

ASHESI UNIVERSITY COLLEGE

An SMS -to- Burro Database Gateway System to

enable Burro have access to information from their

Central Database via SMS

Applied Project

B.Sc. Computer Science

By

Momodou K Sowe

Spring Semester 2017

ASHESI UNIVERSITY COLLEGE

An SMS -to- Burro Database Gateway System to

enable Burro to access information from their

Central Database via SMS

Applied Project

Applied Project submitted to the Computer Science Department, Ashesi

University College in partial fulfilment of Bachelor of Science Degree in

Computer Science.

Momodou K Sowe

Spring Semester 2017

DECLARATION

I hereby declare that preparation and presentation of this applied project were supervised in

accordance with the guidelines on supervision of applied project laid down by Ashesi

University College.

Candidate’s Signature:

……………………………………………………………………………………………

Candidate’s Name:

……………………………………………………………………………………………

Date: ……………………………………………………………………………………………

I hereby declare that preparation and presentation of this Thesis were supervised in

accordance with the guidelines on supervision of Undergraduate Thesis laid down by Ashesi

University College.

Supervisor’s Signature:

……………………………………………………………………………………………….

Supervisor’s Name:

……………………………………………………………………………………………….

Date:

………………………………………………………………………………………………

ii

Table of Contents

DECLARATION ... i

Table of Contents .. ii

Acknowledgement ... iv

Chapter 1: Title and Introduction .. 1

1.1 Project Overview: ... 1

1.2 Background: .. 1

1.3 Overview of the Marathon System: .. 2

Chapter 2: Requirements ... 4

2.1 Requirements Gathering: .. 4

2.2 Use Cases: ... 5

2.2.1 Marathon Administrator Scenario: ... 5

2.2.2 Marathon Staffer Scenario: .. 5

2.2.3 Marathon Reseller Scenario: .. 6

2.3 Functional Requirements: ... 7

Adding a User ... 7

Deleting user functionality .. 7

Find Marathon users ... 7

The ten (10) different Fodder queries ... 8

Help functionality to tell the users how to structure their Marathon commands and Fodder

queries ... 10

Response and Error handling .. 10

Keep records of the communication through the system .. 10

2.4 Non-Functional requirements ... 11

Chapter 3: Architecture and Design .. 12

3.1 High-level System Architecture .. 12

3.2 Software Design: ... 14

3.2.1 Functions Descriptions:.. 14

3.2.2 Flowchart Explanation: .. 19

The following explains the software architecture (fig 2) on page 12: .. 19

Chapter 4: Implementation ... 29

4.1 Hardware ... 29

4.2 Software .. 29

4.3 PostgreSQL Database ... 31

Chapter 5: Tests & Results ... 32

iii

5.1.1 Software Component.. 32

5.1.2 PostgreSQL database component ... 32

5.2 System-level testing .. 33

Fodder Queries: ... 33

Help functionality ... 34

Finding Marathon users Functionality .. 35

Adding User functionality:.. 35

5. Delete User Functionality ... 35

5.4 Analysis of test results .. 36

Chapter 6: Conclusion & Recommendation ... 37

6.1 Project Summary ... 37

6.2 Recommendations ... 37

APPENDICES .. 38

Appendix 1: The re module .. 38

Appendix 2: The String module .. 38

Appendix 4: The pyodbc, time, and serial module ... 39

Appendix 5: The user manual ... 40

Appendix 6: Oliver’s Hardware Manual ... 43

Appendix 7: Oliver’s Software Manual .. 50

References ... 55

iv

Acknowledgement

I would like to express my special thanks of gratitude to my supervisor, Dr. Buchele, who

even though sometimes I acted troublesomely, still effortlessly managed to keep me on my toes

and diligently went through my work to point out areas I could do more. She really did turn me

into detail oriented individual. I also thank the Burro ICT manager, Mr. Godwill, who gave me

the golden opportunity to do this wonderful project on SMS Automated Systems for Burro

Brand Ghana Limited. I earnestly thank my project partner, Oliver, for sharing with me the

necessary information I needed to effectively pick up where he ended. I am thankful for this

new knowledge gained over the course of the project which would not have been otherwise

possible without them.

Secondly, my Computer Science lecturers and friends. I sincerely thank them for their

aspiring guidance, priceless helpful criticism, and friendly advice related to the project. I am

truly grateful to them all for sharing their honest and enlightening views on many issues about

this project.

Chapter 1: Title and Introduction

1.1 Project Overview:

Marathon is the nickname of this project. The aim of the project is to automate the process of

providing some of the most common information Burro Staffers and hundreds of Burro Resellers

throughout Ghana normally call to request from the Burro office. It aims to provide information

such as prices, contact info, and discounts from the Burro central database, Fodder, via SMS text

message queries even to those in the remotest parts of the country. For example, if a Burro

Reseller who resides in a no internet zone wants to look up a certain Burro product’s price, the

person sends the question in plain language to Marathon’s number (MTN sim card in a GSM

module sitting in the Burro server room) and Marathon will process this request and sends back

the answer right away. Marathon aims to save time and resources for Burro as wells as to make

this process easier.

1.2 Background:

Burro Brand LLC is a company in Ghana. They sell productivity enhancing products such

as solar lights, coal pots, phone chargers, and agricultural equipment. Burro has one office in

Koforidua and hundreds of resellers throughout the country. Information like prices, contact

information, and discounts is saved in Burro’s central database, Fodder. Currently, Burro

Staffers and Resellers throughout the country call the office to get information. A lot of time is

spent answering phones and looking up information for the caller. As a Burro software engineer

intern, I found this process slow and cumbersome and wanted to automate it. An engineering

student and fellow Burro intern from Brown University named Oliver Carlsen Moller and I

then decided to build Marathon. We divided the project into two parts; Oliver developed

version 1 which is the hardware and communication protocols set up, and I developed version

2 which expanded the system to deliver more information to the user and increase the user base

(Burro Administrators, Burro Staffers, & Burro Resellers).

2

1.3 Overview of the Marathon System:

Marathon consists of a Raspberry Pi 3 single-board computer, connected to an Adafruit Fona

GSM texting module. The Raspberry Pi is set with the Raspbian Linux distribution and other

supporting software. This makes the system highly flexible and able to read, send and process

SMS text messages while interfacing with other systems such as the Burro SQL server, an

internal PostgreSQL Database on the Pi, and the Internet. Python was used to write the drivers

and to make the hardware interface. The system uses a standard-sized MTN sim card which

resides in the GSM modem.

Marathon, like many other SMS based Information Systems, has four (4) functional features

pertaining to query processing; validation check, which is used to check if a submitted query

is syntactically correct or not; Parsing and Normalization, which is used to take out any

characters that could cause trouble; Relevance Check, which is used to check if the query

matches any inbuilt query; and finally the Query Conversion, which converts the text to SQL

in other to query the server (Joshi & Pathak, 2014). However, unlike many other systems,

Marathon uses a GSM modem connection and not an SMS Center (SMSC) of the service

providers. This makes Marathon easier to setup and even more cost efficient. Marathon saves

Burro cost and the hurdle of finding SMSC of service providers to connect the system. Also,

with the MTN SMS bundle service, for instance, the Marathon SIM can currently be bundled

for a period of one month as low as GHC1.00 for 50 SMSes whereas, for an SMSC of service

providers, a monthly fee or a minimum monthly SMS volume is often required.

Marathon has an internal PostgreSQL database table of trusted numbers. Only phone

numbers that are added to this table can use Marathon. Marathon has three (3) different type of

users; Burro Administrators, mainly the ICT managers, Burro Staffers, mainly the sales team,

and the Burro Resellers. However, to avoid confusions, in relation to Marathon’s type of users,

I will strictly refer to these as Marathon Administrators, Marathon Staffers, and Marathon

3

Resellers respectively. The Marathon Administrator has the highest set of privileges, followed

by the Marathon Staffer and then the Marathon Reseller. A Marathon Administrator can add

or delete any user from the system. A Marathon Administrator and the Marathon Staffer can

check all the resellers using the system. The Marathon Resellers have limited access to

Fodder’s information for security reasons.

Marathon can process 10 different type of Fodder information requests. For example, if a

Marathon Staffer wants to find sales details of a reseller, the user sends in “sales details [ID of

reseller]” to Marathon’s number, and it will get you your request, typically in a fraction of

seconds. The Marathon query structures are designed to be short to allow ease of use and to

minimise errors. Marathon has a “help” functionality to let the user know what the system can

do and how to structure his requests. When the user sends “help” to Marathon, it will return:

“help with the marathon command structures or fodder queries?”. Depending on the category

the user replies with, the system pulls out all the names and structures of those queries

(commands) in that category. The Marathon commands are all the commands use to manage

the system such as adding a new user, deleting a user, or finding a Marathon user. They do not

interfere with Fodder or return any Fodder information to the user.

This is the goal of Marathon; to automate some of these most common information requests

for the Burro community to help them Do More, which is what Burro is about.

4

Chapter 2: Requirements

2.1 Requirements Gathering:

I travelled to Burro to gather the Functional Requirements of the System. Mr. Godwill and I

first went through the Marathon version 1.0 Oliver handed over to us to understand what the

system can do and to point out areas that needed further development. We recorded down our

thoughts and had a video conference call with Oliver. We identified four (4) different areas I

will work on; implement the Fodder Queries, which were 20 different Burro database

information queries; Modify the “add functionality” Oliver developed to restrict it to only

system’s Administrators; implement Help functionality, which aims to look up the different

existing Fodder queries and Marathon Commands the system can process; implement Refill

and Check credit balance functionality, which aims to provide a way the Marathon SIM can

be recharged and be able to know Marathon’s credit balance.

However, these functionalities changed over time and new functionalities evolved. During

the implementation process, I found out the need to break the system into three (3) different

sets of users (Marathon Administrator, Marathon Staffer, & Marathon Reseller) to increase the

user base and to enable the Burro Resellers query the some of the Fodder information on their

own. This raised some security issues I considered, for instance, a security measure to make

sure that no reseller access another reseller’s information. The number of Fodder queries did

also reduce to 10, and their query structures changed. Initially, the queries were a bit long, I

decided to shorten them to enable the users effectively able to use the system.

Initially, the add functionality enables every Marathon user able to add a new user. I

modified this functionality to allow only Marathon Administrators able to issue it. I added

another Marathon command, delete user functionality, which also only Marathon

Administrators can issue. I as well added another Marathon command, find Marathon user,

5

which finds and return the Marathon users. Detail of these functionalities is provided in section

2.3.

The Help functionality too did change. Instead of retrieving all the different existing queries

(commands) at once when as a user sends “help” to Marathon, the system returns “help with

the marathon command structures or fodder queries?”. Depending on the category the user

replies with, the system returns only the queries’ or commands’ names and structures in that

category. Section 2.3 provides a detail explanation of its implementation.

2.2 Use Cases:

Marathon has three (3) type of users; a Marathon Administrator, Marathon Staffer, and

Marathon Reseller. The following give scenarios of the three (3) different type of users:

2.2.1 Marathon Administrator Scenario:

A new Burro web developer just joined Burro and one of his roles is to oversee the Burro

ICT services. The Burro ICT manager, Mr. Godwill, plans to leave the company in a week and

wants to hand over his Marathon Administrative powers to this new person to manage the

system for Burro. Mr. Godwill will issue the add administrator command to add the web

developer to the Marathon as an Administrator, and in turn, the web developer (the new

Marathon Administrator) will issue the delete administrator command to delete Mr. Godwill

from the system. Practically, Mr. Godwill will send “add admin [name of web developer] with

number 024536632” to Marathon and the web developer will be added to the system as an

admin. To delete Godwill from the system, the web developer will send “delete admin [phone

number of Mr. Godwill]” to Marathon and Mr. Godwill will be deleted from the system.

 2.2.2 Marathon Staffer Scenario:

A Burro sales staffer who is currently in the Northern region doing point of purchase (POP)

sales on a market day, received an emergency call from his boss at the office that he should

6

consider making rounds around the region, to collect Burro faulty products from some of their

resellers on his way back to the office, for them to fix quickly as the Burro technician just

prompted him that he has only 3 work days to go on leave for 2 weeks. Before the Marathon

system, his boss has to look up Fodder to communicate the details of this information of all the

resellers in the region. With Marathon, the sales staffer can query Fodder via SMS text

messaging and immediately get an answer. He will send “reseller [phone number of reseller]”

to Marathon to get the ID and name of the reseller. He will then send “job card [ID]” to

Marathon to know the details of faulty products associated with the reseller; product name, the

status of the product (fixed or not), and the location of the product (with the reseller or at the

Burro workshop). This information he will filter and should be able to approach the right

resellers on his own for the cost of an SMS without having to call the office.

2.2.3 Marathon Reseller Scenario:

A Burro reseller, Abraham, who resides in the upper east region in a village called Bongo,

heard about Burro’s new products and wants to know the prices of some of these products to

consider making an order to resell in his village. However, because of the high demand for

these products, it is a busy time for Burro; few of their staffers are left in the office to do

administrative work and to help with incoming office calls. Many are in the field doing some

point of purchase (POP) sales, and some are busy transporting these products to their resellers.

Abraham has called the office several times but hasn’t gotten through, and sometimes there is

poor network connectivity in the area and he is unable to reach them. With Marathon, Abraham

can send “product [name of product]” and will quickly get all the details he needs to know

about the product and can decide to order the product or not, for a cost of an SMS.

7

2.3 Functional Requirements:

Adding a User

Only Marathon Administrators can issue this command. They alone can add new users to

Marathon. The add user functionality adds three different type of users; A Marathon

Administrator, Marathon Staffer, and Marathon Reseller. After successful user addition,

Marathon returns an acknowledgement message to both the adder and the new user. Command

structures to add any user are:

add admin [name] with number [number]

add staffer [name] with number [number]

add reseller [name] with number [number]

Deleting user functionality

Only Marathon Administrators can delete any Marathon user. If Burro decides that a certain

Marathon user should no more use the system, this is the functionality they will issue to delete

the user from the system. The functionality is designed to be simple, all the Marathon

Administrator need to have is the user’s number. After successful user deletion, Marathon

returns an acknowledgement message to both the Marathon Administrator and the old user.

Once a user is deleted, the user can send a text message to Marathon but will not receive a

message from Marathon anymore. The commands to delete any type of user are:

delete admin [number]

delete staffer [number]

delete reseller [number]

Find Marathon users

Only Marathon Administrators can find Marathon Staffers and Marathon Resellers.

Marathon Staffers cannot find other Marathon Staffers but only Resellers. Marathon Resellers

8

cannot find any user. You can find Marathon users in two ways; by searching for all at once,

or by their name. The commands to find Marathon users are:

all staffers

staffer named [name of person]

all resellers

reseller named [name of person]

The ten (10) different Fodder queries

The following are the different Fodder queries Marathon can process. Marathon Resellers

are limited to the first four (4) queries:

1.What is Reseller X’s ID?

Every Marathon user can execute this query, the search is based on reseller’s phone number.

This query returns a result indicating the reseller’s name and ID number, which is used for

subsequent queries about the reseller. Marathon Resellers, once they find their IDs, they can

ask the following three queries about themselves.

Query structure: reseller [phone number of reseller]

2. What is Reseller X’s transaction history?

This query returns answers to the following questions:

• How much does reseller X owe Burro, or what is his balance account?

• When did he last pay Burro, and how much did he pay to Burro, what is the payment

receipt no?

statement [ID of reseller]

3. What is Reseller X’s sales status?

This query provides answers to the following questions:

• Is Reseller X good, better, or best status?

• What is reseller X paid T90?

sale status [ID of reseller]

9

4. What is the price for product X?

This query provides answers to following questions:

• What is the Suggested Retail Price (SRP) a product?

• What are the good, better, and best prices for product X?

price [product name]

Only Marathon Administrators and Marathon Staffers can access all the following

information:

5. What is reseller X’s details?

This query provides answers to the following questions:

• What is Reseller X contact details?

• Where is reseller X located?

details [product name]

6. What is reseller X’s job card?

This query provides answers to the following questions

• Does Reseller X have any faulty products?

• Have they been fixed?

• Where are they located?

Job card [ID of reseller]

7. How many of product X are in the stock?

Getting total from all stock locations: count [product name]

Getting total from specific stock locations: count [product name, stock location name]

8. What is the latest note on Reseller X’s account?

Last Note [ID of reseller]

9. Who is the last person who contacted Reseller X?

Who called [ID of reseller]

10. What was the last product that was returned by Reseller X?

Last returned [ID of reseller]

10

Help functionality to tell the users how to structure their Marathon commands and

Fodder queries

All Marathon users can issue this command. It returns the list of Fodder queries and

Marathon commands the system can process, and their structures. However, to reduce cost,

these queries and commands are grouped into two categories, “help with fodder queries”, and

“help with Marathon commands”. If a user sends in “help”, the system will return these two

categories from which the user will decide which information s/he needs. If for instance, the

user is interested in the Marathon commands, s/he will send in “help with marathon command”

and the system will return the Marathon commands. The same applies when s/he sends “help

with fodder queries”. The following are commands to get help with Marathon:

“help”

“help with fodder queries”

“help with Marathon commands”

Response and Error handling

The system will return appropriate acknowledgement messages to the user(s). For example,

when a user is added, Marathon will send a welcome message to the newly added Marathon

user, and another text message to the Marathon Administrator, acknowledging that the new

user is successfully added. In the case of errors, Marathon will send back an error message to

the Marathon Administrator.

Keep records of the communication through the system

Marathon keeps a log of all the transaction that happens in the system. For instance, if a

user is added to Marathon, the system keeps a log of who added who, and if there were

errors, it logged them before it sends a response to the user. Oliver developed this functional

requirement.

11

2.4 Non-Functional requirements

(i) The user must have a telephone that sends and receives SMS to be able to use Marathon

(ii) The user must have a Ghana phone number to be able to use the system.

(iii) The user and the Marathon SIM must have credit units in other to be able to send and

receive SMS from Marathon respectively.

(iv) The user must be in a network coverage area to be able to send and receive SMS text

messages from Marathon

(v) The intranet at the Burro office must be up for the system to work

12

Chapter 3: Architecture and Design

3.1 High-level System Architecture

Fig 1

The following is a high-level architecture of how the system works

• A user sends a text with some query like "reseller 0243405663"

• The GSM module receives this text

• The GSM module passes the text to the Raspberry Pi, along with the phone number of

the sender

• The Raspberry Pi checks the phone number of the sender against an internal database

of trusted phone numbers to make sure the sender can access the system. If the phone

number is good, then it passes the message along to a Python script.

• The Python script in the Raspberry Pi picks up the text message and parses it, looking

for key phrases to see what the user wants. In this case, it recognises the phrase "reseller

", meaning that the user wants to look up the ID of a Burro Reseller.

• The python script logs onto the Burro Server, using an SQL connection and looks up

the reseller with number 0243405663

• Having received the answer, the script puts together a text and passes it to the phone

module. In this case: "RESULT: ID – 1127 Name - Momodou K Sowe",

• The phone module receives the text and puts it in a text message to be sent back to the

sender.

• The sender receives an answer in typically just seconds.

13

Fig 2

14

3.2 Software Design:

Marathon has many functions defined to simplify the code and to enable code reuse. The

Marathon program is broken down into four (4) scripts. One of the scripts (Marathon.py) is the

main script that runs infinitely in the background when the program starts. It initiates the

hardware connection protocols. It connects Marathon to the Burro Server, the GSM module,

and the internal PostgreSQL database. There is another script called the MarathonFunction.py.

This script mainly contains a class called MarathonFunctions which defines all the functions

that treat the SMS. Another script is the MarathonCommand.py. This script contains all the

Marathon commands. Another script is the Fodder.py which contains all the Fodder queries.

The MarathonFunctions class in the MarathonFunctions.py script contains the following

functions. The first seven (7) and the ninth (9th) function were developed by Oliver.

3.2.1 Functions Descriptions:

1. ReadFonaResponse: This function reads the response string from the Fona (GSM Module).

If there are no text messages, the function goes into waiting for a five (5) seconds before calling

on the system to check the inbox again. If there are text messages, the function passes them on

to a function called TakeOldestSMS.

2.TakeOldestSMS: This function selects the oldest SMS in the list passed by

ReadFonaResponse. The oldest SMS is the one that reaches the Fona’s inbox first. This oldest

SMS is then passed to another function called SanitizedText.

3. SanitizedText: This function takes out any characters such as apostrophes, double quotes,

semicolons from the SMS that could cause trouble for instance when logging the text in the

PostgreSQL database, and when looking for key phrases to see what the user wants. After the

text is sanitised, it is then passed to another function called CheckPhoneNumber.

15

4. CheckPhoneNumber: Marathon has internal PostgreSQL database which stores all the

Marathon users’ numbers and names. This function checks the phone number in the current

SMS against the table of trusted numbers from this database.

5. SelectFunction: This function figures out which functionality the user is requesting. It

matches the text message with inbuilt string to decide which functionality to execute.

Depending on the type of functionality the user wants to execute, it either calls that particular

functionality to execute directly or calls another function to first check if the user is allowed

access. I added the latter to tighten security measures. Regardless of the functionality the user

wants to execute, the SendResponseSMS always got called at the end to send back the response

to the user.

6. SendResponseSMS: This function sends a response back to the user. This function calls

two other functions, SendSMSSerial, and SantizeResponse.

7. SendSMSSerial: This function handles the serial port communication (GSM module)

necessary to send an SMS. It delivers the response to the user through the GSM module. The

SendSMSSerial also calls the SanitizeResponse function.

8. SanitizeResponse: This function removes the characters such as apostrophes, semicolons,

quotation marks that could cause trouble when logging the response into the Records table.

This function also calls the LogRecord function to log the record of the transaction. I added

this function.

9. LogRecord: The Marathon’s internal PostgreSQL database has a table called Records. This

function logs a record of the transaction in that table. It stores the sender’s number, sender’s

message, sender’s response, and whether the sender’s number is trusted.

16

I added the following functions:

10. CheckIfAdmin: There are Marathon commands limited to only Marathon Administrators

such as adding a user and deleting user. This function checks to find if the sender (phone

number) is a Marathon Administrator before the system can execute this command.

11. CheckIfAdminOrStaffer: There is a Marathon command only Marathon Administrators

and Marathon Staffers can issue which is finding the Marathon resellers. This function checks

to confirm that the sender is a Marathon Administrator or a Marathon Staffer before the

command is executed.

12. VerifyReseller: Since there are information resellers can also find about themselves, this

function ensures that each reseller is accessing his only information.

The MarathonCommands. py contains the following functions:

13. AddUser: There is no function in the code called AddUser but AddAdmin, AddStaffer,

and AddReseller. I used AddUser purposely to simply the diagram. There are tables in the

internal PostgreSQL database I created called AdminNumbers, StaffNumbers,

ResellersNumbers. The AddAdmin function adds a user to Marathon as an Administrator by

storing the user’s number in the AdminNumbers, the AddStaffer adds the user as a Marathon

Staffer and stores the number in StaffNumbers. The AddReseller adds the user as a Marathon

Reseller and stores the number in the ResellersNumbers. All the numbers of these different

type of Marathon users are as well kept in a general table called trustedNumbers in the

PostgreSQL database Oliver created.

14. DeleteUser: There is no function in the code called DeleteUser but DeleteAdmin,

DeleteStaffer, and DeleteReseller. The DeleteAdmin function deletes a Marathon

17

Administrator, the DeleteStaffer deletes a Marathon Staffer, and the DeleteReseller deletes a

Marathon Reseller from Marathon. Deleting a user means deleting his number from the

trustedNumbers as well as from the user’s specific table.

15. FindMarathonUser: This function finds all the types of Marathon users except Marathon

Administrators. Only Marathon Administrators and Marathon Staffers can find a Marathon

user. Marathon Administrators can find Marathon Staffers and Marathon Resellers. Marathon

Staffers on the other hands can only find Marathon Resellers.

16. Help: There is a table called Help in the internal PostgreSQL database. All the Marathon

commands and Fodder queries’ structures are stored in this table. This function finds all the (8)

different Marathon commands and the (10) different Fodder queries Marathon can process:

The Marathon commands are the AddAdmin, AddStaffer, AddReseller, DeleteAdmin,

DeleteStaffer, DeteleReseller, FindStaffer, and FindReseller. When a user sends in help, it

returns “help with the command structures or fodder queries?”. If the user sends in marathon

commands, Marathon will return all the Marathon command structures. On the other hands, if

the user sends in fodder queries, Marathon will return all the fodder queries. The list of Fodder

queries are given below.

All the following function are in the Fodder.py script

FodderQueries: This function is not in the code. I used the name intentionally to cover up the

ten (10) different fodder queries Marathon can process. I have, however, explicitly added these

queries below. Most of the Fodder queries use the ID of the reseller as the search criteria and

as such, the FindID function provides the entry for most of the queries. The Burro Reseller's

information access is limited to the first four (4) functions.

18

17. FindID: This function looks up the ID of a specific reseller. When an authenticated user

sends in reseller [phone number of reseller], this function checks the ID of the reseller in the

Burro’s central database, Fodder. The phone number is the search criteria and it returns the ID

and name of the reseller.

18. Statement: This function returns the transaction history associated with a reseller. It

provides answers to question like how much a reseller owe, what is the reseller account balance,

when did the reseller last pay, how much did the reseller pay, what is the reseller’s receipt

number. This function got called when an authenticated user sends in “statement [ID of

reseller]”. It uses the reseller’s ID as the search criteria.

19. SalesStaus: It looks up the sales status of a specific reseller. When an authenticated user

sends in sales status [ID of reseller], this function checks in Fodder and returns T90, discount

level, and credit limit associated to the reseller. It uses the reseller’s ID as the search criteria.

20. Price: This function returns suggested retail price (SRP) of a product and informs the

sender the good, better, and best prices for a product. It got called when an authenticated user

sends in price [product name]. It uses the product name as the search criteria.

The following functions are limited to only Marathon Administrators and Burro Staffers:

21. FindDetails: This function looks up the details of a specific reseller. When either of these

two users (Marathon Administrators and Marathon Staffers) sends in details [ID of reseller],

this functions will return the reseller’s residence area, landmark, and region from Fodder. The

reseller’s ID is the search criteria.

22. JobCard: When either of the users sends in job card [ID of reseller], this is the function

that got called and returns from Fodder the product name, the status of the product (whether

19

faulty or not), and location of the product associated to the reseller. The reseller’s ID is the

search criteria.

23. LastNote: This function provides answers to this question: what is the latest note on the

reseller’s account. When either of the users sends in last note [ID of resller], this function got

called and returns from Fodder only the latest notes on the reseller’s account. The ID is the

search criteria.

24. WhoCalled: This function provides answers to this question: who is the last person who

contacted reseller X? The function only returns the caller’s name from Fodder. The reseller’s

ID is the search criteria.

25. Last returned: Looks up the last product returned by a reseller. This function got called

when either of the users sends in last returned [ID of reseller]. The function only returns the

product name from Fodder. The reseller’s ID is the search criteria.

26. Count: This function informs the either of the users how many of product X are in the stock

and how many of product X are in a specific stock location. If either of the users sends in count

[product name], the function returns the total amount of that product in the stock. If the user

sends in count [product name, stock name], the function returns the total amount of that product

in that stock. In the former, the product name is search criteria, and in the latter, it is both the

product name and the stock name.

3.2.2 Flowchart Explanation:

The following explains the software architecture (fig 2) on page 12:

• When the program starts, the Marathon.py script initiates the hardware connections. It

connects to Fodder, to the internal PostgreSQL database, and to the GSM module.

20

• The main Python file is a small script that runs in an infinite loop checking if there is

an SMS in the GSM module (Fona’s inbox). This script calls the ReadFonaResponse

function from the MarathonFunctions.py script which reads the response from the Fona.

If there is no text message, it waits for 5 seconds and reads again and if there is a text

message the ReadFonaResponse function passes the text message to another class

function of the MarathonFunctions.py script called TakeOldestSMS

• The TakeOldestSMS function takes the oldest SMS which is the first SMS in the list

(that is the first to reach to the Fona) and forwards it to the SanitizeText class function

which takes out any characters from the SMS that could cause trouble. It removes all

the characters such as commas, apostrophes, double quotes, semicolons from the text

message so that it is only a plain text (string).

• Before the text message can carry out any function, the sender’s number is checked

against an internal PostgreSQL table of trusted Numbers. This is done by another class

function called CheckPhoneNumber. If the number is not trusted, the function calls

another class function, LogRecord, to logs the record of the transaction (that is the

sender’s number, text message, response, and whether the number is trusted) in the

records table and the sender does not get any response back. The sender’s message is

as well deleted from the GSM module (that is the sender’s number and text message).

Else if the number is trusted, the message is forwarded to another class function called

SelectFunction.

• The SelectFunction is a big function and determines what the sender wants to carry

out. It checks the message (string) the user sent in against internal built-in queries to

determine which to execute. If the sender sends a message that matches any of the

inbuilt queries this function will forward the message to that function that handles that

particular type of query.

21

• If the sender sends in “help”, The SelectFunction forwards the string to the Help

function in MarathonCommands.py. This function returns “help with the marathon

command structures or fodder queries?”. Depending on the user’s reply, the function

pulls out either all the Marathon commands or the Fodder query structures and send

them back to the user through the SendResponseSMS function.

• If the sender sends in “add admin Dr. Buchele with number 0556427918”, a class

function, CheckIfAdmin, is called to check if the sender is Marathon Administrator in

the AdminNumbers table. If s/he is not, the CheckIfAdmin function calls another class

function, SendResponseSMS, to return “this number is not an admin” as a response

to the user. Else, the CheckIfAdmin function forwards the string to the AddAdmin

function in the MarathonCommand.py script. The AddAdmin function stores Dr.

Buchele’s name and number both in the AdminNumbers table and in the

trustedNumbers table. The function then sends a welcome message (Welcome New

Marathon Admin! Send HELP to get help) to the new Marathon Administrator through

an inherited function, the SendResponseSMS function from the MarathonFunction.py

script.

• If the sender sends in “add staffer Mr. Godwill with number 0278761893”, the

CheckIfAdmin function is called to check if the sender is a Marathon

Administrator. If s/he is not, the CheckIfAdmin function calls the

SendResponseSMS function to send back the response as above to the sender. Else,

the CheckIfAdmin function forwards the string to the AddStaffer function in the

MarathonCommand.py script. The AddStaffer function stores Mr. Godwill’s name

and number both in the StaffNumbers table and in the trustedNumbers table. The

function then sends a welcome message ('Welcome New Marathon Staffer! Send

22

HELP to get help) to the new Marathon Staffer through the SendResponseSMS

function.

• If the sender sends in “add reseller Momodou with number 0256436663”, the

CheckIfAdmin function is called to check if the sender is a Marathon Administrator.

If s/he is not, the CheckIfAdmin function calls the SendResponseSMS function to send

back the response to the sender. Else, the CheckIfAdmin function forwards the string

to the AddStaffer function in the MarathonCommand.py script. The AddStaffer

function stores Momodou’s name and number both in the ResellersNumbers table and

in the trustedNumbers table. The function then sends a welcome message ('Welcome

New Marathon Reseller! Send HELP to get help) to the new Marathon Reseller through

the SendResponseSMS function.

• If the sender sends in “delete admin 0556427918”, the CheckIfAdmin function is

called to check if the sender is a Marathon Administrator. If s/he is not, the

CheckIfAdmin function calls the SendResponseSMS function to send back the

response to the sender. Else, the CheckIfAdmin function forwards the string to the

DeleteAdmin function in the MarathonCommand.py script. The DeleteAdmin function

deletes Dr.Buchele’s name and number both in the AdminNumbers table and in the

trustedNumbers table. The function then sends a message (You are deleted from

Marathon!) to Dr. Buchele and sender through the SendResponseSMS function.

• If the sender sends in “delete staffer 0278761893”, the CheckIfAdmin function is

called to check if the sender is a Marathon Administrator. If s/he is not, the

CheckIfAdmin function calls the SendResponseSMS function to send back the

response to the sender. Else, the CheckIfAdmin function forwards the string to the

DeleteStaffer function in the MarathonCommand.py script. The DeleteStaffer function

deletes Mr. Godwill’s name and number both in the StaffNumbers table and in the

23

trustedNumbers table. The function then sends a message to Mr. Godwill and the sender

through the SendResponseSMS function.

• If the sender sends in “delete reseller 0256436663”, the CheckIfAdmin function is

called to check if the sender is a Marathon Administrator. If s/he is not, the

CheckIfAdmin function calls the SendResponseSMS function to send back the

response to the sender. Else, the CheckIfAdmin function forwards the string to the

DeleteReseller function in the MarathonCommand.py script. The DeleteReseller

function deletes Momodou’s name and number both in the ResellersNumbers table and

in the trustedNumbers table. The function then sends message (You are deleted from

Marathon!) to Momdou and the sender through the SendResponseSMS function

• If the sender sends in “all staffers”, the CheckIfAdmin function is called to check if

the sender is a Marathon Administrator. If s/he is not, the CheckIfAdmin function calls

the SendResponseSMS function to send back the response to the sender. Else, the

CheckIfAdmin function forwards the string to the MarathonUsers function in the

MarathonCommand.py script. This function returns all the Marathon Staffers (name

and phone numbers) in the StaffNumbers table. This result is sent back to the sender

through the SendResponseSMS function. In case there is no result, the sender receives

“Sorry, your search gave no results”.

• If the sender sends in “staffer named Mr. Godwill”, the CheckIfAdmin function is

called to check if the sender is a Marathon Administrator. If s/he is not, the

CheckIfAdmin function calls the SendResponseSMS function to send back the

response to the sender. Else, the CheckIfAdmin function forwards the string to the

MarathonUsers function in the MarathonCommand.py script. This function searches

“Mr. Godwill” in the StaffNumbers table. The response is sent back to the sender

through the SendResponseSMS function.

24

• If the sender sends in “all resellers”, the CheckIfAdminOrStaffer function is called

to check if the sender is a Marathon Administrator or Staffer in the AdminNumbers and

StaffNumbers table. If s/he is not either of these, the CheckIfAdminOrStaffer function

calls the SendResponseSMS function to send back the response (“The number is

neither a staffer nor an Admin!”) to the sender. Else, the CheckIfAdminOrStaffer

function forwards the string to the MarathonUsers function in the

MarathonCommand.py script. This function returns all the Marathon Resellers (name

and phone numbers) in the Resellers.Numbers table. The response is sent back to the

sender through the SendResponseSMS function.

• If the sender sends in “reseller named Momodou”, the CheckIfAdminOrStaffer

function is called to check if the sender is a Marathon Administrator or Marathon

Staffer. If s/he is not any of these, the CheckIfAdminOrStaffer function calls the

SendResponseSMS function to send back the response to the sender. Else, the

CheckIfAdminOrStaffer function forwards the string to the MarathonUsers function

in the MarathonCommand.py script. This function searches “Momodou” in the

ResellersNumbers table. The response is sent back to the sender through the

SendResponseSMS function.

• If the sender sends in “details [ID of reseller]”, the CheckIfAdminOrStaffer function

is called to check if the sender is a Marathon Administrator or Marathon Staffer. If s/he

is not any of these, the CheckIfAdminOrStaffer function calls the SendResponseSMS

function to send back the response to the sender. Else, the CheckIfAdminOrStaffer

function forwards the string to the Details function in the Fodder.py script. This

function will return the reseller’s residence area, landmark, and region. In case there

is no result, “Sorry, your search gave no result” is sent back to the sender through the

SendResponseSMS function.

25

• If the sender sends in “who called [ID of reseller]”, the CheckIfAdminOrStaffer

function is called to check if the sender is a Marathon Administrator or Marathon

Staffer. If s/he is not any of these, the CheckIfAdminOrStaffer function calls the

SendResponseSMS function to send back the response to the sender. Else, the

CheckIfAdminOrStaffer function forwards the string to the WhoCalled function in the

Fodder.py script. This function will return the caller. In case there is no result, “Sorry,

your search gave no result” is sent back to the sender through the SendResponseSMS

function.

• If the sender sends in “last returned [ID of reseller]”, the CheckIfAdminOrStaffer

function is called to check if the sender is a Marathon Administrator or Marathon

Staffer. If s/he is not any of these, the CheckIfAdminOrStaffer function calls the

SendResponseSMS function to send back the response to the sender. Else, the

CheckIfAdminOrStaffer function forwards the string to the LastReturned function in

the Fodder.py script. This function will return the products returned. In case there is no

result, “Sorry, your search gave no result” is sent back to the sender through the

SendResponseSMS function.

• If the sender sends in “last note [ID of reseller]”, the CheckIfAdminOrStaffer

function is called to check if the sender is a Marathon Administrator or Marathon

Staffer. If s/he is not any of these, the CheckIfAdminOrStaffer function calls the

SendResponseSMS function to send back the response to the sender. Else, the

CheckIfAdminOrStaffer function forwards the string to the LastNote function in the

Fodder.py script. This function will return the last notes on the reseller’s account. In

case there is no result, “Sorry, your search gave no result” is sent back to the sender

through the SendResponseSMS function.

26

• If the sender sends in “count [product name]” or count “[product name in stock name],

the CheckIfAdminOrStaffer function is called to check if the sender is a Marathon

Administrator or Marathon Staffer. If s/he is not any of these, the

CheckIfAdminOrStaffer function calls the SendResponseSMS function to send back

the response to the sender. Else, the CheckIfAdminOrStaffer function forwards the

string to the Count function in the Fodder.py script. This function will either return the

number of product X in the stock or the number of product X are in a specific stock

location depending on the query the sender sends to Marathon. In case there is no result,

“Sorry, your search gave no result” is sent back to the sender through the

SendResponseSMS function.

• If the sender sends in “job card [ID of reseller]”, the CheckIfAdminOrStaffer

function is called to check if the sender is a Marathon Administrator or Marathon

Staffer. If s/he is not any of these, the CheckIfAdminOrStaffer function calls the

SendResponseSMS function to send back the response to the sender. Else, the

CheckIfAdminOrStaffer function forwards the string to the JobCard function in the

Fodder.py script. This function returns the product name, the status of the product

(whether faulty or not), and location of the product associated with the reseller. In case

there is no result, “Sorry, your search gave no result” is sent back to the sender through

the SendResponseSMS function.

• If the sender sends in “reseller 0234400433”, the CheckIfAdminOrStaffer function

is called to check if the sender is a Marathon Administrator or Marathon Staffer. If the

sender is a Marathon Reseller or Marathon Administrator, the CheckIfAdminOrStaffer

function forwards the string directly to the FindID function of the Fodder.py script.

This function searches “0234400433” in Fodder and returns the reseller’s name and ID

associated with it. The result is sent back to the sender through the SendResponseSMS

27

function and if there is no result, “Sorry, your search gave no result”, is sent back to

the sender. If the sender is neither a Marathon Administrator nor a Marathon Staffer,

that means that the sender is a reseller and the CheckIfAdminOrStaffer function calls

the VerifyReseller function to checks in the ResellersNumbers table to confirm that

the sender’s (Marathon Reseller) phone number is the same as the “0234400433”. If

the numbers are not the same, it calls the SendResponseSMS function to send back

“The number you provided is not the same as your number” to the sender, and if the

numbers are the same, the VerifyReseller function forwards the string to the FindID

function in the Fodder.py script.

• If the sender sends in “statement [ID of reseller]”, the CheckIfAdminOrStaffer

function is called to check if the sender is a Marathon Administrator or Marathon

Staffer. If the sender is a Marathon Reseller or Marathon Administrator, the

CheckIfAdminOrStaffer function forwards the string directly to the Statement function

of the Fodder.py script. This function will return the reseller’s Account Balance, Last

Payment made, Date Paid, and Payment Receipt Number from Fodder. The result is

sent back to the sender through the SendResponseSMS function and if there is not

result, “Sorry, your search gave no result”, is sent back. If the sender is not a Marathon

Staffer or Marathon Administrator, the CheckIfAdminOrStaffer function calls the

VerifyReseller function to confirm the Reseller. It first searches the ID of the reseller

in Fodder using the sender’s phone number (SIM number) as the search criteria. It then

checks to confirm that the provided reseller ID is the same as the returned ID. If the IDs

are not the same, it calls the SendResponseSMS function to send back “The ID you

provided is not the same as your ID” to the sender, and if the IDs are the same, the

VerifyReseller function forwards the string to the Statement function in the Fodder.py

script.

28

• If the sender sends in “sales status [ID of reseller]”, the CheckIfAdminOrStaffer

function is called to check if the sender is a Marathon Administrator or Marathon

Staffer. If the sender is a Marathon Reseller or Marathon Administrator, the

CheckIfAdminOrStaffer function forwards the string directly to the Sales Status

function of the Fodder.py script. This function will return the reseller’s Paid T90,

Discount Level, and Credit Limit from Fodder. The response is sent back to the sender

through the SendResponseSMS function. If the sender is a Marathon Reseller, the

VerifyReseller function is called to search the ID of the reseller in Fodder using the

sender’s SIM number as the search criteria. It then checks to confirm that the provided

ID reseller is the same as the returned ID. If the IDs are not the same, it calls the

SendResponseSMS function to send back “The ID you provided is not the same as your

number” to the sender, and if the IDs are the same, the VerifyReseller function forwards

the string to the SalesStatus function in the Fodder.py script.

• If the sender sends in “price [name of product]”, the CheckIfAdminOrStaffer

function is called to check if the sender is a Marathon Administrator or Marathon

Staffer. If the sender is a Marathon Reseller or Marathon Administrator, the

CheckIfAdminOrStaffer function forwards the string directly to the Price function of

the Fodder.py script. This function will return the product’s suggested retail price

(SRP), the product’s good, better, and best price from Fodder. In case there is no result,

“Sorry, your search gave no result” is sent back to the sender through the

SendResponseSMS function. Though this price function is one of the functions Burro

Resellers can use, it does not pull out any information associated with the Burro

Reseller, thus, there is no need to verify the sender as a reseller. If the sender is neither

a Marathon Administrator nor a Marathon Staffer. The Selection function directly

forwards the string to the SalesStatus function in the Fodder.py script.

29

Chapter 4: Implementation

4.1 Hardware

The Marathon hardware consists of a Raspberry Pi 3.0 and an Adafruit Fona GSM modem as

well as an antenna and a battery used to deal with power interruption. All software is stored on

an 8GB micro-SD card in the Pi. The physical system fits inside a 3D printed case and has been

sent to Burro’s offices in Koforidua where it sits in the server room. To learn more about the

hardware, I have attached the Marathon Hardware Setup Manual Oliver developed at Appendix

7.

4.2 Software

The system was developed to run on the Linux distribution NOOBS 2.1, based on Raspbian.

The script was written for Python 2.7 with the Anaconda package. The script is started

automatically on reboot using Crontab. More information on how the system was set up is also

available in the software setup manual Oliver developed at Appendix 8.

The Python script that Oliver had all the functions and variables in one file. I broke the

Marathon program (the Python script) into four (4) scripts. One of the scripts (Marathon.py) is

the main script that runs infinitely in the background when the program starts. It initiates the

hardware connection protocols. It connects Marathon to the Burro Server, the GSM module,

30

and the internal PostgreSQL database. There is another script called the MarathonFunction.py

where I defined a class called MarathonFunctions. This class contains all the functions that

treat the SMS. It contains mainly the functions Oliver developed and the few ones I added such

as the SantizeResponse, CheckIfAdmin, CheckIfAdminOrReseller, and the VerifyReseller

function. This class, all the other scripts imports it to be able to reuse its class variables or

methods. The Marathon.py script imports it to be able to reuse its class variable and methods

such as the marathonConnection, fodderConnection, serialConnection variables, and

ReadFonaResponse function. When the Marathon.py script reads an SMS from the Fona, it

passes this SMS to the ReadFonaResponse function which calls series of functions in its class

to treat the SMS before it passes it on to either the MarathonCommand.py, or Fodder.py to

process the user’s request. The MarathonCommand.py contains all the Marathon commands

such as the AddAdmin, AddStaffer, AddReseller, FindMarathonUser, and the Help function.

The Fodder.py contains all the Fodder queries. It also imports the MarathonFunctions class to

be able to send back responses to the user and log the transaction through the

SendResponseSMS function.

The Python packages I used are re, String, math, pyodbc, time, and the serial module. The re

module is what is used to regex the in incoming message against the inbuilt strings to know the

right function to call. The is shown in appendix 1. The String module is used to sanitise the

response from Fodder, to take out any characters that could cause trouble when logging the

transaction in the Records table. It is shown in Appendix 2. The math module is used compute

how many blocks a message need to be break into if it exceeds 160 characters as shown in

Appendix 3. The time module is what is used to program the main script to check the GSM

module for new message after every five (5) seconds. The pyodbc module is what is used to

connect to the internal PostgreSQL database and the Burro Server. The serial module is what

is used to connect to the GSM module. These three (3) are shown in Appendix 4.

31

4.3 PostgreSQL Database

Marathon uses a small, locally hosted Postgres database to keep track of users, to keep track of

the different Marathon commands and Fodder queries, and to store a log of all communication

through the system. Oliver created this database which had only two tables, the Record and the

trustedNumbers table. I added the AdminNumbers table, the ResellersNumber table, the

StaffNumbers table, and the Help table. The structures if these tables are provided below:

TrustedNumbers (

 ID serial primary key,

 Number varchar (30) NOT NULL,

 Name varchar (60) NOT NULL

);

AdminNumbers (

 ID serial primary key,

 Number varchar (30) NOT NULL,

 Name varchar (60) NOT NULL

);

StaffNumbers (

 ID serial primary key,

 Number varchar (30) NOT NULL,

 Name varchar (60) NOT NULL

);

ResellersNumbers (

 ID serial primary key,

 Number varchar (30) NOT NULL,

 Name varchar (60) NOT NULL

);

Help (

 ID serial primary key,

 Query varchar (200) NOT NULL,

 QueryStructure varchar (200) NOT NULL

);

Records (

 ID serial primary key,

 Number varchar (30) NOT NULL,

 Message varchar (160),

 Response varchar (200),

 Trusted varchar (1)

);

32

Chapter 5: Tests & Results
I divided the test into three sections; the component test results, the system-level testing results,

and the user testing results.

5.1 Component testing

5.1.1 Software Component

For every Fodder query I implemented, I executed it locally to make sure that the SQL syntax is correct,

and to know the nature of its output in other to present the information in the best possible format to the

user. The following screenshot shows a sample Fodder query I tested from my own PC (locally):

When I send in a message and fail to receive a response from the system, I log on to the Pi to see what

goes wrong at the backend. This helps me to debug my code more quickly. The following screenshot

shows a sample output of a Burro reseller’s ID I requested, running on the Pi:

5.1.2 PostgreSQL database component

One of the components of the system is the PostgreSQL database. The different type of users

each has a separate table. To create a table on the Pi, I log in to the Pi and issue some Linux

commands to create it and test it. Initially, I add a user directly to make sure that the query is

33

right, and then I will try to output the result. The following screenshots show a sample output

of some of the different type of users (tables) I tested componentry.

Marathon Administrator:

Marathon Staffer:

Marathon Reseller:

5.2 System-level testing

Fodder Queries:

I implemented all the ten (10) Fodder queries. However, in this section I am going to show

four only (3) different Fodder queries test results:

(1) What is my Reseller ID?

The sender sends in “reseller [phone number]” and Marathon will give the reseller’s ID

and name.

For example,

34

(2) What is my contact details?

The sender sends in “details [reseller ID]” and Marathon will give the reseller’s phone

number, his residence, landmark, and region.

For example,

(3) What is my job card history?

The sender sends in “job card [reseller ID]”

For example,

Help functionality

Getting help on how to structure Fodder queries and Marathon Commands structures:

35

Finding Marathon users Functionality

Finding out people using Marathon:

Adding User functionality:

Adding a Marathon Staffer:

Adding a Marathon Reseller:

5. Delete User Functionality

Deleting an Administrator:

36

Deleting a Marathon Staffer:

Deleting a Marathon Reseller:

5.4 Analysis of test results

Marathon works fine all the time typically. However, there are instances where there are

connection errors to the modem due to network connection errors and the AT commands get

included in the SMS sent out to the user. Apart from this intermittent error, it pulls out the

right records from both databases. The system is not forgiving with errors in your questions.

If a user sends a message to Marathon with even a single syntax error in the query, Marathon

cannot understand what the user wants and simply returns “Sorry, I don’t understand your

request.”.

37

Chapter 6: Conclusion & Recommendation

6.1 Project Summary

Marathon aims to save the Burro community time and it is designed to be very simple to use.

The project aimed to enable Burro Staffers and Resellers access the information they need the

most outside the office from the Burro Central Database via SMS text messaging. Marathon

made it possible for Burro resellers throughout the country to have access to information like

their transaction history or statement (that is their Account Balance, Last Payment, Date Paid,

and Payment Receipt No) from the Burro Central Database via SMS text message for the cost

of an SMS.

6.2 Recommendations

The project has been successful in setting up the basic infrastructure and expanding its

functionality to meet the needs of Burro staff and resellers in the field, I, however, recommend

the following potential areas for improvement:

• Set up automatic recharging of the credit for the Marathon SIM card

• Implement some automated way of checking if there is credit on the Marathon SIM

• Implement some way of checking if Marathon is running properly without having to

SSH into the system

• Implement Natural language processing to increase the flexibility of Marathon. For

instance, if a sender makes errors in their questions, the system guess the query

intended and response with the right result.

38

APPENDICES
Appendix 1: The re module

The re module is what is used to regex the in incoming message against the inbuilt strings to

know the right function to call.

Appendix 2: The String module

The String module is used to sanitise the response from the Fodder, to take out any

characters that could cause trouble when logging the transaction in the PostgreSQL database.

39

Appendix 3: The math module

The math module is used compute how many blocks a message need to be break into if it

exceeds 160 characters. This part of the code Oliver developed it.

Appendix 4: The pyodbc, time, and serial module

The pyodbc module is what is used to connect to the internal PostgreSQL database and the

Burro Server. The time module is what is used to check the GSM module for new message after

every five (5) seconds. The serial module is what is used to connect to the GSM module. This

part of the code was developed by Oliver.

40

Appendix 5: The user manual

1. Help functionality to tell the users how to structure their Marathon

commands and Fodder queries

All Marathon users can use this functionality. It returns the list of queries the system can

process and their structures. The queries to get help with Marathon are:

“help” this will return the two help categories:

Help with marathon commands and help with fodder queries

“help with marathon commands” will return all the Marathon commands

“help with fodder queries” will return all the fodder queries

41

2. Add user:
Marathon is designed for Ghanaian numbers, therefore, to successfully add a user, make sure

you start entering the user’s number from the zero. Only Marathon Administrators can add a

user. Query structures to add any user:

add admin [name] with number [number]

add staffer [name] with number [number]

add reseller [name] with number [number]

3. Deleting user

Only Marathon Administrators can delete any user. Make sure to start the user’s number from

the

 zero. The queries to delete any user type are:

delete admin [number]

delete staffer [number]

delete reseller [number]

4.Find Marathon users

Only Marathon Administrators and Marathon Staffers can find a Marathon user. Marathon

Administrators can find all the Marathon Staffers and as well as Marathon Resellers, but

Staffers can only find Marathon Resellers. The queries to find Marathon users are:

all staffers

staffers in [region]

staffer named [name of person]

all resellers

resellers in [region]

reseller named [name of person]

42

5. The ten (10) different Fodder questions. Marathon Resellers are limited

to the first four (4):

1.What is my Reseller ID?

Every marathon user can execute this query, the search is based on reseller’s phone number as

this will give a specific result indicating the reseller’s name and ID number, which is then used

for subsequent queries.

Query structure: reseller [phone number of reseller]

2. What is my transaction history?

This query answers the following questions:

• How much does she owe us or balance on the account?

• When did she last pay us, and how much, with receipt no?

statement [ID of reseller]

3. What is my sales status?

This query answers the following questions:

• Is she good, better, or best status?

• What is her paid T90?

sale status [ID of reseller]

4. What is the price for product X?

This query answers the following questions:

• What is the SRP a product?

• What are the good, better, and best prices for the product?

price [product name]

5. What is reseller X details?

This query answers the following questions:

• What is her contact details?

• Where is she located?

details [product name]

43

6. What is reseller X Job card?

This query provides answers to the following questions

• Does she have any faulty products?

• Have they been fixed?

• Where are they located?

Job card [ID of reseller]

7. How many of product X are in the stock?

Getting total from all stock locations: count [product name]

Getting total from specific stock locations: count [product name, stock location name]

8. What is the latest note on her account?

Last Note [ID of reseller]

9. Who is the last person who contacted her?

Who called [ID of reseller]

10. What was the last product that was returned by the reseller?

Last returned [ID of reseller]

Appendix 6: Oliver’s Hardware Manual

Hardware overview:

The system includes the following hardware. Some of them might be stored inside the case

during transportation.

● Raspberry Pi 3.0 preset with a micro-SD card with all the necessary software

● White Case (3D Printed)

● Adafruit GSM Text Module

● Lithium-ion battery

● Flexible GSM antenna

● Dual-output USB charger

● USB cables (2)

● Assorted extra jumper cables

Sim Card

The system requires a standard-size sim card from a GSM compatible carrier like MTN.

44

Setting Up the Hardware

Most of the system should already be assembled, but some parts must be added before it can

be turned on. Before going through this guide, please make sure you have the following things

ready:

● A standard-size sim card from a GSM compatible carrier like MTN

● An Ethernet cable for connecting the system to Burro’s network

Before starting, please read over the guide and let me know if you have any questions.

The following are the steps required to set up the Marathon system:

1. Gently lift the top off the case

2. Remove any bubble wrap that might be sitting inside the lid of the case to protect the

system during transport

3. Gently lift the GSM module and insert the sim card

45

46

4. Connect the 2-1A for iPad USB socket to the Raspberry Pi Micro-USB power port

5. Connect the 1-0A Q (???) to the Adafruit Fona micro-USB power port

47

6. Connect the Ethernet cable from your router to the Raspberry Pi

48

7. Plug in the USB power supply

8. The system should power on automatically. At this point, I will get an email notifying

me that the system has been powered on and sending me all the IP address it has been

assigned so I can use my username and password to SSH into it. The blinking pattern

on the machine should look like this: https://youtu.be/-uLSmFpGEjs

9. Attach the battery to the Adafruit Fona Unit

https://youtu.be/-uLSmFpGEjs

49

On that picture, the cable is not pushed in. It should be pushed all the way in as you

can see in this video that also shows the new blinking pattern:

https://youtu.be/ZM1aKjEBYiE

When sending text messages, the Fona GSM Modem has a momentary increase in

power demand. Instead of an expensive current controller, the system just uses a

regular cell phone battery to assist the USB power for a few seconds at a time when

texts need to be sent. Therefore, the battery needs to be attached. The battery needs to

be attached after the unit turns on so it can register it as being there. If the unit is

restarted, you might need to unplug the battery, turn off the unit (by pulling the plug),

turn it back on again and then plug in the battery.

10. Close the lid while gently fitting all the loose cables inside it

11. Send me an email, letting me know you’ve set up the kit.

https://youtu.be/ZM1aKjEBYiE

50

Appendix 7: Oliver’s Software Manual

Raspbian/NOOBS

The system was developed to run on the Linux distribution NOOBS 2.1, based on Raspbian.

For security purposes, it is crucial that you schedule automated updates to ensure that you

always have the latest and most secure version of Raspbian. A guide on how to use Crontab to

schedule automatic updates can be found here

Python

The script requires Python 2.7 with the Anaconda package.

SSH Connection

If an SSH connection is needed, a guide on how to install the necessary software and generate

a key can be found here.

Freeing the Serial Connection

On newer versions of Raspbian, the Serial0 port is per default reserved for the system. To

communicate with the Fona modem, you must take steps to free up the port. A guide on these

steps can be found here.

Postgres Database

Marathon uses a small, locally hosted Postgres database to keep track of trusted numbers and

to store a log of all communication through the system. This database works as a buffer to make

sure no numbers that are not already trusted can communicate with Fodder.

To install Postgres, run the following command:

sudo apt-get install PostgreSQL

It is recommended to use Crontab to schedule automatic updates of PostgreSQL to keep the

database secure.

To grant root access to the database, enter the following command in the terminal:

sudo -u Postgres createuser -s root

https://www.raspberrypi.org/downloads/noobs/
http://raspberrypi.stackexchange.com/questions/38931/how-do-i-set-my-raspberry-pi-to-automatically-update-upgrade
https://www.continuum.io/downloads
https://github.com/engn1931z/rpiSetupHistory
http://spellfoundry.com/2016/05/29/configuring-gpio-serial-port-raspbian-jessie-including-pi-3/

51

Now, to create the database write the following command to the terminal:

 sudo createdb Marathon

Now you can enter the database through psql (a front-end installed with postgresql) by

writing:

 sudo psql Marathon

The code to create the table to hold the trusted numbers is:

create table TrustedNumbers (

 ID serial primary key,

 Number varchar (30) NOT NULL,

 Name varchar (60) NOT NULL

);

The code to create the table with communication records is:

create table Records (

 ID serial primary key,

 Number varchar (30) NOT NULL,

 Message varchar (160),

 Response varchar (200),

 Trusted varchar (1)

);

Now you will need to create a user for the script with the necessary privileges to read and write

to the tables. This is done by entering the following code in psql:

 create user marathonscript with password

'YAfLTsq0tY61NrUwI9mYu5CBrta8lAkY';

grant all privileges on TrustedNumbers to MarathonScript;

grant all privileges on Records to marathonscript;

grant usage, select on sequence records_id_seq to marathonscript;

You can quit psql with the following command:

\q

Please note that this just sets up the back-end structure for the database. You will still need to

install and configure drivers before you can access the database through Python.

ODBC and pyODBC Database Connections

52

The next step is to install the drivers necessary to connect to databases through SQL. To be

able to use the same protocol for both the internal Postgres database and Burro’s MSSQL

hosted database, Marathon uses pyODBC to create ODBC-based connections based on drivers

and connection protocols stored externally to the script.

pyODBC has several dependencies which you can install by running the following in

terminal:

 sudo apt-get install python-dev

 sudo apt-get install unixodbc

 sudo apt-get install unixodbc-dev

Now, to install pyodbc, enter the following code into the terminal:

sudo pip install pyodbc

Database Drivers

This the previous steps set up the ODBC connection framework as well as pyODBC, but you

still need to configure drivers. For the postgres database, Marathon uses the native postgreSQL

driver. For connection to Burro’s MSSQL hosted database Fodder, it uses freeTDS.

To install the PostgreSQL drivers, enter the following into the terminal:

 sudo apt-get install odbc-postgresql

To install the freeTDS drivers, write

 sudo apt-get install tdsodbc

 sudo apt-get install freetds-dev freetds-bin unixodbc-dev tdsodbc

Note, you are about to edit root files in Linux. This will require that you open them in sudo

mode, for example by using sudo “nano <filename>” in the terminal.

Now, go check the /etc/odbcinst.ini file to make sure it reads something like the following:

[PostgreSQL ANSI]

Description=PostgreSQL ODBC driver (ANSI version)

Driver=psqlodbca.so

Setup=libodbcpsqlS.so

53

Debug=0

CommLog=1

UsageCount=1

[PostgreSQL Unicode]

Description=PostgreSQL ODBC driver (Unicode version)

Driver=psqlodbcw.so

Setup=libodbcpsqlS.so

Debug=0

CommLog=1

UsageCount=1

[FreeTDS]

Description=FreeTDS Driver

Driver=/usr/lib/arm-linux-gnueabihf/odbc/libtdsodbc.so

Setup=/usr/lib/arm-linux-gnueabihf/odbc/libtdsS.so

If any of this is missing, just copy it in

Now, set up the connections to both Marathon’s internal SQL server and Burro’s MSSQL

server. To do this, edit the /etc/odbci.ini file to make sure it includes the following lines (hidden

passwords and information is written as <Description>):

[marathonscript-connector]

Description = PostgreSQL connection to Marathon database

Driver = PostgreSQL Unicode

Database = Marathon

Servername = localhost

UserName = <Username>

Password = <Password>

Port = 5432

Protocol = 9.3

ReadOnly = No

RowVersioning = No

ShowSystemTables = No

ShowOidColumn = No

FakeOidIndex = No

54

ConnSettings =

[fodder-connector]

Driver = FreeTDS

Server = <Local Database IP>

Port = 1433

Database = <Database Name>

TDS_Version = 8.0

Note, the /etc/odbci.ini file defines the database connections and refers to driver definition

stored in /etc/odbcinst.ini.

Crontab

The script is set up to run automatically in the background on boot. This is done using

Crontab. You can find a description of Crontab at this link:

https://www.raspberrypi.org/documentation/linux/usage/cron.md

To set up the Crontab task on the pi, enter the following into the terminal:

sudo crontab -e

This opens the Crontab document. Edit it to include the following line:

@reboot python /home/marathon/Marathon.py &

https://www.raspberrypi.org/documentation/linux/usage/cron.md

55

References
Joshi, R., & Pathak, L. (2014). A survey of SMS based Information Systems. Retrieved 6

October from https://arxiv.org/ftp/arxiv/papers/1505/1505.06537.pdf

Moller, O. (2016). Marathon Hardware Setup Manual. Unpublished manuscript, The School

of Engineering, Brown University, Providence, Rhode Island, United States.

Moller, O. (2016). Marathon Software Setup Manual. Unpublished manuscript, The School

of Engineering, Brown University, Providence, Rhode Island, United States.

