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Abstract 

Machine learning and the development of Artificial Intelligence (AI) has grown nearly 

exponentially over the past few years. However, growing fears over the nature of AI and the 

use of user data by large companies has put an air of distrust over the ML community. This 

makes it hard to collect more data with better user representation is needed to train more useful 

and accurate models and creates a unique problem space that my project seeks to tackle. It raises 

the question; how might researchers improve public understanding of AI while creating more 

representative datasets? To this question I propose the solution, Project Efua; a user taught 

mobile AI application meant to bridge the gap between the developer community and the wider 

public.   
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Chapter 1: Introduction 

1.1 Introduction  

Machine learning and the development of Artificial Intelligence (AI) has grown nearly 

exponentially over the past few years. Its potential often surpasses human capabilities, beating 

us at our hardest games [10] and interpreting medical data for diseases such as cancer [8] in 

patients with superhuman accuracy levels. However, growing fears over the nature of AI and 

the use of user data by large companies [4] has put an air of distrust over the ML community. 

And with examples such as the Facebook Cambridge Analytica scandal [5], it’s not hard to see 

why this distrust of data collection exists. However, the fact remains that more data with better 

user representation [7] is needed to train more useful and accurate models. This creates a unique 

problem space that my project seeks to tackle. It raises the question, how might we as 

researchers apply the advances made in AI to improve public understanding of AI, while 

creating more representative datasets needed to better serve the public with AI? To this question 

I propose the solution, Project Efua; a user taught mobile AI application meant to bridge the 

gap between the developer community and the wider public. 

 

1.2 Problem Statement  

Data representation is one of the biggest challenges plaguing the machine learning 

community. Although there is far more data available to researchers now than there has ever 

been, the problem remains that data is often not representative of the entire human population. 
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Take the ImageNet [14] data set for example. This dataset is one of the largest openly accessible 

image libraries with over 14 million different images available to researchers around the world. 

However, even with its massive size, the dataset still fails to represent most of the world’s 

population with about 45% of the images coming from the USA alone [11], a country whose 

population makes up less than 5% of the global population [12]. While this over representation 

is cause for some concern, it does show that there is a huge deficit in data from other parts of 

the world the developing world, Africa in particular, thus highlighting a keen opportunity for 

data creation and collection. 

However, there is still the looming distrust consumers have of big data and the nature 

of AI that stands in the way of collecting super diverse data on a large scale. This means that 

the machine learning and AI community needs a solution that bridges the gap between the 

public and its efforts to grow larger and more representative data sets. This is where the subject 

of this paper comes in; Project Efua. 

1.3 System Description 

Project Efua is a mobile first image classification application. It collects user labelled 

data to use for training on a larger online Neural network. This network is used to update the 

on-device model that is then tested by the existing user base on real world images used as test 

data. 

The system is divided into two main parts. The mobile application, which serves as the 

client-side research tool, allows users to collect and label new data via a dedicated camera in 
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the “Explore” feature. It also allows users to test newly trained models in the “Guess What?” 

feature, where users can quiz the model on real world data, answering correct or wrong to its 

predictions or “guesses” and labelling images that it got completely wrong. 

The second part is the webservice that runs and maintains the system. Data from the 

“Explore” feature is sent to the service, where database management and model training are 

handled. Once the train logic for the system is met, training is triggered, thus updating the 

model's abilities. Newly trained models are made available to users on application start up, thus 

allowing them to test the improvements made on new real-world data via the “Guess What?” 

feature.  

The system uses ideas of human-in-the-loop active learning and crowd sourced public 

contribution in its implementation. By so doing, it involves end users in the process of 

“teaching” an AI to classify or “see” new images as more users add to the systems database. 

This will be done in the hopes that users will gain an appreciation for the AI and the way it 

works, since they will become stakeholders in the development of the model, thus bridging the 

gap between technicians and the wider public. 

1.4 Benefit Of System  

Project Efua seeks to humanise AI by allowing users of this mobile first application to 

"teach” their own instance of an AI to recognise images by exposing it to new examples of 

images through its fun games and activities right on their phone. In doing this, users are brought 
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into the ML community and helping data scientists tap into the hugely diverse, crowd sourced 

database that is the human experience as seen through the cameras of our smart phones. 

Its other purpose is to serve as a research tool for machine learning engineers. In this 

capacity, Project Efua will work to collect data from a diverse user base, giving researchers 

access to examples they otherwise would not be able to come by easily. It will also serve as a 

platform for researchers to test new user first AI applications. 

A final expected benefit of this system is the nature of the data it collects and how it 

could affect the relevance of the model. Given that data is added intentionally by users, it is 

expected that the data added will be highly relevant to the context of the users use case. It is 

therefore a major hypothesis of this project that, given the users source test images from the 

same context, the model can be expected to perform better in the users given context than one 

trained on externally sourced data. As such, this project, through live user testing, will attempt 

to see how well the same model performs when exposed to real world data and standard data 

from external sources. 

1.5 Motivation 

This project, while expected to have global impact, is mainly aimed at boosting the 

adoption of AI in Africa and the wider developing world. As such, its design and 

implementation will be made to intentionally reflect its unique African origin as this is the space 

in which this project seeks to make the most impact.  
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The developing world is lagging in the adoption of AI and this is poised to have real 

economic effects on these countries.  Bughin, Jeongmin, Manyika, Chui and Joshi describe the 

growing digital divide in the world and how slow AI adoption may only make this worse for 

developing countries [2]. Africa especially is taking the hardest hit due to its poor adoption of 

AI and related technologies. This is not to say that there is no hope for the continent as Africa 

has some of the world’s fastest growing smartphone and web penetration in the world.  

According to IBM, 90% of all the worlds stored data was created within the last two 

years [6]. This is largely due to the surge in content creation by growing adoption of web 

technologies such as social media, online repositories and IoT (Internet of things) devices. A 

major contributing factor to this surge is a similar rise in the use of smartphones around the 

world. These devices present a ready window into the lives of the average user, collecting 

several gigabytes of data a day. In the developing world, smartphones often serve as the first 

point of contact to the internet for brand new adopters.  

Another key truth is that the vast majority of smartphone users have already interacted 

with artificial intelligence is some form or the other. This is either through assistants such as 

google assistant and Siri, or even just simple Google searches powered by AI algorithms such 

as RankBrain [3]. What this means is that the average smartphone user is already familiar with 

the nature of AI as it is currently being implemented and this familiarity is key in winning the 

hearts and minds of the public. 



 
 
 

 

 

6 
 

This project seeks to build on these insights to work on a locally developed AI 

application on the African continent. Using technologies such as TensorFlow, TensorFlow Lite 

and android OS, this project hopes to make these goals a reality. 

1.6 Related Work And Existing Solutions 

The technical problem this project seeks to solve is the issue of data collection with a 

focus on the human element of the system. This type of learning is most like active machine 

learning. This is where machine learning algorithms employ unique techniques to select specific 

unlabeled data points for labeling, based on how useful it believes the data will be to further 

unsupervised learning. The direct problem this seeks to tackle is that of a situation where 

unlabeled data is easy to come by but takes massive effort to label. Ranganathan, Venkateswara, 

Chakraborty and Panchanathan discuss a novel approach to this problem by introducing a novel 

deep active learning algorithm which is designed to exploit deep learnings ability to learn a 

discriminating set of features for a given task. [9]Their approach lead to consistently higher 

results on accuracy for large unlabeled datasets. This is significant to this paper as it provides 

an ideal reference point for model development in a future iteration of the system where users 

will be prompted to provide labels for data the model calculates will be beneficial to the learning 

process. 

This project is also like another technique employed in machine learning and that is 

human-in-the-loop learning. This is method involves humans in “both the training and testing 

stages of building an algorithm, which creates a continuous feedback loop that allows the 

algorithm to produce better results each time.”[13]and is a combination between active and 
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supervised learning. This is an extremely useful technique for boosting the performance of a 

machine learning algorithm by having the humans validate low confidence predictions in a 

feedback loop. Gengo Ai [13]is a company that seeks to provide such solutions for machine 

learning, particularly NLP and machine translation problems. This idea is what is used for the 

“Guess What?” feature, where users validate the model’s predictions on real world data, which 

will then be used to reinforce the model's abilities in the future.  

These implementations can be classified under crowd sourced machine learning. 

Abhigna, Nitasha and Shilpa outline the benefits of crowd sourcing machine learning. in their 

paper, they state, “Crowdsourcing platforms are rapidly replacing the traditional modes of 

experimenting in areas like sociology and psychology”[1]. This is an important consideration 

for this project as, beyond its technical goals, it seeks to improve the perception of AI and 

machine learning in the public eye. The paper further outlines three main contributions that can 

be made here. Namely, data production, debugging and assessment of models and 

developmental analysis of machine learning. Under each of these, it outlines the issues they 

face but also steps that have been taken to mitigate them and the overall benefits of all of them. 

The paper further goes on to state that, “Winning over the confidence and appreciation of the 

crowd workers is very important for researchers”. This falls in line with the social goal of this 

project. However, where the paper looks at crowd workers as employees of a company, this 

project seeks to broaden it out to more genral users and members of the public, to boost their 

interest and introduce them to the workings of AI and machine learning through a publicly 

accessible project. 
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These implementations however rely heavily on data that was collected using traditional 

means, where there is little in the way of initial user input. This is where my project seeks to 

make a meaningful contribution. Using the ideas and principles of human-in-the-loop active 

learning, this project seeks to introduce the human element at every stage of the machine 

learning process.  

The key contribution here is in the style of data collection and use. Rather than relying 

on externally collected data for users to label, this system takes a novel approach to the data 

production phase by relying on direct user input that is labeled at the time of creation. Abhigna 

et al outlined the need for greater incentive for crowd workers during the labeling process in 

their paper. Project Efua works around this by reducing the cognitive load on users since data 

is labeled at the time of input. This means that users will only be expected to add images that 

they are interested in, thus further reducing the need for external incentive. In this sense, Project 

Efua seeks to introduce and test a new approach to model training here called the Active 

Teaching approach. 

Debugging and assessment is also done by the end user through the “Guess What?” 

feature, where users are given the updated model in near real time to use in order to apricate its 

growth. The contribution made here is that users will have a greater sense of what the model 

can and cannot “see”, thus influencing the data they collect in subsequent “Explore” sessions. 

This is important as it means that with use, the model will get better at classifying images that 

users want it to classify correctly, thus improving its performance within the users’ context or 

use case.  
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Gaining insight into how users use the system as well is also another contribution under 

developmental analysis of machine learning. The idea of context, here defined as the space in 

which the system is used, and use case will be information that can be inferred from the system 

over time. This is an especially important contribution as the system will be intended for public 

use. This means that over time, the interaction between humans and machine learning can be 

monitored, allowing developers to track what users are interested in and test hypothesis on 

human computer interactions concerning machine learning. In this version of the, the system 

can be said to be heavily biased towards user interest, thus allowing us to study how user bias 

can affect the performance of a model and iteratively test new methods of controlling for user 

bias.  
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Chapter 2: Requirements Specification 

2.1 Project Scope  

Project Efua is a multi-system web service spanning over a user oriented mobile android 

application, a research, control and maintenance oriented Node.js web application and a python 

virtual environment set up for running the machine learning model. For the purposes of this 

academic study, Project Efua will be developed to Version one (V1) stage which is primarily 

designed to test the validity of the system structure and serve as a developer prototype that can 

later be split into the full public and research-oriented client versions. This project assumes 

development is geared towards the research version of the application and thus will have the 

following components; 

• An android data collection and model testing mobile application tool. 

• A system management node.js web application. 

• A research-oriented model observation node.js web application tool. 

• A mongoDB database. 

• An Image classification Convolutional Neural Network model.  

• A python virtual environment for running the model and its supporting files. 

The system in its current form is strictly designed for test and prototyping purposes to evaluate 

the active teaching method of data collection and model development. As such, this system: 

• Is not a user interaction optimized. 

• Does not have a user experience component. 
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• Does not have user specific profiles. 

• Does not allow for dataset requests or downloads. 

• Does not have a production ready data validation system. 

• Is not security optimized. 

The system will also only be deployed on the Ashesi University campus for initial user testing 

and so will be highly localized to this context.  

2.2 Technical Description 

From a technical standpoint, Project Efua is thus a mobile first image classification 

application that collects user labeled data to use for training on a larger online Neural network 

and tests updated models through an interactive guessing game.   

Project Efua works by using a client android application to take pictures of new user 

examples. These pictures are sent to a mongoDB via a web application API. The web 

application manages the photo collection, model training trigger, updating and observation. It 

uses a python virtual environment to run model related processes such as picking new data from 

the database and sorting it for training. The model uses a TensorFlow backend to run a 

Convolutional Neural Network trained on the user added data. This model is sent back to the 

database to be stored for sending to the mobile application upon update request. The mobile 

application uses this model in an interactive guessing game where the user takes a picture of a 

new item and answers either correct or wrong to the models top 5 predictions of the photo’s 
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label. This photo and the data are then added to the database and used to retrain the model in its 

next training cycle.    

 

2.3 Project Objectives   

This project will seek to accomplish the following objectives. 

• Build a research mobile application to teach an AI image classification by exposing it 

to real world examples, tagged by users of this application. 

• Use server-side technology to collect, train and update the applications classification 

abilities. 

• Build a proof of concept system based on image classification to show the active 

teaching technique is feasible. 

• Use the application for open, consensual data collection in a local setting. 

 

2.4 Product Perspective  

2.4.1 SYSTEM FEATURES   

This project focuses on four main features to be developed and tested.  

• Data collection via the “Explore” function. 

• System management via a web application. 

• Model training and observation. 
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• Model testing via the “Guess What?” game. 

These features form the core of Project Efua’s functionalities. As such, they are the main 

priority of this project to ensure that the system is feasible and can be used for more nuanced 

research. 

2.4.2 SYSTEM USERS 

The system is intended for two main user groups; public users and technical users.  

2.4.2.1 PUBLIC USERS 

These are people who are not directly involved in machine learning or AI research but 

have a curious interest in it. Within the scope if this project, these users are considered the early 

adopters who will test out the system functionalities and give user feedback into its feasibility. 

These users will primarily use the mobile application for data collection and model field testing.   

2.4.2.2 TECHNICAL USERS 

These are people who are not actively involved in machine learning or AI research and 

have an interest in researching the development of an actively user taught AI. Within the scope 

of this project, these are students and lecturers at Ashesi University who are interested in the 

performance of the model and familiar with the underlying technologies. These users will 

primarily use the web application for model observation and the mobile application if they 

choose to enroll in the field-testing phase of this project. 
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2.4.3 SYSTEM USE CASES 

2.4.3.1 PUBLIC USERS 

Use case scenario: 

A curious individual wishes to explore the capabilities of AI and contribute to an open 

source data collection project. This user will download the app on their Android device and 

proceed to interact with its features. The user, wishing to “teach” the AI to recognize new 

objects, engages the “Explore” feature of the application. This opens the dedicated camera view 

and allows the user to send labeled images to the online server. Wishing to test the accuracy of 

the model in an interactive way, the user engages the “Guess What?” feature. This opens another 

dedicated camera view. The user takes a picture of an intended subject, “asking” the AI to guess 

what is in the image. This system returns the top 5 predictions, querying the user for a correct 

or wrong response to its “guess”. The user answers either correct or wrong to the responses. 

The user's response, image label and the subject image are sent back to the server and added to 

the image database for reinforcement training. After a successful retraining of the model, an 

updated version is sent out to the user base, allowing the user to test the new model and see 

how well it does.  

Use case diagram: 
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2.4.3.2 TECHNICAL USERS 

Use case scenario: 

An interested researcher wishes to test the capabilities of the AI and contribute to its 

open source development and data collection. The user will access the web application to view 

statistical details on the model's performance such as number of active users, validation 

accuracy over time, number of new labels added each time, time to next scheduled training 

session, etc. The user can then choose to select a model and view its details using tensorboard. 

The user can also choose to join the field-testing program and download the application, at 

which point they use it as a public user.   
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Use case diagram: 

 

2.4.4 OPERATING ENVIRONMENT  

The system will be built off of the Node.js Server environment in JavaScript for the web 

service. The database will be managed with mongoDB and Vue.js, JavaScript and CSS will be 

used for the web application view. Python virtual environment running a TensorFlow backend 

for the CNN and model training. The system will also rely on tensorboard for model 

observation. Android SDK will be used to build the mobile application to be run on Android 

OS enabled devices. 
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2.4.5 DESIGN AND IMPLEMENTATION CONSTRAINTS   

Given that the system will be run on local servers for the scope of this project, model 

training will be limited by the availability of resources on these servers. This will therefore 

affect training time and the design choices for training cycles. This will also mean that 

TensorFlow cannot be hardware optimized or allowed to run on GPU’s if resources are not 

available. Space is also a major constraint to consider since data consumption may be several 

hundred gigabytes if the system use is allowed to grow exponentially.  

 

2.5 System Features  

2.5.1 REQUIREMENTS  

2.5.1.1 DATA COLLECTION VIA THE “EXPLORE” FUNCTION 

This feature allows users to photograph new subjects and label them for use in later 

training. This is the main point of data input for the system. 

Request/ response sequence 

1. The feature is accessed via a button on the app home page labeled “Explore”. 

2. The explore page is launched, allowing users to interact with the in built camera. 

3. The user enters a new label, points the camera at a desired subject and click on the 

capture button. 

4. This triggers the capture sequence and allows the application to take a picture. 

5. This picture is stored on the device in a local folder using the label and date as its name. 
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6. The picture is also sent over the network in a string post request to the web service using 

a dedicated API along with its name and label. 

7. The camera view is rest and readied for the next capture sequence.  

8. A “Photo Saved!” response is sent by the API if saving was successful, or an error 

message if not. 

User requirements 

• The user must enter a label before image capture. 

• The user must ensure network access. 

• The user needs the system to give feedback on task completion.  

System requirements  

• The system must send data in a reliable manner. 

• The system must provide user feedback after every request. 

Input 

• This feature takes as input images taken by the user. 

• This feature takes as input the labels of images taken by the user. 

Output 

• Response notifications on task completion or error. 

• A photo sent to the database via web service API. 

• A photo stored on device in proprietary folder.  



 
 
 

 

 

19 
 

 

2.5.1.2 SYSTEM MANAGEMENT VIA A WEB APPLICATION: 

This feature is a collection of features with a common theme of managing the 

communications, data transfers and reliability of the system. It mainly concerns the use of API’s 

on the webservice and how they interact with other parts of the system. 

Request/ response sequence 

1. The system uses REST API’s to handle data input and storage. 

2. The system uses REST API’s to handle data requests by the web application. 

3. The system uses REST API’s to handle model training and updating requests. 

User requirements 

• The user needs the system to reliably maintain client functionalities. 

• The user needs the system to send request responses in a timely manner. 

• The user needs the system to be easily accessible within the local context. 

System requirements  

• The system needs API functions to not be computationally intensive to improve 

responsiveness. 

• The system needs the webservice to simplify connections between higher and lower 

levels of the system architecture for the user. 

Input 
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• This feature takes as input the requests from various clients on the webservice. 

Output 

• Expected application responses.  

2.5.1.3 MODEL TRAINING AND OBSERVATION 

This feature is a low-level feature of the system that works off the python virtual 

environment bundles with the system. This handles the creation of new model using a 

TensorFlow backend and is supported by other python programs using the same environment. 

Request/ response sequence 

1. The webservice makes a request to the python training layer once the model training 

logic has been met by the surrounding system.  

2. A database call is made by a python database handler utility program. 

3. This program sorts the data into relevant folders for use during training. 

4. Once complete, the training application is run using the newly added data. 

5. Upon completion, the application returns relevant model files to the webservice for 

application updates and model observations.  

User requirements 

• The user needs the model training to occur at predictable intervals. 

• The user needs the system to make model meta data available for observations. 

• The user needs the system to show progress of model performance. 
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System requirements  

• The system requires the training layer to not interfere with higher level functionalities. 

Input 

• This feature takes as input the new images from the database. 

Output 

• A trained image classification model. 

• Model metadata. 

 

2.5.1.4 MODEL TESTING VIA THE “GUESS WHAT?” GAME. 

This feature is the on-device serving of the trained model. It allows users to test the 

model on real life data through a dedicated camera. 

Request/ response sequence 

1. The feature is accessed via a button on the app home page labeled “Guess What?”. 

2. The guess what page is launched, allowing users to interact with the in built camera. 

3. The user takes a picture of the subject they wish to test the model on. 

4. The application returns the top 5 predictions in order, waiting for the user's response to 

each. 

5. The user clicks either the correct or the wrong buttons in response to the model's 

predictions. 
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6. If the correct label is not found in the application prompts the user to input the correct 

label of the image. 

7. The users answer is then sent back to the database via the webservice along with the test 

image and label predictions for reinforcement learning. 

User requirements 

• The user needs the application to perform rapid predictions so as not to slow down the 

testing processes. 

• The user needs the application to reliably guess the labels of images with an above 

random accuracy.  

• The user needs the system to give feedback on task completion. 

System requirements  

• The system must send data in a reliable manner. 

• The system must provide user feedback after every request. 

Input 

• This feature takes as input images taken by the user. 

• This feature takes as input the labels of images taken by the user and their correct or 

wrong answer values. 

Output 

• Response notifications on task completion or error. 
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• A photo sent to the database via web service API. 

• A photo stored on device in proprietary folder. 

 

2.5.2 ADDITIONAL FEATURES   

2.6 Other Non-Functional Requirements 

2.6.1 USABILITY: 

Given that the system is designed for use by humans, it is imperative that users 

understand how to use this system and its abilities.  

2.6.1.1 SIMPLE INTUITIVE INTERFACE  

The system must have a simple, easy to use interface that minimizes the complexity and 

number of actions required to accomplish a task. 

2.6.1.2 COMPELLING GAME MODES  

The system must have compelling game modes in order to draw users in to wanting to 

train and test the model, therefore driving the research.  

2.6.1.3 IMPROVING MODELS 

The system must show evidence of an improving model. This is to ensure that users see 

a tangible difference in how well the system is performing the more they use it. 
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2.6.1.4 HIGHLY DIVERSE, STANDARDIZED DATA SETS 

The system must collect diverse data from its user group in a standard format to make 

it useful for later researchers.  

2.6.2 RELIABILITY:  

The system must behave in a way that minimizes error and in the event of an error, 

keeps system down time to an absolute minimum. This is to ensure that users can rely on the 

system. 

2.6.2.1 LIGHT WEIGHT APPLICATION (RESOURCES NON-INTENSIVE)  

The mobile application must be small and resource non-intensive to make sure t can be 

run on the largest number of devices. It must also do this to reduce the number of errors users 

may get from using the application.  

2.6.2.2 RAPID CLASSIFICATIONS  

The model run on the mobile application must be small enough to allow for rapid 

classification, minimizing the amount of time the user must wait for the model to make a 

prediction. 

2.6.2.3 TIMELY UPDATES  

The system must push out updates to the user as quickly as possible to allow users the 

chance to sense the model grow the more they use the application.  
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MODEL CONFIDENCE ASSURANCE 

The system must show that it is improving over time and allow users to easily see its 

progress whenever they wish. 

 

2.6.3 TRANSPARENCY:  

Given that this system is intended for intentional data collection, it is imperative that all 

parties involved are aware of the data being collected and how it is used. 

2.6.3.1 PRIVACY CONSCIOUS 

The system must do well to make all data collected anonymous.  

2.6.3.2 READY USER BASE 

The system must guarantee a ready user base for future research.  
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Chapter 3: Architecture And Design 

3.1 Design Specification  

The focus of this system is the mobile client and how it can be used in field testing. As 

such, the system is designed to support the application to the best of its abilities, given that data 

collection and model testing happen through it. This was the major design condition that was 

considered for the creation of the architecture.  

3.1.1 ARCHITECTURE DESCRIPTION 

3.1.2 WEB SERVICE 

The system uses a web service architecture to manage components of the system. The 

justification for this were twofold. The first reason was that TensorFlow lite has yet to add 

features that allow for easy on device training. This is important as it means that devices cannot 

run the train and update sequence on their devices which would be the only other way to handle 

this user taught AI sequence. This comes as an advantage however as it means client devices 

don’t have to spend resources and time training locally, which, for a mobile device, would take 

too long to complete to make the system worth its expenditure. It also means that the application 

can be kept light weight, allowing it to be used on multiple devices, regardless of hardware 

limitations that would otherwise hinder on device training.  

The second reason is that a web service structure enforces uniformity. Uniformity is big 

advantage of this system as it stands. It means that client applications can all add to the same 

database which will be used to train the same model. It also means that as more people use the 
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application, the model used for prediction will improve relative to the data added by all users, 

therefore improving performance for all other users, and growing the model's overall 

performance far faster than if individually deployed and trained for each user. This architecture 

also makes it easier to keep track of the model's performance via the web application since its 

only one model that gets trained and retrained. 

3.1.2.1 WEB SERVICE ARCHITECTURE  

 

Figure 3.1 
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Web Service Architecture Components  

Function Mobile 

Applicatio

n 

Web 

Application 

Web 

Service 

Database Neural network 

Environment  Android 

SDK 

Vue.js Node.js MongoDB Python & 

TensorFlow 1.13.1 

Model 

handling 

TFLite Tensorboard Python-

Shell 

- Keras & 

TFLiteConverter 

Data 

communication 

Volley & 

Retrofit2 

Vue-router Mongoose - Pymongo 

Table 3.1 

3.1.3 MODEL VIEW CONTROLLER (MVC)  

For the observation web application, an MVC architecture was chosen. This was to 

allow for separate development and improvement of each component of the system. Given that 

this system is being deployed as a research platform, it is expected that frequent changes will 

be made to its functionalities over time. An MVC architecture makes it easier to work on the 

web application’s components separately without affecting the functionalities of its other 

components. Also, since it will be built on top of the web service, the structure reduces the 

likelihood of critical system failure should something go wrong during further development of 

the webservice.  
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3.1.4 LAYERED VIEW 

For simplicity sake, the system can also be viewed as having a layered architecture. This 

is because of the way each component communicates with the other, abstracts functionalities 

and transfers data. The four main layers are:  

3.1.4.1 THE PRESENTATION/CLIENT LAYER 

This layer comprises of the mobile and web applications. This layer is the layer that 

interfaces with the users of the system, allowing them to add new data, test the model and 

observe its performance. Little to no heavy computations are done in this layer. This is a design 

choice made to simplify the users experience and reduce load on client devices, therefore 

speeding up system interactions.   

3.1.4.2 THE WEBSERVICE LAYER 

This layer is the main communications layer of the system, handling all aspects of the 

system logic. This layer handles the calls to the two lower layers and manages the logic involved 

in their use. However, this layer only handles system level logic and does not do any major 

computations in order not to over work the server (a consideration made as a result of one of 

Node.js’ weaknesses to be discussed in a later section).  In this sense, it two major functions 

are serving data between the presentation layer and the database and triggering the train cycle 

on the lower levels. 
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3.1.4.3 THE DATABASE LAYER  

This layer manages all data storage and management. This is considered a separate layer 

as it can be independently accessed and has direct connections to the model train layer that are 

not managed by the webservice layer. This was a design decision made primarily to reduce the 

load on the webservice and simplify the complexity of training. As such, the system has a 

separate database handler working on the lower layer to ensure that data is pulled and sorted in 

the best way possible for the model trainings use. It also increases the level of abstraction and 

makes the system scalable since in a complete system, the model training and database will be 

hosted together on larger servers.  

3.1.4.4 THE MODEL TRAINING LAYER 

This layer handles the heavy lifting and computations involved in training the model. 

Running off a python 3 virtual environment with a tensorflow back end, it runs separately from 

the rest of the system, only communicating with the database for data consumption and the 

webservice for model serving. Even though it is triggered by a web service API, this layer does 

not run any of its functions on the webservice in order to reduce the computational over head 

on the server. 

3.1.4.5 LAYER ARCHITECTURE 
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Figure 3.2 
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3.1.5 MOBILE APP ACTIVITY DIAGRAM  

 

Figure 3.3 
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Chapter 4: Implementation 

4.1 Implementation  

LANGUAGES  

4.1.1 PYTHON 

Python was chosen as the base language for developing the Convolutional Neural 

Network. This was for its vast library of supporting packages for machine learning, most 

notably, TensorFlow and Keras. These two packages form the base of the model creation. 

Python was also chosen for eats ease of use and strong ability for handling intense processing.  

4.1.2 JAVASCRIPT 

JavaScript was chosen as the base language for the webservice. The decision for this 

came from the strength of the Node.js runtime environment especially when it came to server-

side applications. The other candidate language selected for this purpose was PHP. However, 

JavaScript won out for a number of reasons. The main reasons were that  

• Node.js, being its own runtime, doesn’t rely on other servers to run, thus making it more 

light weight than PHP since it also has fewer dependencies.  

• Node.js was is also considered as running faster than PHP since it runs on a single 

process with a non-blocking I/O (Input/Output) events, a useful consideration for this 

project given its heavy use of I/O.  
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• Node.js also makes better use of CPU and memory resources since it doesn’t use multi-

threaded networking. This means that the webservice can run on more constrained 

servers, making it more practical for initial testing. 

• Node.js also has better integration with noSQL databases such as mongoDB and made 

front end development simpler since a JavaScript framework would integrate better with 

it than with PHP. 

• Node.js being written in JavaScript and served through NPM, also means that there is a 

vast library of packages to assist with development. 

The biggest reason, however, was that Node.js is asynchronous where PHP is 

synchronous, making it better for Realtime data serving than PHP. This reduces the load on the 

server when hit with multiple requests, since it also runs on a single process. This is an important 

functionality for this project’s requirements as it means that the server can handle far more 

clients at the same time without blocking the process, making it far more scalable than PHP. It 

also means that clients don’t have to be held up by server-side logic while large processes are 

running, such as model training. 

All these reasons made JavaScript a more suitable language for this project than PHP 

for server-side scripting. 

4.1.3 JAVA 

Java was chosen as the language for the mobile application. This was because android 

OS was the most accessible mobile platform to develop for. This made it ideal for prototyping 
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the mobile application. It’s also compatible with tensorflows mobile package tensorflow lite. 

All of these reasons contributed to java being selected as the development language for the 

mobile application, along with the language's familiarity.  

4.2 Mobile Application 

The platform chosen for the mobile application was android OS. This was because of 

its ease of access and how familiar java was. Android OS was also compatible with TensorFlow 

Lite making it the ideal platform to prototype with. Android OS also has the largest market 

share of mobile devices, meaning that in any given local, one is more likely to find Android OS 

users than any other mobile platform. This means that when it comes to testing out a prototype 

based on high usage, developing for android OS will yield the best results during testing. To 

develop the mobile application, the following tools were used: 

4.3.1 ANDROID STUDIO 

Android studio is the native IDE for android development meaning it has the most 

optimised tools for development.  

4.3.2 TENSORFLOW LITE 

TensorFlow lite is an Android package developed by Google under TensorFlow to bring 

machine learning model usage to android. As such, it was the simplest to use. It also meant 

easier communication with the online model which is written in Keras using a TensorFlow 

backend.  
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4.3 Web Application 

4.4.1 VUE.JS 

Vue.js is a front-end web application framework written in JavaScript, HTML and CSS. 

It was selected for its simplicity and easy integration with a JavaScript backend. 

4.4 Neural Network 

4.5.1 KERAS 

Keras was selected as the leading package for model development for its relative ease 

of use when it comes to developing machine learning models, especially neural networks. Keras 

abstracts several steps in model development making it easier to prototype model architectures. 

Being based off TensorFlow however, it is still compatible with TensorFlow API’s including 

tensorboard and TOCO which is used to turn TensorFlow models into TensorFlow lite models.  

4.5 Web Service And Database 

4.6.1 NODE.JS 

Node.js, as mentioned earlier, was chosen for its more ideal development environment 

and the way it handles data requests and serving. Its asynchronous nature made it ideal for this 

project and lightweight deployment fell in line with the requirements of this project. However, 

being a JavaScript runtime, it is ill advised that Node.js be used for CPU intensive applications. 

This major drawback means that a lot of the heavy processing must be done off the service, 

which influenced the design choices of this project's architecture, as was suggested in an earlier 

section. Besides this drawback though, Node.js is still ideal as the web service platform. 
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4.6.2 EXPRESS 

Express is a Node.js web service framework that simplifies the development of these 

services. Express was chosen for its simplicity and support. As one of the most popular 

frameworks, development in express is simple and easy to trouble shoot. Express also handles 

many boiler plate functions such as setting up routes, the project structure and dependencies, 

while still allowing the developer to control the structure of the project. In this sense, it is much 

lighter than PHP In Laravel, which strictly enforces the MVC model, but still more forgiving 

and better supported than pythons Flask which requires one to manage a lot of the maintenance 

and development by hand (hence why it wasn’t in the top running for server side scripting). 

Express is easy to use but light weight enough to allow for unique system configurations. 

4.6.3 MONGOOSE  

The chosen database was mongoDB. Mongoose therefore was the best ORM choice for 

this project. 

4.6 Technologies   

Throughout development, many different technologies were used to support the systems 

creation. However, for each of the systems layers, a few notable technologies were instrumental 

to the systems development.  

4.7.1 MOBILE APPLICATION  

In the mobile applications development, three technologies aided the most in the app’s 

development. 
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4.7.2 ANDROID.HARDWARE.CAMERA 

The Android hardware camera package was the main package used to implement the 

ShowCamera.java class which handled the camera view of the application. This package allows 

in app access to the device's physical camera, allowing for a customized camera view and image 

capture handling. An inbuilt camera was proffered for this application (over an intent call as is 

common practice for most camera use cases) for two main reasons.  

• The TensorFlow lite interpreter takes in a bitmap object which it then converts to a byte 

buffer for use in the interpreters run function which does the actual classification. As 

such, it was more efficient to send in the raw image bitmap generated on image capture 

than to launch an external camera application, get the Image URI then convert it back 

into a bitmap for use in the interpolator.  

• An inbuilt camera makes the application more immersive and involved than one that is 

launched whenever a user needs it. It always keeps the user in the application and 

minimizes the number of screen changes that need to happen whenever a user uses the 

application. It also allows for custom interactions with the camera to be made such us 

labeling on the fly in the explore activity or answering correct or wrong to image 

classifications in the guess what activity.  

These reasons created the need for an in-built camera module. However, the decision to 

go with a custom built one as opposed to a ready built package to allow for a greater degree of 

development freedom and for the wider support available to the native camera package than 

other ready built packages. Though the behavior of the camera is rudimentary at this level, it 
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offers far more in the way of use case customization in further developments of the system than 

other ready built packages. 

Customisation is important for this application since data standardisation is a major 

requirement of the system in its future development. As such, being able to programmatically 

limit or even lock the aspect ratio, image orientation, focus level and other image features, is a 

valuable option afforded by a custom built camera since these are options that can be setup 

when creating the camera surface using the camera.getParameters() function. For this 

implementation, the parameters set were the max camera size available to the camera and auto 

focus to keep the principle object in focus.  

4.7.3 COM.ANDROID.VOLLEY  

Communication with the web service is a major requirement of this application. As 

such, the android Volley library was a key component of the applications functionalities as it 

was the main handler of the systems network communications. Volley works by creating a 

request queue that adds new requests as they are made to itself. These request objects handle 

the raw parsing of data, leaving the request queue to handle all network transactions.  

A volley manger was built for the application to modularise the use of the request queue. 

String requests are used to send and receive data over the request queue.  

4.7.4 ORG.TENSORFLOW.LITE.INTERPRETER 

The TensorFlow lite interpreter in the main package used to run classifications using 

the downloaded model. The interpreter used In the application is a java wrapper for the lower 
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level C++ API that runs the model from a “.tflite” file, the file format of the converted model. 

This package forms the core of the applications prediction functionality. 

The interpreter relies on the FlatBuffers file format which is a robust cross platform 

serialisation library, allowing models to be used by the C++ API and via the Java wrapper class 

used in the application. As such, data is converted into byte buffers for use by the model.  

The surrounding TfLiteImageClassifier.java class follows Shekhar’s TensorFlow lite 

example implementation, which borrows heavily from TensorFlow's own example 

implementation of on device image classification. This is considered the standard 

implementation as it contains the supporting functions for model use such as the bitmap to byte 

buffer conversion, the load model function and get sorted results function. The main differences 

between the TensorFlow example and Shekar’s is; 

• The use of a Classifier interface, which defines the Recognition class, a class that 

represents the form each recognition is supposed to take. 

• A static constructor function that simplifies model use in the given activity. 

• A more modular approach to the classes uses since it allows hyper parameters like image 

input size and model path to be specified in said class. 

• It has the facility for quantized models to be used by specifying a Boolean value to use 

a quantized model. This is an important consideration for future works as it will require 

little effort to test and use quantized models which run faster than byte models (being 

used here). 
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This implementation was also chosen for it use case similarity to this project. The 

example being followed worked using a conventional camera and so was more ideal as a starting 

point than the TensorFlow example which ran classifications on a live preview screen, meaning 

that heavy modification would be required to make the standard implementation more suitable 

for this use case.  

Modifications were however still required, namely in the model path requirement for 

the application. In order to allow the application to update the model over time, the model needs 

to be written to internal storage. This meant that the class had to be modified to remove its 

dependency on the assets folder that is read at APK build time and thus, is not write accessible. 

This was implemented in the model load and static create functions to allow for an activity 

context to be passed, allowing for the model path to be called. 

4.7.5 WEB SERVICE 

The web service facilitated the majority of the communication in the system. As such, 

even though its routing package server-side technologies where extremely useful, the two main 

modules that assisted the most in cross system communication were:  

4.7.6 PYTHON-SHELL  

Python-shell was an instrumental module to the functionality of the web service. 

Python-shell is a package used to communicate with a specified python environment, allowing 

the Node.js web service to run python scripts from within the service. This is what allows the 

service to issue commands to the model training layer by calling the script and setting the 
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python and script path. It records all the print outputs of the python console to its data callback 

as an array, thus allowing one to query the output using javascript array slice method to retrieve 

specific data from the output.  

To this effect, data.slice(-2) is called in the train API to get the last two string outputs 

which are the model name saved and a “train complete” statement. This is used by another 

callback function to trigger the release of the mobile model update procedure that allows the 

mobile application to make a successful model update API call.  

4.7.7 MONGOOSE 

MongoDB was the database of choice and was used extensively to store the images and 

model train data. It served as the intermediate data layer of the entire system, storing all useful 

data points. Mongoose was used to add new images on behalf of the mobile application and 

retrieve new models for update for the application. It was also used to retrieve model data from 

the DB and send it to the mobile application. In this way, it facilitates data persistence and 

abstraction by not requiring data be stored in the services file system. 

4.7.8 PYTHON ENVIRONMENT  

The python environment is a package specific distribution of python that hosts all the 

dependencies needed to run the functions associated with the model training. However, in this 

context, it is considered as the model train layer of the system where all the python-based 

functionality runs. As such, two major packages were instrumental to its proper execution.  
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4.7.9 PYMONGO 

As was mentioned above, mongoDB was selected as the DB of choice and so to 

communicate with it, Pymongo was chosen for is ease of use and wide support within the python 

community. This was used in a DB_handler.py module where the image_download and 

model_upload upload functions are implemented. 

 The image_downlaod function works by going through each photo in the Photos 

collection and first checking if the given label is recorded in the data file system of the python 

environment. If not, the function creates a new a file, adds the image to the file and writes the 

label to lables.txt file for reference sake. However, if the label exists, the file directory with the 

corresponding label is opened and the image is written to the file using its given name from the 

DB. This makes all the images available for training purposes when called and is called at the 

beginning of the train_handler.py script which handles all training logic.  

The model_upload function works by collecting basic training meta data such as number 

of trained images, trained labels, image count by label, time of train and the current train 

iteration. It then adds the data to the “models” collection along with the trained model. This 

function is called at the end of the train_handler.py script.  

4.7.10 TENSORFLOW 1.13.1 

TensorFlow provided the main backend for the systems training. However, the 1.13.1 

release of TensorFlow was specifically useful as it provided a two major benefits over previous 

releases of the package. These were its improvements to keras, the high-level model building 
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wrapper, and the addition of TfLiteConvertor class to the package. The specific improvements 

are as follows. 

• Keras: In previous iterations of TensorFlow, keras was used mainly as a separate 

wrapper that worked with a TensorFlow backend. While this was not an issue, 1.13.1 

vastly improved the functionality of keras by incorporating it directly into the 

TensorFlow library. This means that models built using this version of keras, I.e. 

tensorflow.keras as opposed to native keras, are optimised to run on the TensorFlow 

backend and thus run faster. The other benefit this has is that TensorFlow officially 

supports this version of keras and will be using it as its high-level wrapper in the 

upcoming 2.0 versions, meaning models created using this API will be supported in the 

long term with future improvements to TensorFlow. This helps future proof the system 

and further simplifies development overhead in future implementations of this project. 

• TfLiteConvertor: The inclusion of this class to the 1.13.1 variant is one that vastly 

simplifies the development cycle of the system and helps make it more robust. The 

TfLiteConvertor class handles the conversion of models from their current form, either 

keras or raw TensorFlow models, into a TfLite flatBuffer file to be used on mobile 

devices. In previous iterations of TensorFlow, specifically the 1.11.0 version that was 

available at the start of this project, model conversions had to be done through a 

secondary TOCO package which needed to be built and run using Bazel, making it more 

difficult to work with, and thus, more prone to error. TfLiteConvertor completely 
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removes the reliance on Bazel and simplifies the conversion procedure by presenting 

useful function for running the conversion.  

These improvements greatly simplified the development process, and given that they 

are slated for TensorFlow 2.0, system is guaranteed improvements with future releases.  

4.7.10.1 KERAS 

As was mentioned above, the keras package used was the tensorflow.keras version, thus 

it benefits from the under the hood optimisations made in TensorFlow. Beyond this though, 

keras was used to build the model used for training. It was chosen over raw TensorFlow for its 

ease of use and relatively short code base. Although raw TensorFlow has more customisability 

and functionalities than keras does, most of these functionalities are unnecessary for this 

projects scope. Highly prototype-able model building was favored over highly functional model 

building, thus making it the better option for this project. Keras's sequential model class was 

used to build the model by adding new layers to the sequential model object.  

The model was built using the following structure: 
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Figure 4.1 
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It uses an Image Data Generator in its input layer to create new augmented images from 

input images to boost the dataset and further improve its performance when given small 

datasets. This model was developed from unit testing and inspired by Rosebrok’s tutorial [site] 

4.7.10.2 TFLITECONVERTOR 

TfLiteConvertor was the class used to programmatically run conversions of the trained 

model. Given that the outputted model was a keras .h5 file, the from_keras_model_file() 

function was used to get the converted model for use. This conversion is run at the end of the 

train_handler.py script. 
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Chapter 5: Testing And Results 

5.1 Development Testing 

5.1.1 UNIT TESTING  

During unit testing, individual components of the application were tested to unsure 

functionality. Key sections tested here were model volition accuracy, webservice 

communication with the application and web service communication with the python 

environment.  

5.1.1.1 VALIDATION ACCURACY 

During this testing, the model was trained on 14 classes in the caltech 101 dataset[15]. 

These classes were chosen for their relative relevance to the local context of the systems 

expected deployment.  

 

Number of files in Training-set:        1029 

Number of files in Validation-set:    257 

….. 

Training Epoch 28/30 --- Training Accuracy:  94.0%, Validation 

Accuracy:  64.0%,  Validation Loss: 1.354 

Training Epoch 29/30 --- Training Accuracy:  94.0%, Validation 

Accuracy:  64.0%,  Validation Loss: 1.365 
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Training Epoch 30/30 --- Training Accuracy:  94.0%, Validation 

Accuracy:  64.0%,  Validation Loss: 1.386 

Training from script complete! 

From the above text copied from the console output, one can see how well the model performed 

on this dataset when given 30 epochs to train on. The loss function is calculated using cross 

entropy  

5.1.1.2 APPLICATION COMMUNICATION  

A major part of the systems functionalities is its ability to communicate with the mobile 

application in order to facilitate photo sending and model updating. to test this feature, the “test 

server” button was added to the app. This button triggers a function to send a string request to 

the server, which responds with “A- OK!” if there is a connection. This was used during 

development to ensure that the app was connected before testing any other components.  

5.1.1.3 PYTHON ENVIRONMENT COMMUNICATION 

Communication with the python environment went through a number of iterations to 

reach a stable state. The main features that needed testing here were training trigger and 

database handling. To this effect, 3 functions were developed to test this using two different 

packages, child-process and python-shell, both of which could be used to communicate with 

the python virtual environment.  

exports.db_pull = function (req, res) { 
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var options = { 

        // pythonPath: "path", TODO: use virtual env path here 

        args: ["label"] 

    }; 

    PythonShell.run('/home/sai-pher/work/test_projects/CNN_test/mongo_test.py', options, 

function (err, data) { 

        if (err) res.send(err); 

        res.send(data.toString()) 

    }); 

}; 

This function uses the python-shell package to specify the python path and arguments 

for the function. It runs the mongo_test.py file which returns a list of the labels in the database 

to the server. This show that communication between all layers of the system via the service is 

working. 

5.1.2 COMPONENT TESTING  

This testing puts together multiple units in the system to test. Major components tested 

were the photo sending sequence and retrieval. A mock gallery was created to show photos 

added to the database via the application. This tested both the send function on the application 

and the API on the service responsible for saving pictures in the database.  

This component was shown to work as new photos were added to the database after 

capture and shown in the gallery. The python train.py function was also tested and shown to 



 
 
 

 

 

51 
 

work, showing that that the train trigger component also worked. In the mobile application as 

well, the entire Explore component is shown to work as intended, since it has been able to meet 

the system requirements set out for this feature. 

Another component tested was the “Guess What?” feature. This was done by manually 

by moving a self-trained model to the Android app and seeing how it worked in the app. To this 

effect, the “Guess What?” feature was shown to work by displaying the predictions of captured 

images. This showed that the camera activity in the feature was successfully able to send images 

to the TFLite module and send back predictions. 

5.1.3 SYSTEM TESTING  

This testing put together system components for testing together as an entire system. 

For this, a larger test was used to validate the system. Brand new images were taken with the 

“Explore” feature. 
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Figure 5.1 

Labeled images were uploaded to the database. See image bottle20190423_032149.png 

(record one) for reference 
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Figure 5.2 

The train sequence was triggered after fifty images were added with the post request, in 

accordance with the train logic.  

 

Figure 5.3 

The trained model was then uploaded to the database for use on the mobile device.  
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Figure 5.4 

The application was then updated with the new model and tested in the “Guess What?” 

feature. This showed that the entire train sequence worked as expected and was ready for user 

testing.  

5.2 User Testing  

In user testing, the system is deployed and given to users to see how they interact with 

the system. For the scope of this project, the test environment is the Ashesi University campus. 

The testing phase will be carried out with the following plan. 

• The system will be deployed on a developer computer to simulate a server. 

• A call for users will be sent out. 

• All would be users will be briefed on the scope of this project and how to use the 

application in its test stage. 

• Users will be given the mobile application to use within the Ashesi context.  

• The model will be trained on after every 50 images. 

• The applications will be updated once training is complete.  
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• Users will be asked to test the model frequently and add specific data as they see fit. 

• The model will be tested against a baseline model trained on generic data to see how 

well the user taught model performs compared to it. 

5.2.1 TESTING RESULTS 

The system was successfully user tested within a controlled environment. Five 

individual users were asked to add images within a specific area (the Ashesi Engineering block) 

that had the following labels: bottle, chair, bag, plant, laptop and phone. Two hundred images 

were added at the end of testing and models generated for each fifty-image block.  

 

Figure 5.5 

The image break down at the end of testing was as follows: {"laptop": 31, "phone": 19, 

"chair": 35, "bottle": 41, "bag": 22, "plant": 52}. This was a small dataset and as such, the 

individual models did not perform well enough to be useful for the “Guess What?” feature, with 

most predictions yielding “chair”.  
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Figure 5.6 

The testing and validation loss especially showed that the model was not behaving as 

one would hope, with validation loss showing no improvement after twenty epochs on the two 
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hundred image model. 

 

Figure 5.7 

However, this behavior is to be expected as more data will be required for any real 

improvement to show. A positive result of the user testing however was that two hundred 

images was reached within a remarkably short time even with only 5 participating users. Each 

user group was able to add fifty images within the space of 10 minutes of image capture. With 

each user capture above twenty images during the session. The testing phase was thus a success 

in that it showed users could reliably add images to the system and that sufficient data amounts 

can be reached within a short period of time if the user base is increased.  

An interesting behavior that was observed during testing was between the third and 

fourth training sessions. The system was updated to show users how many of each label had 

been added to the system after each successful image addition. Users in this training block were 

asked to take pictures of any of the labels. However, when a user saw how many plants were 

trained on in session 3 (14 plants) the user decided to gather only images on plants, increasing 
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the plant count to 52. When asked why they did this, the user stated that they wanted to model 

to make more plant predictions, hence their interest in gathering plant data.  

This falls in line with the argument made for incentive in the introduction, where users 

found it easy to add usable labeled images of things they wanted the system to do better on. 

This behavior will be an asset to the system once it begins to reach a critical data point where 

it can adequately begin to reduce the validation loss as expected.  
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Chapter 6: Conclusion And Recommendations 

6.1 Conclusion  

To assess the systems achievements, we look at the objectives this project set out to 

achieve.  

• Build a research mobile application to teach an AI (Assistive Intelligence) image 

classification by exposing it to real world examples, tagged by users of this 

application. 

• Use server-side technology to collect, train and update the applications classification 

abilities. 

• Build a proof of concept system based on image classification to show the active 

teaching technique is feasible. 

• Use the application for open, consensual data collection in a local setting. 

From these objectives, we can deduce the following.  

The system, built as a proof of concept, achieved its main goals by successfully showing 

that active teaching is a viable option for training new AI and Machine learning algorithms.  the 

system adequately allows users to label new images and test the model on similar images. The 

system adequately manages data across the various facets of the system, successfully moving 

it around to where it is needed and when. The system proves that a model can benefit from user 

added data quickly and performs reasonably well within the domain of its use.   
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Beyond its technical achievements though the system shows that with more 

development, a good case can be made for a system that relies on both public involvements as 

much as on the technicians building the AI and machine learning algorithms of the future. 

Within a relatively short period and with only a few initial test units, the system was able to 

generate a significant number of images within a lab testing scenario, showing that the system 

will perform even better with greater numbers.  

The system also shows promise for its wider goal, which is to create a home grown, 

African AI project that seeks to tackle the issue of bias plaguing the ML community. Having 

been tested within the Ashesi community, the system shows similar results to those seen when 

tested on generic available data. And although the testing did not feature a “people” class for 

data privacy reasons, it is easy to see how a traditional AI’s bias towards primarily Caucasian 

individuals being classified correctly would be flipped on its head in an African context. This 

thus shows that in its current form, the system can perform well within it used domain since the 

bias it will generate will match what the domain requires of it. 

This presents its own interesting set of challenges, namely being that the system may 

begin to reflect societal biases more prominently than ever before. However, this too can be an 

opportunity to bring the public closer to the development of AI and an avenue for greater 

discussion into how much of bias is the fault of AI versus that of the society that trains it?  

This isn’t to say that the systems sensitivity to bias is all bad. The systems bias can also 

be used to balance out current biases, especially when the new data coming in is from previously 



 
 
 

 

 

61 
 

underrepresented groups, thus making a model generate more realistic predictions than those 

tested on available data. However, further testing will be required to show just how sensitive 

the system can be to bias. 

But perhaps the systems greatest possible benefit is how it opens the possibility for other 

machine learning projects to access new useful data, especially for projects where lack of data 

is a problem like low resource language machine translation. As a system intended to be a 

platform for collaborative, crowd sourced AI development, it is possible to see a future where 

this system is used to gather useable data for low resource languages from the people who use 

them the most. This presents an opportunity for a new wave of African developers to adopt the 

old adage, “it takes a village to raise a child” for a new world. One where AI is taught by a 

global village of technicians and users that hope to see it grow into a responsible part of our 

society.  

6.2 Limitations  

Though the system functions as expected, there are still many areas where 

improvements can be made across the stack.  

6.2.1 MOBILE APPLICATION 

• The application is a prototype model. As such, its views are functional only and do not 

represent a production ready application. 

• The Explore feature cannot be used properly offline, as it requires an internet connection 

to send data to the server, and has no offline caching implemented. 
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6.2.2 WEBSERVICE  

• The webservice only supports the functional requirements of the system and thus, does 

not provide a good user experience. 

• The train logic currently runs on a counter that resets after every 50 pictures. This is not 

ideal for a full system as it means the training will be triggered too often. Beyond 

changing the limit however, it is still not ideal to keep it locked to a fixed number as a 

fixed number will not guarantee significant improvements to the model, relative to the 

resources training will take up. A better solution may be to make training happen when 

the new image counter is perhaps equal to 20% of the full data set and server resource 

consumption is below an acceptable threshold.  

6.2.3 PYTHON ENVIRONMENT  

• The image_download() function currently has an O(n) runtime where n is the total 

number of images in the database at the time it is called. This is problematic as it means 

that it adds to the overhead of the train_handler.py script which has an O(n2) run time. 

A more ideal solution will be to download only the most recent images from the 

database at train time. This won’t reduce train time, but it will reduce the computational 

overhead of the script. The recourse efficiency of this will however be tied to the train 

activation logic and needs to be considered in future implementations. 

• The train_handler.py script currently runs at an O(n2) run time over multiple training 

runs. This is because the training function takes longer each time as more data gets 

added since it trains on the entire available dataset each time. This will be a problem as 
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the dataset grows and training gets triggered more often depending on the train trigger 

logic. This can be fixed by using transfer learning to only train on new data and can be 

implemented in the future in order to greatly reduce the resource consumption of 

training. 

6.2.4 FURTHER LIMITATIONS 

Beyond the individual components of the system, there are other limitations that this 

project has.  

• The system currently does not have a way to validate data coming in is accurately 

labeled. 

• The system does not have a way to stop unwanted data, such as people's faces or 

sensitive information, from being added. 

• The system does not currently collect user related data. Though this may be good for 

privacy, it limits the potential of the system to learn from user data collection behavior.  

• In its current form, it is technically possible to over fit a model to a given context by 

saturating the database with images from this context. For example, if all users take 

pictures of the same tree, the system will perform extremely well on that tree but terribly 

on other plant images. There is currently no technique to control for this eventuality.  

• Given the current train logic, it is possible to overlap multiple training sessions, putting 

massive load on the server hardware and slowing down train and update times as the 
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data grows. This is a major issue that will have to be tackled to ensure the full scalability 

of the system within a resource constrained environment.    

6.3 Recommendations And Future Work  

6.3.1 RECOMMENDATIONS  

In order to improve the system, the following recommendations can be followed up on 

handle the limitations of the system. 

• The single most useful thing that can be done to improve the system in its current state 

would be to improve the training logic. This will minimize the number of trains, making 

each cycle as beneficial to the model as possible without overloading the server. The 

factors to consider for this are; 

o Spacing: The logic should space out each training cycle as much as possible 

while keeping updates within a reasonable, predictable time from.  

o Data availability: Train triggering should still be tied to the availability of new 

data. However, using data ratios may be more useful than a fixed limit, since as 

the model improves, it is unlikely that a fixed amount of data will affect its 

incremental improvement.  

o Off peak times: Time should also be a factor for training. Specifically, using a 

scheduled time to run training when the server is at its lowest load. This will be 

to ensure that resources will be available and that users can reliably expect 

updates.  
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o Overlapping: The logic should also work to minimize training overlaps 

whenever the API is hit to reduce the number of redundant trains. This can either 

be done with processes locking or a check system on the webservice that makes 

sure a cycle is done before it triggers the next cycle. 

6.3.2 FUTURE WORK 

Beyond the improvements that can be made to the system by tackling the limitations 

outlined above, working towards making the app more user friendly and production ready is 

something that can be tackled in future work. Namely, 

• Optimizing the user interaction of the application. 

• Paying close attention to the user experience of the system. 

• Adding user specific profiles to make models more personal. 

• Allow for dataset requests or downloads from other researchers, providing access to a 

standard new dataset. 

• Adding a production ready data validation system. 

• Making the app security optimized. 

Something else that can be tackled in future work would be to use transfer and 

reinforcement learning as part of the systems core suite of tools for improving a base model as 

more data is added and users use the guess what feature.  

Another thing that can be tackled with future work would be to use this system to 

develop more useful AI and Machine Learning models such as those used for Low resource 



 
 
 

 

 

66 
 

language machine translation. This system can be used as a novel approach to gathering data 

since users will effectively be teaching the system how to speak their language. 
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