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Abstract 

Hydroponics, a system of growing crops without soil, has been successfully used to grow crops 

on a commercial scale. Hydroponics has the potential to fill the gap of low agricultural 

production in Ghana due to its high efficiency while serving as an environmentally friendly 

alternative to soil culture. This method of farming has benefitted from new technologies like IoT 

and machine learning that make it possible to integrate intelligent agents in the management of 

hydroponic systems as well as collecting live data. These technologies allow for increased 

automation and refined control of hydroponic systems. This paper details the development and 

implementation of a hydroponic system equipped with intelligent agents for control and internet-

enabled monitoring, data collection and storage. 
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1 Chapter 1: Introduction 

1.1 Background 

1.1.1 Hydroponics 

Hydroponics is a method of growing crops without soil in a controlled environment [1]. This 

system uses nutrient solutions to supply plants with their nutrient requirements while supporting 

the crops in inert media [1]. Hydroponics is typically practised in greenhouses which minimises 

exposure to pests and is, therefore, capable of eliminating the use of pesticides [2]. 

 

1.1.2 Hydroponics vs Soil Culture 

Hydroponically grown crops tend to produce more yield and use less water than their 

counterparts cultivated in the soil [3]. This difference is because hydroponic crops are supplied 

with their nutrients directly through a nutrient solution, meaning they do not have to grow large 

roots to have access nutrients as they do in soil culture [4]. This means they can use most of their 

energy on to develop the parts that appear above the soil which includes leaves and fruits. 

Hydroponic culture also allows the use of smaller crop spacing [3] and can be expanded 

vertically [5], thereby, significantly reducing the amount of land required to grow crops. Finally, 

less water is required for growing crops in hydroponic systems as compared to growing in the 

soil [3] because water is continuously cycled in the system instead of being allowed to seep into 

the soil and evaporate. [4] 

 

Furthermore, hydroponics is more environmentally friendly than growing crops in soil because it 

uses fewer resources and crop yield can be increased without necessarily increasing the amount 
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of land used thereby reducing deforestation [4]. It also requires less labour because activities like 

weeding and application of pesticides are eliminated. 

 

Despite the overwhelming benefits of hydroponics, the initial cost of setting it up is high and 

requires specialised skills. This cost mostly comprises of specialized equipment for cultivation 

and, in this case, IoT devices and other computing resources for intelligent control and 

monitoring. The long term benefits of hydroponics, however, tend to outweigh the cost 

especially because it is capable of producing good yield all year round [5]. 

 

1.1.3 Internet of Things (IoT) 

IoT is a term that refers to a class of internet-enabled things that are not traditional computers 

like laptops and mobile phones [6]. These devices such as fridges, light bulbs and door locks are 

everyday things that, with the help of an internet connection, can be automated or controlled 

remotely. Apart from automation and remote control, IoT is used to collect data with the use of 

sensors. The ability to autonomously and reliably collect data with IoT devices make them ideal 

counterparts for data-intensive applications like machine learning and big data. 

 

IoT devices have been used to collect data for hydroponics using DIY systems [7] as well as in 

MIT's OpenAg initiative [8] to automate data collection. Some conventional processes can also 

be automated using IoT devices. The technology also introduces the ability to monitor and 

control things remotely. This reduces the need for physical interactions with the system and 

makes it easy to detect unexpected malfunctions as and when they occur. 
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1.1.4 Machine Learning 

Machine Learning (ML) is a computational method used for modelling the underlying patterns in 

data. This is done by training a model with either labelled or unlabeled data to enable it to make 

predictions about previously unseen data [9]. This method of extracting meaning out of data 

tends to be more accurate than standard statistical methods and has higher accuracy and is faster 

than humans. This makes it ideal in scenarios where large data sets need to be analysed to extract 

meaning [9].  

 

ML algorithms are usually supervised or unsupervised [9]. Supervised algorithms are tasked with 

identifying a suitable label for some labelled data. Unsupervised algorithms, on the other hand, 

are trained on data with no labels and are tasked with finding patterns in the data usually by 

clustering similar data points. They can also be tasked with identifying which cluster a 

previously unseen data point may belong to. Some ML algorithms like linear regression can be 

used to train on continuous data [9]. 

 

1.1.5 Self-Optimizing with Reinforcement Learning (RL) 

The cultivation of crops in a hydroponic system requires that some conditions are maintained at 

some desired level. The conditions under which crops are grown as well as the constituents and 

the proportion of the nutrient solution affect the yield of the crops [5]. Self-optimization in this 

project refers to the use of RL to find effective ways of controlling a hydroponic system’s system 

variables to optimize a goal. RL refers to a class of machine learning algorithms that learn from 

experience by interacting with an environment and gaining rewards when they achieve a goal 

[10]. 
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1.2 Problem Statement 

Over the years, Ghana has imported large amounts of food products to satisfy demand. Some of 

this has been attributed to taste for foreign goods as well as low productivity in the country’s 

agricultural sector [11]. According to data collected on imports, Ghana imports 56bn CFA [12] 

worth of tomatoes from Burkina Faso. That is, over GHS 495.8m is spent on the import of 

tomatoes. This level of import is undesirable because the Ghanaian economy is heavily 

dependent on imports [13]. Given the amount of arable land available in the country, it should be 

possible to slash the number of imports significantly if production increased. Such an increase in 

agricultural production would most likely be accompanied by an increase in farmlands, thereby, 

increasing deforestation. This sequence of events will be detrimental in the long run and can be 

mitigated with the use of hydroponic culture which not only requires less land and water than 

soil culture but can be expanded vertically. Vertical expansion coupled with higher crop densities 

will reduce deforestation and wastage of water due to lower water requirements in hydroponic 

systems. 

 

1.3 Motivation 

The solution to this project is to use hydroponics as a means of agricultural production given that 

it is inherently more efficient than soil culture. This may seem counterintuitive because Ghana 

already has massive amounts of arable land. It should be noted, however, that an agricultural 

expansion of such magnitude would require a significant amount of deforestation. This is 

undesirable given that illegal small-scale mining is already claiming large portions of the nation's 

natural flora. The issue of deforestation can be mitigated with hydroponics because the system 

allows for vertical farming as well as high planting density. Hydroponics is also more 
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environmentally friendly because it uses less water than soil culture and can be powered with 

clean sources of energy thereby reducing its carbon footprint.  

 

1.4 Scope 

This project seeks to implement a prototype hydroponic system with RL for control of system 

variables to serve as a proof of concept. This would include setting up the hydroponic system to 

support crop growth as well as the integration of the IoT system to collect data and automate the 

control of the solution pH. The implementation of a cloud backend for remote monitoring and 

control also falls within the scope. 

 

The system will be fitted with sensors to monitor the pH, flow rates, ambient humidity, ambient 

temperature and solution temperature. These measurements will be used to control pumps that 

control the flow of acids and bases into the nutrient solution for pH control based on the output 

of the RL model. 
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2 Chapter 2: Design 

2.1 Design Objective 

The goal of this design is to create an IoT enabled hydroponic system that is capable of 

controlling its system variables like pH and temperature without, or with minimal, human 

intervention. The system is also expected to collect data throughout crop growth. The 

implementation of the system should; 

• Be capable of automated real-time data collection 

• Be able to send collected data to a cloud server for storage 

• Have a dashboard that pulls live data from the server for remote monitoring over the 

internet 

• Have three hydroponic subsystems that can be supplied with different nutrient solutions 

from different reservoirs 

• Each subsystem should be able to circulate the nutrient solution to support crop growth 

• Have an intelligent RL agent that is capable of automated pH control 

The use of three subsystems in the same hydroponic system makes it possible to grow the same 

crop with different nutrient solutions. This would increase the variety of data collected per 

growing season about how crops fare when grown in different solutions. 

 

2.2 Materials 

The primary material for the hydroponic setup is PVC pipes because they are easily accessible 

and workable. The supporting frame was made of ¾-inch (diameter) pipes, and three 4-inch 

pipes were mounted on the frame to serve as the subsystems (see Figure 2 for an image of the 

frame with mounted hydroponic subsystems). Unlike PVC pipes, wood and metal require an 
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extra finish to protect them from weather conditions. They also need special techniques for 

joining such as welding or nailing whereas PVC pipes can be joined with glue using joints (see 

Figure 5 for an image of the joints used to join the pipes). 

 

The nutrient solution would be circulated with 12V self-priming pumps. Self-priming pumps can 

pump fluid regardless of their relative height, thereby allowing some flexibility in design 

decisions. They are also reliable in situations where fluid levels are low. 

 

Some inert materials have been used to provide support for crops in hydroponic systems such as 

perlite and gravel [4]. Gravel was chosen for this project instead of perlite because it is cheap and 

easy to obtain. 

 

2.3 Design Decisions 

2.3.1 IoT 

The IoT system for this project will consist of Arduino microcontrollers (Arduino Uno) and a 

raspberry pi with each device connected to the raspberry pi via a Bluetooth network. The IoT 

system will be connected to a server and will send data collected to the said cloud. A Bluetooth 

network was chosen because of the low energy requirement and the fact that all devices will be 

nearby.  

 

The two microcontrollers (Arduino and raspberry pi) will both serve unique purposes in the 

system. The Arduinos will be responsible for interfacing with the sensors in the system and 

controlling actuators. This is because these devices have analogue to digital (ADC) converters 
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and digital peripherals. The raspberry pi, on the other hand, will be the mother computer which 

will aggregate the data collected by each device (via Bluetooth) and transmit them to a server on 

the cloud. This function is assigned to the raspberry pi because it has an operating system that 

allows high-level programming and also has built-in hardware for internet communication using 

Wi-Fi and LAN. 

 

The server is responsible for storing data from the IoT system and serving them up to a user for 

live monitoring. The server also serves as an intermediary between the user and the IoT system 

to enable remote control. Remote monitoring and control will be done via a dashboard provided 

by the server. The server may also be responsible for handling the machine learning workload if 

it proves to be too much for the raspberry pi.  The image below shows a graphical representation 

of the IoT system. 

 

 

Figure 1. Design of IoT System 
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2.3.2 Hydroponic System 

The hydroponic system will be based on the Nutrient Film Technique (NFT) which provides 

support for crops with an inert material and circulates nutrient solution for the crops to absorb. 

The crops, with their supporting material, will be mounted in 4-inch pipes connected to a 

reservoir, and the circulation will be done with the use of an electric pump.  

 

Figure 2. Design of the Hydroponic System 

 
The pipe will have flow rate sensors at both ends to monitor the rate of inflow and outflow of the 

solution. This will be used to control the rate at which the solution is pumped into it considering 

that growth of roots will slow down the passage of solution over time. The rate at which the 

solution flows into the pipe should be equal to the rate at which it flows out of the pipe to prevent 

it from overflowing. Data collected from these sensors will also be useful for detecting 

malfunctions like blockages or leakages in the system. 
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2.3.3 pH Control with Reinforcement Learning 

The intelligent agent for this project was developed with Q-learning. The Q-learning algorithm 

allows an agent to explore and learn from an environment and gain experience [14] by filling a 

Q-table. The dimensions of the Q-table are based on the number of possible actions and states in 

the environment. Each cell in the Q-table contains a Q-value which shows the long-term reward 

of taking an action in a certain state. The values in the Q-table encode the learned policy of the 

agent, which is, the rules by which the agent reaches its goal [14]. This policy is learned by 

obtaining positive and negative rewards in the environment after a goal is reached or an action is 

performed.  

 

Figure 2. Markov decision process for reinforcement learning 

 

At this point, you may have realized that it would be difficult to store the continuous states of a 

solution's pH in a discrete table. To address this problem, the pH range is divided equally into 
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several quantized levels to make continuous pH values discrete. The larger the number of 

divisions, the better the approximation of the pH value. 

 

Using an actual Q-table to store the state action mappings would require a lot of space if the 

environment has a large number of possible states. Both a neural network and a Q-table were 

used in training the Q-learning algorithm. The outcome of both approaches can be found in the 

results section. 

 

Because of the unexpected behaviour of intelligent agents, while learning, the agents were 

trained in a simulated environment. To use such intelligent agents in a live system for controlling 

pH, the simulations in this project will be used as a way of finding a suitable way of training Q-

learning agents before deploying them in live environments. The approach used in this project 

will test the hypothesis that the experience of an agent trained in one environment can be 

transferred to a similar environment. This transfer of experience should be possible the policy of 

similar environments should be similar. The expectation is that transferring the experience of 

agents should reduce the number of epochs required to reach mastery. This would be a good step 

toward making RL agents feasible to use in a real-world environment. 

 

The agent would get a reward of 100 if it reached the desired goal state. Also, it gets a reward of 

one if its action moved it closer to the goal state and a penalty of -5 if it moved away from the 

goal state. Furthermore, the agent incurs a penalty of -500 if it exceeds the maximum or 

minimum bounds of the environment. Finally, the agent is capable of three actions, move up with 
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a step of one or move down with a step of one. An epoch ends if the agent reaches the goal state 

or exceeds one of the boundaries. 

 

Two environments were created for this purpose; A linear environment and a quadratic 

environment. The linear environment can be thought of as a liquid reservoir with an inlet and an 

outlet. The goal of the agent is to get the level of the liquid from a random point to the desired 

range by draining the liquid through the outlet or supplying more liquid through the inlet. The 

quadratic environment is similar to the reservoir analogy; however, this environment has a 

quadratic response. To test the hypothesis, an agent will be trained on the linear environment, 

until it achieves a satisfactory level of mastery. Since this agent has no previous experience with 

any previous environment, it is expected to require a large number of epochs to learn how to 

achieve its goal. After the agent has been trained on the linear agent, its Q-table will be used to 

train on a quadratic environment. Since the agent trained in the quadratic environment has 

previous experience with a similar environment, it will be expected to reach mastery in a 

significantly smaller number of epochs. Refer to the results section for the outcome of this 

proposed approach to training RL models. 
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3 Chapter 3: Implementation 

3.1 Overview 

This chapter provides an overview of the parts of the initial design that were implemented in the 

prototype. It will also break down the details of how each component was implemented and the 

reasons behind the implementation decisions. 

 

3.2 Prototype 

3.2.1 Hydroponic System 

As mentioned in the previous chapter, the hydroponic system was implemented with PVC pipes. 

The hydroponic system consists of a supporting frame, which was made of ¾ inch pipes, and 4-

inch pipes were used to support the crops and carry the nutrient solution. The dimensions of the 

frame were 1.5m x 1m x 1m and were joined with only T joints and elbow joints. 

 

Figure 3. 3/4-inch T elbow and T joints used to build the frame for the hydroponic system 



 17 

 

The length of the 4-inch pipe was 1.5m and was sealed at one end with a 4-inch end cap, and the 

other end was fitted with a combination of reducers that reduced the diameter of the pipe from 4-

inches to 1-inch. The combination of reducers used was, 4-inch by 2-inch reducers, 2-inch by 1-

inch reducers and 1-inch by ¾-inch reducers. The reducers were joined to each other with pipes 

of the corresponding dimension. That is, the 4-inch by 2-inch reducer and the 2-inch by 1-inch 

reducers were joined together by inserting a glueing a 2-inch pipe in the corresponding side. This 

had to be done because the reducers were not designed to connect directly. 

 

      

Figure 4. Reducers before and after being connected with a 1-inch pipe 

 

This process was repeated until the 4-inch pipe was reduced to ¾-inches as seen in the image 

below. The pipes connecting the reducers were cut to fit the reducers which prevented them from 

showing. A ¾-inch elbow joint was then fitted at the end of the reducer combination to direct the 

flow of liquid into the reservoir. 
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Figure 5. Reducing the 4-inch pipe to 3/4-inches 

 

The 4-inch pie is inclined with a 10% gradient. The circulation of the nutrient solution is 

achieved by pumping the solution with a self-priming pump at a rate of 1 gallon per minute from 

the reservoir into the end of the pipe sealed with the end cap (the higher end). The solution then 

flows downward and out of the end with the reducers back into the reservoir through a ¾-inch 

pipe. The 4-inch pipes also have 15cm diameter holes cut out in them to serve as a way of 

mounting crops and their inert media into the circulating nutrient solution. The holes were cut to 

allow a crop spacing of 20cm. Finally, the 4-inch pipes are fastened to the frame at the high end 

with braces. 
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Figure 6. Image showing inlet to the pipe, the fastening braces and the cut-out holes for crops 

 

3.2.2 IoT System 

The IoT system is made up of three main components; the microcontrollers, that interface 

directly with the hydroponic system, the raspberry pi that aggregates the microcontrollers using a 

Bluetooth connection and a cloud server that is responsible for receiving and storing data sent 

from the raspberry pi. The cloud server also enables remote monitoring over the internet using 

the dashboard which will be discussed in the next section. 

 

The microcontrollers in the IoT system are mainly responsible for collecting data from the 

connected sensors and performing control instructions received from the raspberry pi over their 

Bluetooth connection. The data collection from the sensors is performed by sampling the sensor 
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values once every second. The raspberry pi collects data from the microcontrollers by sending a 

request for data using a round robin algorithm. Once a request is received, the microcontroller 

responds with the last recorded sensor readings as a JSON string. If more than one request is 

received within the same second, the microcontroller will respond with a message indicating that 

no new data is available. The Arduino Uno microcontroller was used for this prototype. 

 

The microcontroller also executes control instructions received from the raspberry pi. This is 

done by parsing and decoding the messages received and executing the instruction. For example, 

the microcontroller may receive the message “/control?acid=5” which is interpreted as "turn on 

the pump responsible for supplying acid into the reservoir for 5 seconds." The format of 

messages that are supported by the microcontrollers is detailed in the appendix. 

 

As mentioned above, the raspberry pi is responsible for aggregating the individual 

microcontrollers. It collects the data from the microcontrollers via a round robin where it 

periodically requests for available data form the devices. It then sends the data to a cloud server 

for storage and remote access. The raspberry pi is also responsible for running the neural 

networks and sending control information to the microcontrollers based on the output of the 

neural networks. 

 

The final component in the IoT system is the cloud server. The server was built with Python 

using a framework known as Flask which enables python to handle HTTP requests on a server. 

This framework was chosen because of its simplicity and the ease of adding more libraries to 

extend its functionality.  
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The server contains the models, which are database objects, that define the structure of the data 

to be stored. The models are defined using an Object Relational Model package known as 

mongoengine which allows data to be persisted a MongoDB database. MongoDB was chosen for 

this project because of its flexible NoSQL design which allows information in the database to be 

dynamic. In other words, models are easy to design because it uses a document-oriented 

structure, does not require a schema and all fields in a document do not have to be present for 

any given document. The lack of a rigid structure makes MongoDB ideal for this project because 

it allows for selective use of sensors without breaking the system. A list of metrics or sensor 

readings supported by the system can be found in the appendix. 

 

Apart from defining the models that provide the structure of the data that can be stored in the 

database, the server provides Representational State Transfer (REST) Application Programming 

Interfaces (APIs) for sending data for storage and requesting data. The available API endpoints 

for the cloud server are detailed in the appendix. 

 

3.2.3 Dashboard 

The dashboard for the system is designed to allow a user to remotely monitor the behaviour of 

the system remotely over the internet. The dashboard simply requests data from the server using 

the REST APIs and displays the data as a graph. The dashboard is meant to show the most recent 

sensor readings from the hydroponic system by showing both a general overview of the data for 

all systems or system specific data. The image below shows the current state of the dashboard 

prototype. 
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Figure 7. Dashboard Prototype 

 

The dashboard was implemented as a desktop application using a framework known as Electron. 

Electron allows the development of cross-platform desktop applications using web technologies. 

That is, the frontend of is written in HTML and CSS, and the backend is written in JavaScript. 

This framework is convenient for application development because it allows the use of the well-

developed web programming ecosystem for local app development. This reduces the effort 

required to build an application because the developer is not required to learn a new User 

Interface (UI) package.  
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4 Chapter 4: Results 

4.1 Dashboard 

The prototype dashboard for the system is capable of collecting data (sensor readings of system 

variables) from the cloud backend and displaying it in graphs. As can be seen in Figure 9, the 

dashboard shows an overview of all the data available in the system. This overview is an average 

of sensor readings from all available systems which allows a user to have a high-level view of 

the behaviour of available systems. There is also the option of viewing system variables of 

specific systems. This can be accessed by clicking the menu item corresponding to the desired 

system. Currently, the dashboard prototype only requests for data when the desired system name 

or the overview is clicked. However, it should be modified to show live data as it arrives on the 

server if it should be used in a live system. 

 

4.2 IoT System 

The IoT system is divided into two sections, the Arduino microcontrollers that interface directly 

with the hydroponic system and the raspberry pi that aggregates the Arduinos and relays 

information to the server. The delay in communication in the round robin is reduced by 

segmenting code based on time. That is, after the sensor readings are taken by the 

microcontroller, it remains idle and waits for the next instruction. The microcontroller is also 

able to avoid resending old data by checking whether or not the most recently available data has 

already been sent. This ensures that only fresh and live data is transmitted from the 

microcontroller. 

 

 



 24 

4.3 Reinforcement Learning 

Using RL in the real world live environments pose some challenges such as random behaviour of 

the model before it learns a reasonable policy. Also, continuous valued states pose a challenge in 

training RL models because they cannot explore an infinite state space. The approach used in this 

project attempts to address these issues. 

 

The RL model was initially trained using continuous valued states and a neural network as a 

function approximator. Using this approach required a relatively large number of epochs to 

converge at a useful policy. Also, the previous actions of the model had to be stored and used to 

retrain the neural network after each epoch to enable it to learn from its experience. This was 

slow and inefficient and increased the amount of time required for each epoch. For this reason, 

neural networks were replaced with traditional Q-tables because they provided faster turnaround 

times for running experiments. 

 

The transfer learning experiment, as explained in the design section, was performed by training 

an agent on a linear environment after which the Q-table obtained from the training was used to 

train on a quadratic environment. In other words, the experience the agent obtained from 

interacting with the linear environment was transferred to the quadratic environment. The agent 

trained in the linear environment took 37000 epochs to reach mastery. The probability of 

reaching the goal state after training on the linear environment was 0.998. The learning curve 

and the goal curve are shown in the figures below. The learning curve is obtained from averaging 

the maximum Q-values while the goal cure was obtained by calculating the ratio of successful 

tries to unsuccessful tries after each epoch. 
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Figure 8. Learning curve for inexperienced agent trained in a linear environment for 3700 

epochs 

 
 

 

Figure 9. Goal curve for agent trained in the linear environment for 37000 epochs 
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The graphs below show the goal curve and the learning curve of one transfer learning agent. 

From the graph of the learning curve, it appears that the agent is unlearning the policy it learned 

from the previous environment. The pattern of unlearning in the transfer model may be due to 

the costs it incurs by using the "assumptions" that worked in the old environment on the new 

one. 

Also, it appears to be learning from the new environment simultaneously as shown by the goal 

curve.  

 

Figure 10. Goal curve for transfer learning agent trained for 100 epochs 
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Figure 11. Learning curve for transfer learning agent trained for 100 epochs 

 
 

The rationale behind transferring the experience of a model trained on a similar environment is 

to reduce the time required to reach mastery as mentioned in the design section. The transferred 

model was, therefore, trained for only 100 epochs which are relatively small as compared to the 

37000 epochs used for the linear model. To compare the difference between the model 

performance when trained with and without previous experience, the model was without 

experience, also for 100 epochs. Thirty models each were trained for both agents with transferred 

experience and agents with no experience, and their performance was compared. The average 

goal rate for agents with no experience was 0.578 while the average goal rate for agents with 

experience was 0.808. The histograms below show that more than of the agents with previous 

experience goal rates that were greater than or equal to the average while agents without 

experience had more randomly distributed experience. 
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Figure 12. Histogram showing performance of agents trained without experience in the linear 

environment 

 

 

Figure 13. Histogram showing performance of agents trained with experience in the linear 

environment 
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4.4 Limitations 

This project focused on building a prototype as proof of concept and tested some the hypothesis 

of transferring experience from similar environments in RL. As such, this project is not 

production ready because some components have not been fully implemented. Specifically, the 

dashboard does not have the feature of getting live data from the server, and no RL model was 

trained on the real environment. Finally, some sensors were not implemented in the IoT system 

even though the server has been programmed to handle data from them. 

 

4.5 Discussion of Similar Works 

Due to the difficulty in developing classical models for pH control, several alternative methods 

have been developed to address this challenge. Methods such as fuzzy logic with neural 

networks and reinforcement learning have been used for pH control. 

 

4.5.1 Fuzzy Logic and Neural Networks 

Control of pH and Electrical Conductivity (EC) has been achieved only with fuzzy logic [15]. 

The rules for controlling pH was encoding in 12 fuzzy rules which led to suitable results [15]. 

This method required previous knowledge of how solution pH is controlled by an expert and 

inexperienced farmer. This approach requires the use of data that may not be available and limits 

the system’s performance to what is possible by human standards and human learning. 

 

A similar approach to pH control used both fuzzy logic and neural networks [16]. This method 

also required data on how experts controlled solution pH. This in turn limited the ability of the 

system to control pH to human learning. 
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Despite the shortcomings of the previously mentioned approaches, they were able to smoothen 

the changes in pH.  

 

4.5.2 pH Control with Reinforcement Learning 

A similar approach to pH control with reinforcement learning has been implemented using 

softmax and epsilon-greedy policies [17]. Unlike the approach used in this project, the reward of 

the agent was calculated based on how far it was from the goal state. The environment also had 

fewer states than what was used in this project (5 states compared to 140 states used in this 

project). Finally, the agent was capable of more actions (12 actions compared to the two actions 

in this project). 

 

Despite the differences, this approach also yielded good results in simulation given that it was 

able to reliably reach the goal state [17]. The approach discussed was not used in a live 

environment and did not have any considerations for reducing the amount of time required for 

the agent to learn a reliable policy. 
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5 Chapter 5: Conclusion 

The goal of this project was to develop a prototype for a hydroponic system as a way of 

providing an alternative means of growing crops. The motivation for developing this system is 

the low levels of agricultural productivity in Ghana and the environmental impact of soil culture. 

This project has detailed the design and implementation of a prototype hydroponic system as 

well as a method of reducing the time required to train an RL agent in a live environment. 

 

The prototype has fulfilled most of its design objectives such as automated data collection which 

is performed by the IoT system and data storage in a cloud server. The dashboard for viewing 

data collected for system variables was also implemented. However, it is currently not equipped 

for showing live data. And finally, the hydroponic system has three subsystems for growing 

crops with different nutrient solutions. 

 

5.1 Future Works 

Despite the achievements of this project, there is still a lot to be done to improve the system and 

make it production ready. To achieve this, the system should achieve the following; 

• Be able to show live data on the dashboard 

• The dashboard should provide notifications of malfunctions like leakages and whether 

the system is online 

• The IoT system should support all sensors implemented on the server. See the appendix 

for a list of sensors the server can handle 

• An RL model should be implemented for controlling pH 

• The system should be capable of climate control 
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• An RL model should be created to help improve the yield of crops 

• Arduino should be replaced with more powerful microcontrollers with industry grade 

ADCs 
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6 APPENDIX 
 

6.1 Web API Specifications 

This section describes the APIs for interacting with cloud server. The server works with HTTP 

requests. 

 

Get data from the server using paging 

API endpoint: /api/data 

Request method: GET 

Response type: JSON 

Parameters: 

 page_number: int 

 page_size: int 

Special values for page 

$all: 

 Gets data ordered by time received in the server. 

$end: 

Gets data ordered by time received on the server. Separate JSON documents are 

constructed for each available system. 

$overview: 

 Similar to $end. However, values are averaged. 

 

Send data to server 

API endpoint: /api/data 
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Request method: POST 

Response type: JSON 

Accepts: JSON 

 

Create new hydroponic systems on server 

API endpoint: /api/systems 

Request method: POST 

Response type: JSON 

Accepts: JSON 

 

Get all available hydroponic systems on server 

API endpoint: /api/systems 

Request method: POST 

Response type: JSON 

 

6.2 IoT API specifications 

This section defines the API for communicating with the Arduino over Bluetooth. The raspberry 

pi sends a string and gets a response (string) from the microcontrollers. 

 

Get data from microcontroller 

API: /data 

Response type: JSON 

{system_id: string, 
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{ 

 ambient_temperatue: float, 

 humidity: float, 

 solution_level: float, 

 acid_level: float, 

 base_level: float, 

 solution_temperature: float, 

 acid_flowrate: float, 

 base_flowrate: float, 

} 

} 

Control instruction for adding acid 

/control?acid=10 

Turn on the acid pump for 10 seconds and turn it off. The amount of acid added will depend on 

the flowrate of the pump. 

 

/control?base=10 

Turn on the base pump for 10 seconds and turn it off. 
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