the ease, speed and success

of deployment are drivers of initial customer satisfaction, support calls and deployment costs.”

2

As such, it is important that the updates to the software that will be made in this project be

deployed efficiently and effectively to ensure the organization’s staff enjoy optimum software.

Another objective of this project is to provide features for donors for the NGO’s

scholarship operation. Since the organization relies on donations, it is important that their

scholarship disbursements be made readily available to all donors. This ensures that the

operation is transparent and accountable which projects an image of trustworthiness for the

organization. This will enable the organization to receive more funding and increase its impact.

Additionally, donors will have more flexibility and have more power in deciding which students

receive scholarships or which communities they would like to benefit from their donations. This

project aims to implement these features for donors bearing in mind that they hold the potential

to incentivize more donations and help the organization to have a bigger impact by providing

more opportunities for children and their families. Ultimately, it is hoped that this seemingly

small addition will improve the wellbeing of numerous people on the African continent in the

long term.

1.2 Related Work

Some research has been conducted into the challenges involved in software deployment.

Unkelos-Shpigel and Hadar (2013) conducted research involving deployment architects from

seven different firms to glean out factors that will lead to successful software development.

This research provided activities that would prove useful in the deployment of the features in

this project.

 One of these activities is brainstorming. The research suggests that brainstorming

meetings be conducted at the time of software release in which major decisions involving all

3

process partners, including developers and deployment architects, are taken (Unkelos-Shpigel

and Hadar, 2013). This will be vital in the release of subsequent software updates with the

organization’s software. Decisions made at this stage will have the prior knowledge of previous

installations carried out at the organization. This will include the challenges faced at the time

and also customer experience with the deployment. This step will be crucial for successful

deployment and enhanced user experience.

 Another important predictor to software deployment is the use of automated tools

(Unkelos-Shpigel and Hadar, 2013). An example of an automated tool is GNU Make. GNU

Make has a number of capabilities that make deployment easier. Amongst these is the ability to

build and install files without knowing the details of how it is done; this significantly reduces

the complexity of deployments (“gnu.org,” n.d.). Additionally, it can determine which files

need to be updated based on the source files and can also update files in the proper order in

case a file depends on another. This means that the entire program may not need to be

recompiled, saving time and computing resources (“gnu.org,” n.d.). GNU Make is also

conveniently language-independent and can be used to uninstall packages also (“gnu.org,” n.d.).

Automated tools greatly simplify the software deployment process by cutting down the amount

of human involvement during the deployment. This also reduces the likelihood of human errors

occurring during the process thus increasing the chances of a successful deployment.

 Mäntylä and Vanhanen (2011) in their research obtain information of four successful

Finnish IT companies on their software deployment activities and challenges in order to answer

research questions. The first question they sought to answer is: What deployment activities exist

and how are they performed? The second was to find the main goals of software deployment

and the challenges associated with them.

4

 The deployment activities were grouped into four: stakeholder communication,

installation preparations, installation and testing. Stakeholder communication involved

informing the stakeholder of the contents of the deployment as well as user training and support.

Installation preparations involved importing initial customer data, configuring and integrating

the software, creating a deployment package and scheduling a deployment date. For three out

of the four companies, a tool, such as GNU Make, was used in the creation of the deployment

package. Installation involved preinstall checks, the actual installation of the software and

ensuring that rolling back was possible if deployment was unsuccessful. The final activity,

testing, required that the software was tested at the vendor and the customer’s site. Depending

on the complexity of the software it may be impossible to test the software at the vendor’s site.

Additionally, testing was carried out at the customer’s site but only to a limited extent since the

testing tools are not available to the users to test. Testing of this project should be significantly

less complex. This is because dummy students can be added to the database and tested from the

development site. Testing should be fairly straightforward at the organization’s site after any

updates are made because all the information required for the new features are already contained

in the database.

 The goals for the deployment can be divided into vendor goals and customer goals.

Vendor goals were to reduce deployment efforts and decrease the customers’ dependency on

individual experts. For these companies, customers required Commercial off-the-shelf (COTS)

software to be customized to suit their particular businesses or for a highly complex software

to be developed for their use. In these cases, the deployment effort will be great due to the

presence of many failure points. For this project, the deployment effort was considerably less

because the software was built solely for this organization. Also, the software is already

5

installed on their system thus new developments are only updates. Deploying updates are

typically less problematic than clean installs and this is evidenced by the fact that customers

usually “emphasize testing more during clean installs than updates” according to Mantyla and

Vanhanen (2011). In the case studies, companies that deployed the software required the

expertise of one highly knowledgeable worker who was always present. His or her absence

usually led to significant problems. These companies are resigned to keeping these individuals

because knowledge transfer to other employees is a laborious process (Mantyla & Vanhanen,

2011). Similarly, in deploying the new features, it is important that someone with prior

knowledge in the previous installation and with the development of the software be heavily

involved in its deployment. The reason for this is that problems that occur will be easier to

rectify.

 Customers’ goals for deployment are:

1. Deployment requires little attention from them

2. Updates contain no undesired changes

3. The downtime is properly scheduled

Of these three goals in the context of this project, the most important of these three goals

is that the update contains no undesired change. This is very important because the software

has not been as widely adopted as hoped and making any uniformed change could further

damage its usage since customers generally do not want to change their current way of working

(Mantyla & Vanhanen, 2011), and if they must do so, they must be notified. As a result of this,

the layout and the existing functionalities have largely gone untouched in this project. The

changes that involved the use of a framework have been minimal in the sense that they have

been used in pages that present new functionalities to new users, specifically the functionalities

6

for the donors. It is important also that the other customer goals are not ignored. This is because

these also play a part in the customers’ likelihood of patronizing the software. Silent software

deployment may be an ideal way of making sure that installation will require no involvement

from a customer however more research is required to know how to use it for this project.

 The features that were implemented for the donors required the display of a lot of

information on a single page. In order to get guidance on how to organize the information, an

existing scholarship management web application was consulted. A picture of this existing

solution can be seen in figure 1.1. From this application a few key observations were made.

One of these is the minimalist approach employed by the page which avoids distractions and

allows users to focus on the information. This was achieved by using muted background colors

on the page and reserving the bright colors for the graphs. The page also employs text bolding

and font sizes to good effect by highlighting information that is relevant and using larger fonts

to ensure that certain information is clear to the reader.

 In addition to this, the page also carefully organizes the information. It does so by

placing all the relevant information and graphs in individual rectangles. These rectangles are

also spaced out carefully to mark a clear demarcation in the information that is being displayed

preventing the user from confusing different pieces of information. Also, the rectangles used to

display the information are of different sizes which subtly introduces asymmetry and breaks up

monotony.

 The elements of Wizehive Scholarship Management application were carefully taken

into consideration when the user interface was created to provide the needed information as

well as provide a good user experience.

7

Figure 1.1 Wizehive scholarship management solution

1.3 Motivation

The aim of this project is to improve the scholarship management software utilized by

the NGO to make its scholarship delivery more efficient. One way of achieving this is to add

more functionality to the software to support a wider user base by catering for donors to utilize

the software. This will make the organization more accountable and trustworthy which will

improve chances of receiving donations and improving the lives of many more children and

families. Ultimately, the goal of this project is to help this NGO in empowering children and

give them the opportunity to increase their standard of living. The project aims to bring hope to

children and their families for a better future.

8

Chapter 2: Requirements

2.1 Requirements Gathering

 Requirements for the application were gathered through my supervisor who was in

contact with the organization. We organized weekly meetings in which discussions were held

on the features to be implemented. From these discussions, the major users of the features as

well as the system and user requirements were identified. The major users of the features were

identified to be the donors. The system and user requirements were also gleaned through

analysis of the features.

 Also, reports from the previous projects were reviewed. This provided a background of

the work that had already been done on the software. It also provided indicated the areas of the

software that could be improved.

2.2 Application Users

 Within the scope of this project, the application users are the donors. The donors’ role

is to view information pertaining to the particular grant they provide to students.

9

2.3 Use cases and scenarios

Figure 1.1: Use case diagram for donor

2.4 Details of scenarios from use case

The table below gives further details about the requirement for the donor. It gives a description

of what the requirement involves, what data is involved, how the data is generated and

displayed. During implementation, this table serves as a guide to make sure that the feature is

implemented to meet user requirements. The other tables outlining the other requirements can

be found in the appendix.

10

Table 1.1: Tabular description of view payment of grant for particular year

requirement

View Payment of Grant for particular year

Actor Donor

Description Donor can view the amount of money that has been paid for

an entire financial year in the past or present

Data Cost of grant in Ghana Cedis

Stimulus Option selected by donor

Response Cost displayed on the screen

Comments The donor can only view information pertaining to their grant

2.5 System Requirements

The system requirements can be divided into two: the functional requirements and the non-

functional requirements.

2.5.1 Functional Requirements

 The software should provide important information to donors

The donor should be able to view the necessary information from the database and this

information has to be displayed in the appropriate format. The information regarding the

payments should be displayed as text to the donor. Information regarding the students should

be displayed as a list containing the relevant information. Information about the statistics should

be displayed using the appropriate graph so that the information will lend itself to analysis by

the user. Bar graphs and pie charts are examples of charts that are to be used.

2.5.2 Non-Functional requirements

Reliability

11

In the event that graphs are not displayed, possibly due to a failure in internet connection, the

information should still be displayed to the user either in text or table format.

Security

The system should ensure that only information pertaining to the grant in question is displayed.

Information regarding other grants should not be displayed to donors.

Ease of use

The user interface should be easy to use. Button labels and descriptions should be clear and

easy to understand.

12

Chapter 3: System Architecture

The scholarship management software was built by the previous developers using the

3-tier, layered architecture shown in figure 3.1. This architecture consists of three layers,

namely: the user interface, the application and database layers. In order for the application to

work effectively, these three layers need to communicate with each other.

Figure 3.1: System Architecture

3.1 The User Interface Layer

This serves as the layer which allows users to make use of the system’s functionalities.

For instance, it is at this layer that the donor can view how much they have spent so far on

scholarships or the gender distribution for the scholarships that have been awarded. These

functionalities are accessed through a web browser such as Google Chrome and Mozilla

Firefox. The pages are rendered using HTML, CSS and JavaScript. Information displayed from

the screen using Ajax or PHP depending on the need to maintain a smooth user experience. If

the information to be displayed did not require the page to be refreshed, then Ajax can be

13

avoided, else if the information requires a page refresh, Ajax is used. Whether via Ajax or not,

information is sent to and from the application layer using an HTTP connection. If information

could not be retrieved, an error message will be displayed to the user. An example of a file that

is used in the user interface is grantdetails.php.

Figure 3.2: User Interface

Figure 3.2 above shows the user interface. The tabs are used to categorize the different sections

of information that can be viewed by the user in a web browser. The tabbing was created using

the Bootstrap framework, colors were displayed using CSS and graphs were generated using

the Google Charts library. The graph shown is an example of a piece of information that is

obtained from the database. This information was acquired directly from the server and

displayed as a graph.

14

Ajax was used in order to provide a good user experience. In figure 3.3, the user is

presented with a drop down from which he or she can select a financial year to view its

associated cost. Ajax was used to prevent the page from requiring a reload before displaying

the cost. The effect is that the amount changes seamlessly as the user changes the value in the

drop down and an example of this is shown in figure 3.4.

Figure 3.3: Dropdown and payment in particular year

Figure 3.4: Selected year and payment for 2014/2015 financial year

3.2 Application Layer

The application layer sits between the data layer and the user interface and contains the

business logic of the software. This layer is where the web server operates and PHP functions

that produce information based on requests received from the user interface. These functions

15

are what communicate with the data layer to retrieve the information that is needed by the

donor, such as, the gender distribution of the sponsored students. The application layer

functions may either be client side or on a separate page. When the information retrieved does

not require Ajax, the script is written on the client side otherwise it is written in a separate script

An example of the file written as a separate script is ajaxgrants.php.

Figure 3.5: Code for displaying payment for a year in JSON

Figure 3.5 shows the code for providing the yearly cost for a particular grant which is displayed

using Ajax. The information produced is passed to the browser as a JSON object that is

displayed to the user via JQuery as seen in figure 3.7.

Figure 3.6: Code showing information retrieval without Ajax

16

Figure 3.6 above is an example of retrieving information without Ajax. The information is

retrieved from the data layer via an application layer function. The function that does this is on

line 169.

Figure 3.7: Code used to retrieve and display information using Ajax

3.3 Data Layer

This layer consists of the MySQL database server that stores all information pertaining

to the scholarships, students, schools, communities, etc. Any information that is displayed on

the user interface is retrieved from this layer. MySQL is a relational database thus all the

information is stored in tables and SQL queries are issued to retrieve information from either

one or multiple tables. Figure 3.8 shows a function that exists on the data layer. This capability

allows the application to pull information from many different tables to present as one view to

the donor.

17

Figure 3.8: Function to retrieve payment for a particular year in data layer

3.3.1 Database Architecture

Figure 3.7 shows the tables from the database that were used. The diagram shows the foreign

key relationships between the tables involved. These relationships were essential to getting

the right information that was required by the donors.

Figure 3.9: Tables from database used for obtaining data

18

Chapter 4: Implementation and Testing

This chapter delves into the implementation details for the different features. It begins

by detailing the different tools, frameworks and libraries that were used, how they were tested

and details how features were implemented. Following each feature are the tests that were

carried out to ensure that features worked correctly.

4.1 Implementation Tools and Libraries

Google Charts Library

This library was used to display data pulled from the server graphically in order to make

analysis and decision-making easier for donors. It provided a breadth of chart types that enable

displaying varied data to users. Another advantage is its ease of use, requiring simple JavaScript

to make use of them. It also allowed for the customization of charts to better suit websites. It

had the added bonus of being cross-platform for different browsers as well as hardware

including tablets, phones and desktops.

Bootstrap Framework

Bootstrap is a framework that is useful in building responsive features in HTML, JavaScript

and CSS (“Bootstrap,” n.d.). This framework was used in the implementation of the donors’

features because it provided the tools create a good user experience.

19

PhpMyAdmin and MySQL

PhpMyAdmin served as the web-based client for the administration of MySQL server. It

allowed for the basic functionality of database management including inserting, deleting and

updating data. This proved vital in both implementing the features and testing them. It was the

preferred option for database administration because it is web-based and has a user-friendly

interface making the implementation of the features easier. MySQL was the database server

that was used to manage the data stored in the database. Since MySQL was used in the

development of the previous features, it was more convenient to continue using as rather than

using another which could potentially cause compatibility issues.

XAMPP

This is a PHP development environment conveniently comes packaged with PHP, MySQL and

the Apache web server making development of web applications simpler. It also comes with a

control panel that can be used to switch services on and off with one click.

PHP

This is the server-side scripting language that was used to retrieve data from the database and

passed to the application layer. It was also used for coding the application logic. Despite being

free, PHP was used primarily because the previous developers used it and it served its purpose

of information storage, retrieval and production of dynamic content adequately. In addition to

this, its wide usage ensured that there was enough support whenever problems were

encountered.

20

Apache HTTP Server

The Apache HTTP web server is an open-source HTTP server for modern operating systems.

For this project, it served as the main facilitator between the application and database layer by

allowing communication through HTTP. Apache was used because it was used in the previous

development and also because it comes bundled with XAMPP.

HTML

Hypertext Markup Language was used for the creation of the web pages displayed the relevant

information on the client’s browser. It was responsible for displaying the information gathered

from the database. Tables, containers, buttons and text were displayed using HTML.

CSS and JQuery

Cascading Style Sheets were used to add styling to web pages written in HTML. Styling was

added in order to improve the application’s usability. Different colours, text font, shadow

effects and positioning of elements were used to create a more pleasing visual experience and

improve user experience.

JQuery is a JavaScript library that simplifies the use of JavaScript in client-side scripting

(“Jquery.org”, n.d.). JQuery was used to make calling HTML objects easier. It has the benefit

of working across multiple web browsers.

21

JavaScript

JavaScript is a client-side scripting language that is used to create dynamic content of otherwise

static HTML pages.

4.1.1 Testing of tools, libraries and frameworks

Table 4.1 the framework, library or tool that was tested, the test procedure and the outcome of

the test. In most of these tests the result was displayed visually. In those situations the figures

that display the result are stated and can be found in the appendix.

22

Table 4.1: Table showing tests and results for frameworks, tools and libraries

Framework / Library Test Result

Google Charts Library Display line chart, bar chart

and pie chart with consistent

sample data. Test shown in

figure 4.1.1 and 4.1.2

Line chart, bar chart and pie

chart displayed as expected

as shown in figure 4.1.3

Bootstrap Framework Use tabbing to display

different content. Test code

is shown in figure 4.1.4

Different information

displayed as different tabs

were navigated. Results can

be seen in figures 4.1.5,

4.1.6 and 4.1.7

PhpMyAdmin and MySQL1 Use select statement to view

a list of academic years in

database. SQL statement is:

SELECT * FROM `regions`

List of regions produced as

expected. Results shown in

figure 4.1.8

XAMPP and Apache HTTP

Server2

Navigate to the web server

home page using a web

browser. The URL is:

http://localhost:1234/

Web server successfully

displayed as seen in Figure

4.1.9

PHP Create a script to display text

in a browser.

Browser displays text as

written in the test script.

HTML Create a page that displays

text in a web browser.

Browser displays test as

written in the test page.

CSS and JQuery Create an HTML page that

contains three <p> elements.

Two element have their

background and font colours

modified using CSS and

JQuery. The script can be

seen in figure 4.1.10

Two of the three <p>

elements’ background and

font colors are successfully

changed using CSS and

JQuery. Figure 4.1.11 shows

the result

1 - This test proves the functionality of both MySQL and PhpMyAdmin. PhpMyAdmin

successfully executed the query. The select statement produced the expected information from

database
2 – The testing of XAMPP and Apache Web Server were bundled due to convenience.

The sections below are the details for the implementation based on the system and user

requirements described in chapter two.

23

4.2 Implementation of Application Features

4.2.1 Viewing Grant Cost for Particular Year

When the page is loaded, the donor selects the costs tab to view all information pertaining to

costs. When the donor logs in, the page stores the grant id of the grant package associated with

the donor. This id is used to display all the information that is relevant to the particular grant.

The donor sees a dialog box as shown in the figure 4.1 and chooses the financial year that he or

she wants to view the cost of. Once the donor selects the financial year, the year’s id is retrieved

to the application layer using jQuery and passed to the application layer using Ajax as shown

in figure 4.2.

Figure 4.1: Dialog box to view payment for a particular year

Figure 4.2: Value from dropdown passed to application layer using JQuery

24

On the application layer page ajaxgrants.php, the appropriate function is selected using a select

case from a parameter passed in the URL. In this case, the function in figure 4.3 is used to

retrieve the data:

Figure 4.3: Application layer function

This function retrieves the financial year id and grant id from the URL and passes them to the

data layer function, get_yearly_cost_for_grant, as seen in figure 4.4. This function inserts the

ids into an SQL query that is used to retrieve the information from the SQL server.

Figure 4.4: Data layer function containing SQL to retrieve the cost

25

The end result is shown in figure 4.5 where the cost for the financial year is shown. In this

instance, the financial year selected is that of 2014 to 2015 and the cost for that year was 600

Ghana Cedis:

Figure 4.5: Updated dialog box containing payment for 2014/2015 financial year

Testing to view grant for a particular financial year

In order to test this feature, a query was written to display all the amounts paid for a grant and

matched against the result produced on the user interface. Figure 4.6 shows the result of the

query that was created. Figures 4.7 to 4.10 show the result of the user’s input on the user

interface.

Figure 4.6: SQL showing the financial year ids, financial years and amounts retrieved

from the database

26

Figure 4.7: Dialog showing cost for 2014/2015

Figure 4.8: Dialog showing cost for 2013/2016

Figure 4.9: Dialog showing cost for 2013/2016

27

Figure 4.10: Dialog showing cost for 2011/2012

It should be noted that the years were input for testing purposes thus the years shown do not

represent the actual years in the organization’s database. From these diagrams it can be seen

that the costs displayed with the different values of the drop down are consistent with those of

the database meaning that this test was successful.

4.2.2 Viewing Grant Cost for Current Year

This information is displayed once the donor logs into the donor page. When the donor logs in,

the page stores the grant id of the grant package associated with the donor. This id is used to

display all the information. The id is passed to the application layer which inserts the id in a

function, get_current_year_cost_for_grant:

Figure 4.11: Application layer function to get payment for current year

28

This function contains SQL that is used to retrieve the cost from the database, as seen in figure

4.12:

Figure 4.12: Data layer function containing SQL

The information is displayed in the browser as shown below:

Figure 4.13: User interface dialog box displaying current year’s payment

Testing for viewing grant cost for current year

To test this feature, the SQL used for the function in figure 4.14 was used to obtain information

directly from the database and the result displayed as shown in figure 4.15. It can be seen that

29

the result of the query is consistent with what is displayed on the user interface confirming that

the feature works and the test was successful.

Figure 4.14: SQL for obtaining payment for current year for grant with id 5

Figure 4.15: Updated dialog box showing payment for current year

4.2.3 Viewing Gender Statistics for Grant

This information is displayed once the donor logs into the donor page. When the donor logs in,

the page stores the grant id of the grant package associated with the donor. This id is used to

display information relating to the gender. The id is passed to the application layer which inserts

30

the id in a function, get_gender_statistics, which can be found in the data layer. Figure 4.16

shows the application layer code that passes the id to the data layer. Figure 4.17 shows the

get_gender_statistics that can be found in the data layer.

Figure 4.16: Application layer code to pass grant id to data layer

Figure 4.17: Data layer code containing SQL for retrieving information on gender

The function exists in the data layer and passes the grant id into an SQL query which retrieves

the information as an array. This array servers as the data that is used to generate the graph

using the Google Charts library. Once the charts library is loaded, the data is passed to it, and

the options for the graph are set. Finally, the id for the container for the graph is retrieved using

jQuery and the graph is drawn:

31

Figure 4.18: User interface code to draw chart. Gender variable contains two arrays,

each identifying the gender and the count

In figure 4.18 the gender and the count is contained in the gender array as seen on line 110 and

111. The outcome of above code is seen figure 4.19 shown below:

Figure 4.19: Graph showing gender distribution for grant in question

32

Testing for gender statistics

To test this feature, an SQL query was written directly into the database to generate the students,

together with some of their details, whose fees are paid with a particular grant. This query is

shown in figure 4.21. In this case the grant id that was used was the grant number 5. The result

of the query is shown in figure 4.20 below:

Figure 4.20: Result of test SQL query to get information about sponsored students and

their gender

Figure 4.21: Test SQL query to generate information about sponsored students

The query returns three students, two of who are male and one female. The percentages

calculated based from these numbers are very similar to those that are displayed in the graph.

From this result, we can see that the graph displays the correct information thus making our test

a success.

33

4.2.4 Viewing List of Students for Grant

This information is displayed once the donor logs into the donor page. When the donor logs in,

the page stores the grant id of the grant package associated with the donor. This id is used to

display the list of students who are current beneficiaries of the grant. The id is passed to the

application layer which then passes it on to the data layer. The data layer retrieves the

information via the get_grant_student_list function. Once obtained, this information is

displayed in the HTML table styled with Bootstrap. Figures 4.22 and 4.23 show the code and

the table output respectively.

Figure 4.22: User interface layer code used to display information about sponsored

students

34

Figure 4.23: Table of sponsored students

It is important to note that the scholarship end dates will ordinarily not be blank. They are blank

only for testing purposes.

Testing for viewing list of students for grant

In order to test this feature, a student was added to the database under a specific grant. This

required some data to be added to the database. Consequently, a new student was added as a

student applicant before being added as a sponsored student under the grant. A scholarship

package was created for that student to provide details regarding the scholarship and making an

entry into the scholarship payment table which provides details of the payment for the particular

scholarship package such as the amount. Once this data is entered, the student’s information

was displayed in addition to the other students. Figure 4.24 shows the details of the student

entered through the software.

35

Figure 4.24: Details of newly entered student applicant

The student was then added into the sponsored student table. This was done using the SQL

query in figure 4.25.

Figure 4.25: Student added as a sponsored student

Next, the SQL query shown in figure 4.26 was used to add a scholarship package pertaining

to the student. Finally, the SQL query in figure 4.27 was used to add a scholarship payment

on behalf of the student. Now, when the user interface is loaded, the student’s details are

added to the original table from figure 4.23. The updated table can be seen in figure 4.28.

Figure 4.26: Scholarship package created for student

36

Figure 4.27: Scholarship payment made on student’s behalf

Figure 4.28: Table showing details of newly added student

37

Chapter 5: Conclusions and Recommendations

5.1 Challenges

One main challenge with the implementation was writing the SQL queries. This

involved joining multiple tables and including conditions and groupings that did not always

work well together. As a result, retrieving data was a complicated process that would often

result in data that looked correct but was in fact wrong. Adding to the difficulty was the lack of

foreign key constraints on the provided database. The lack of foreign key constraints required

that most inputs be double-checked to ensure that the correct data was input across all the tables

to ensure that results of tests were consistent.

5.2 Future Work

The user interface can be improved in order to create a better user experience for the

donors. Research needs to be undertaken to gain insights into how to create web pages that

involve a lot data and how to present that data to the users in the most effective manner.

The non-functional requirement of reliability could not be achieved in this project. In

future versions of this application, reliability should be ensured to allow donors to view data in

the event of failure of the Google Charts library.

In addition, information needs to be provided on donors’ phones. The bootstrap

framework can be used to make the page responsive to different screen sizes. Another pressing

need is to be able to display information to donors if graphs cannot be properly displayed on

phones. A suitable means to display information should be found in the event that this happens.

The donor page also can be used as a platform for donors to communicate with

recipients, their parents or guardians. This would help ensure that donors know how some of

38

their students are faring and would also help donors keep regular contact with students that they

take a personal interest in.

Furthermore the donors can gain more value from the data if data mining is employed.

As the number of scholarship offerings grows and the data increases, data mining tools can be

employed in order to provide insightful information that can aid donors in making more

informed decisions. For example, connections between student grades and program areas may

be made in order to determine why students from particular areas may or may not be as

successful as others. This may prompt research and may provide further opportunities for the

organization and donors to make an impact beyond offering scholarships.

5.3 Conclusion

This project set out to include an important group of users into the NGO’s application:

the donors. It provided useful features that allowed donors to view information that would help

them in the decision-making and also improve the organization’s trustworthiness. These

features included being able to view payments made for a particular financial year, for the

current financial year and for entire grant’s lifetime. Using text or graphs depending on the data,

trends and data were made available to donors in a clear and concise manner.

Additionally, information pertaining to students was also displayed to the donor. This

information included gender statistics of the students, the number of communities that grant

serves and also provides a list of students currently enjoying the scholarship. This information

is essential for donors because it enables them to directly see the impact of their contribution.

Based on the test results, it is safe to say that the project succeeded in achieving its goal.

39

The project also set out to propose activities to undertake during deployment. The aim was to

ultimately improve the usage of the application. In this light, the project suggested activities

and software that would be useful in the deployment of subsequent versions.

40

6 References

Bloom, L., & Clark, N. (2008). IT-Management Software Deployment: Field Findings and

Design Guidelines. Retrieve March 25, 2017, from

http://delivery.acm.org/10.1145/1480000/1477985/a8-bloom.pdf

Bootstrap: The world’s most popular mobile-first and responsive front-end framework. (n.d.).

Retrieved May 2, 2017, from http://getbootstrap.com/

Gnu.org. (n.d.). Retrieved April 26, 2017, from https://www.gnu.org/software/make/

Jquery.org. (n.d.). Retrieved April 10, 2017, from https://jquery.com/

Mantyla, M. V., & Vanhanen, J. (2011). Software Deployment Activities and Challenges - A

Case Study of Four Software Product Companies. In 2011 15th European Conference

on Software Maintenance and Reengineering (pp. 131–140).

https://doi.org/10.1109/CSMR.2011.19

Unkelos-Shpigel, N., & Hadar, I. (2013). A multitude of requirements and yet sole

deployment architecture: Predictors of successful software deployment. In Twin Peaks

of Requirements and Architecture (TwinPeaks), 2013 2nd International Workshop on

the (pp. 19–23). https://doi.org/10.1109/TwinPeaks.2013.6614719

http://delivery.acm.org/10.1145/1480000/1477985/a8-bloom.pdf
http://getbootstrap.com/
https://www.gnu.org/software/make/
https://doi.org/10.1109/CSMR.2011.19
https://doi.org/10.1109/TwinPeaks.2013.6614719

41

7 Appendix

Table 1.1: Tabular description of feature to view payment of grant for particular year

View Payment of Grant for current year

Actor Donor

Description Donor can view the amount of money that has been paid till

date for the current financial year

Data Payment of grant in Ghana Cedis

Stimulus Displayed on page load

Response Cost displayed on the screen

Comments The donor can only view information pertaining to their

grant

Table 1.2: Tabular description of view payment of grant since first payment

requirement

View Payment of Grant since first payment

Actor Donor

Description Donor can view the amount of money that has been paid till

date since the inception of the grant

Data Payment of grant in Ghana Cedis

Stimulus Displayed on page load

Response Cost displayed on the screen

Comments The donor can only view information pertaining to their

grant

Table 1.3: Tabular description of view list of current students requirement

View List of current students on the grant

Actor Donor

Description Donor can view a list of students whose fees are currently

funded by the grant. This list will contain information such

as the students’ full name, school, expected scholarship end

date and status of payment

Data Information pertaining to students

Stimulus Displayed on page load

Response Information displayed on the screen

Comments The donor can only view information pertaining to students

42

Table 1.4: Tabular description of view payment of grant for particular year

requirement

View Statistics pertaining to grant

Actor Donor

Description Donor can view statistics based on how the grant has been

disbursed. Information includes the gender distribution of

sponsored students, type of communities that have been

awarded grants, occupations of students’ guardians, etc.

Data Information pertaining to students, communities and schools

Stimulus Displayed on page load

Response Information displayed on screen

Comments The donor can only view information pertaining to their

grant

Figure 4.1.1: Test code for displaying graph using Google Charts

43

Figure 4.1.2: Test code for displaying graph using Google Charts

Figure 4.1.3: Test results for displaying graph using Google Charts

44

Figure 4.1.4: Test code to create tabbing effect with Bootstrap Framework

Figure 4.1.5: Test result for creating tab effect in Bootstrap Framework

45

Figure 4.1.6: Test result for creating tab effect in Bootstrap Framework

Figure 4.1.7: Test result for creating tab effect in Bootstrap Framework

46

Figure 4.1.8: Test SQL query and result for phpMyAdmin and MySQL

47

Figure 4.1.9: Test result for Apache Server and XAMPP

Figure 4.1.10: Code for testing jQuery and CSS

Figure 4.1.11: Test result of CSS and jQuery test

