

ASHESI UNIVERSITY

IMPROVING ACCOUNTING PRACTICES OF SMALL

AND MEDIUM SCALE ENTERPRISES IN GHANA

THROUGH APPLICATION SOFTWARE

APPLIED PROJECT

B.SC. MANAGEMENT INFORMATION SYSTEMS

KWAKU KWAYISI BOOHENE

2020

ASHESI UNIVERSITY

IMPROVING ACCOUNTING PRACTICES OF SMALL

AND MEDIUM SCALE ENTERPRISES IN GHANA

THROUGH APPLICATION SOFTWARE

APPLIED PROJECT

Applied Project submitted to the Computer Science and Information Systems (CSIS)

Department, Ashesi University in partial fulfilment of the requirements for the award

of Bachelor of Science degree in Management Information Systems.

KWAKU KWAYISI BOOHENE

2020

i

DECLARATION

I hereby declare that this Applied Project is the result of my own original work and that no

part of it has been presented for another degree in this university or elsewhere.

Candidate’s Signature:

……………………………………………………………………………………………

Candidate’s Name:

……………………………………………………………………………………………

Date:

……………………………………………………………………………………………

I hereby declare that the preparation and presentation of this Applied Project were

supervised in accordance with the guidelines on supervision of Applied Project laid down

by Ashesi University.

Supervisor’s Signature:

……………………………………………………………………………………………

Supervisor’s Name:

……………………………………………………………………………………………

Date:

……………………………………………………………………………………………

ii

Acknowledgements

I would like to thank God for the ability to complete this project. I would also like to exhibit

my appreciation to everyone who helped in the undertaking and the completion of this project.

I would like to thank my supervisor Mr David Sampah for his support and his feedback.

Finally, I would like to exhibit my appreciation to the Computer Science and Information

Systems Department of Ashesi University which has exposed me to the different aspects of

Computer Science and equipped me with sufficient knowledge to complete this project.

iii

Abstract

Small and Medium-scale businesses in Ghana contribute to the growth and development of

the Ghanaian economy. It is, therefore, important that these businesses optimise their

performance to generate more revenue and boost productivity to help the country develop.

Generating and keeping accounting information is an essential way to track and improve a

business’ performance.

This paper presents a detailed design and implementation of an application which aids Small

and Medium-scale Sole Proprietorships (businesses which are wholly owned and usually

managed by a single individual) in generating and keeping accounting records and

information for the analysis of business performance and, other business and financial

purposes.

iv

Contents

DECLARATION... i

Acknowledgements .. ii

Abstract ... iii

Chapter 1: Introduction ... 1

1.1 Background ... 1

1.2 Proposed Solution ... 2

1.3 Related Work .. 2

1.4 Project Summary ... 4

Chapter 2: Requirements .. 5

2.1 Project Overview ... 5

2.2 User Characteristics ... 5

2.2.1 Use-case scenarios and Diagrams.. 6

2.3 System Requirements .. 8

2.3.1 Functional Requirements .. 8

2.4 Non-Functional Requirements ... 8

Chapter 3: Architecture and Design .. 9

3.1 General System Overview ... 9

3.2 3-Tier Client-Server Architecture .. 9

3.3 Database Design .. 11

3.4 Activity Diagrams ... 13

Chapter 4: Implementation ... 15

v

4.1 Technology, Libraries and Tools Used... 15

4.2 Hardware and Software ... 18

4.3 Implementation Techniques ... 18

4.3.1 Component-based Development ... 18

4.3.2 Feature Driven Development .. 20

4.4 Project File Structure ... 20

4.5 Functionality and Graphical User Interface .. 23

Chapter 5: Testing and Results ... 27

5.1 Component Testing ... 27

5.2 System Testing .. 29

5.3 Usability Testing ... 31

Chapter 6: Conclusion and Future Works.. 32

6.1 Summary ... 32

6.2 Limitations .. 32

6.3 Future Work .. 33

6.4 Conclusion .. 33

References .. 35

Appendices ... 37

Appendix A – Requirements Gathering ... 37

Appendix B – Component Testing... 38

A. Automated Tests for Login Component ... 38

Appendix C – Code Snippet for Add Creditor Component .. 40

vi

List of Tables

Table 3.1: Table showing the structure of the relational database 11

Table 5.1: A Table showing the results of the End-to-end Testing 30

vii

List of Figures

Figure 2.1: Use-case diagram of the accounting system .. 7

Figure 3.1: Diagram of the 3 Tier Client-Server architecture for the accounting system .. 11

Figure 3.2: ER diagram illustrating the database design ... 12

Figure 3.3: Activity diagram illustrating different activities involved in users managing

their expenses ... 13

Figure 3.4: Activity diagram illustrating different activities involved in viewing their

income statements with the accounting system ... 13

Figure 4.1 The side Navigation component and the header Component on the dashboard 18

Figure 4.2 Snippet of the code for the header component .. 18

Figure 4.3 Screenshot of the Landing page of the accounting system 22

Figure 4.4 Login component when the user enters an invalid email address or password 23

Figure 4.5 Screenshot of the page which gives a summary of a user’s expenses 24

Figure 4.6 Screenshot of the page which allows users to add a new expense 24

Figure 4.7 Screenshot of the page which shows users their income statement 25

Figure 5.1 Code snippet showing a JavaScript Jest test for the Login component 27

Figure 5.2 Screenshot of the results from the Jest test for the Login component 27

Figure 5.3 Screenshot of a Postman test of the system’s API .. 28

1

Chapter 1: Introduction

1.1 Background

Accounting refers to the process of recording and providing information about a firm’s

financial performance and its assets and liabilities for various and different users [12].

The information from accounting can be used by managers of a firm for controlling

planning and decision making. Generally, there are two groups of users of accounting

information; these are the external and internal users[12]. The external users like banks,

investors and suppliers use accounting information to determine if they want to get into

business with a firm or not. They also use it to evaluate how much they would put or invest

in a firm. The internal users, like managers, use accounting information to plan, direct and

control business affairs. For these reasons, it is important that every firm takes account of

their business engagements and transactions. According to the Partnership Act, 1962 and

the Companies Act, 1963, companies and partnerships are required by law to take accounts

of their books and transactions and to perform general external audits. However, the

Business Act,1962 does not require sole proprietorships to do the same, and so most of these

businesses avoid taking accounts of their books and transactions. A case study performed

by [3] proves that about 65% of Small and Medium Scale Enterprises (SMEs) do not keep

any accounting records or perform any form of accounting for their business. Out of this

65%, about 90% of the businesses selected were sole proprietorships. As such, these

businesses do not have access to records and figures which they can use to analyse their

business’ performance and plan for their business based on the results gained from these

records. Some of the reasons highlighted for the poor accounting practices in Ghana,

according to [3] are:

2

• Accounting requires technical knowledge,

• Accounting is time-consuming, and

• Accounting requires additional staff (the hiring of an accountant)

1.2 Proposed Solution

To attempt to resolve the problem of poor accounting practices by SMEs describe above, a

software specifically designed for the Ghanaian entrepreneur, which simplifies the

collection and the presentation of accounting information for small-scale sole

proprietorships in Ghana was built. Functionality and specifications were based on the

requirements gathered from target users during the requirements analysis phase.

1.3 Related Work

The need for accounting information and tools in the running of a business is ever more

pressing as studies show that over 60% of SMEs fail in their first five years of operation

[3].

In Ghana, before an SME can access a loan from a financial institution like a bank,

the financial institution usually audits the business’ financial information and position

[19]. The financial institutions do this is to convince themselves that these businesses will

be able to pay the loan back with interest [19]. The banks however, find that most SMEs

do not prepare or keep financial statements and hence have no information that they can

audit [19]. In situations where they do prepare these statements, they are not prepared well

and seem to be unreliable as some transactions are hard to trace since they were not

recorded [19].

In a study conducted by Amidu and Effah [2] to evaluate E-Accounting practices

in Ghana, a sample of 58 businesses was selected. Out of these 58 businesses, 76% of

3

businesses had Chief Executive Officers (CEOs) with university degrees or certificates

higher education. And out of this 76%, only 22% of these CEOs had professional training

in finance and accounting. This validates the research done by Amoako [3], which

concludes that most SMEs in Ghana do not keep accounting records because they feel

there is no need to. According to Amoako [3], other reasons people do not keep

accounting records are because accounting is time-consuming, expensive, requires

technical knowledge, and exposes your financial position.

 The purpose of the proposed accounting app (which will be subsequently referred to as

“My Accounts”) built through this project is to make accounting less time consuming, less

expensive, easy to perform without any technical knowledge. The app also seeks to

improve the financial literacy of the users of the system, who already realise the benefits

of accounting to their business.

A study by Amidu, Effah and Abor [2] states that the most common accounting

software used by small and medium scale enterprises in Ghana is Microsoft Excel, which

is spreadsheet software [9] that was not purposely created for accounting purposes but can

be used as such. The study also concludes that most of these SME's hire an external

accountant to generally take accounts of the business' affairs.

 There are some accounting systems available to the general market, like QuickBooks[26].

Accounting software can be quite difficult to utilise as they have a lot of functionalities

and can be quite complex. According to Lu, Fu, Gu et al.[22] current accounting software

on the market is quite complex and would usually require a professional accountant to use

and navigate. Oze [27], a fintech start-up in Ghana has created an Oze app for accounting

purposes, but primarily only focus on drawing up invoices and tracking of expenses and

sales of businesses. The app does not produce any financial statements like an income

statement or a statement of financial position which makes it easier to analyse and assess

4

business performance [12].

1.4 Project Summary

In summary, the goal of this project is to design and build an accounting software for sole

proprietors and small business owners in Ghana. The proposed accounting software is

therefore supposed to help businesses

• Keep track of their expenses, revenue and profit

• Create reports and financial statements for the user.

• Keep track of whom they owe and who owes them.

5

Chapter 2: Requirements

This chapter provides a detailed overview of the different requirements of the proposed

software. This chapter also describes the target users of the proposed software and the

different use case scenarios with respect to the proposed software.

2.1 Project Overview

The accounting software would run on web platforms. The system will allow users to

easily input, view, manage and analyse their accounting information on any device which

has an internet browser.

2.2 User Characteristics

The accounting software will be suitable for a user who has the following attributes:

• The user is a sole proprietor or a freelancer who does not have access to enough capital

to hire an accountant to perform bookkeeping and other accounting functions.

• The user has basic high school education in order to understand the words and terms that

he or she engages within using the system to enhance usability.

• The user has access to a smartphone, personal computer or any device with internet

access and a web browser in order to use the system.

• The user has prior knowledge of the importance of accounting and how it can benefit

their business. The user is also opened to learning more about accounting through facts

and tips, which may help the user flourish in their business.

6

2.2.1 Use-case scenarios and Diagrams

• A business owner (tracking his expenses) - A business owner has been struggling to keep

track of his expenses. He usually records his expenses in an exercise book, but due to

the cluttered nature of his workspace, this book tends to get lost often. He opens the

myaccounts app, creates an account and stores his expenses using the app. He uses the

graphs to see if he is spending more money on his business this month in comparison to

previous months and can identify what is responsible for the differences in monthly

expenses.

• Business owner (Going for advice from a business consultant) - A business owner is

looking to expand his business and so goes to a business consultant for advice. The

business consultant asks the business owner for his business’ accounting records to paint

an accurate picture of the performance of the business. The business owner then opens

the “My Accounts” web app and opens his most recent income statement to show the

business consultant. The business consultant then proceeds to ask the business owner

follow up questions to get more information on the business and to understand the

income statement more accurately. The business consultant proceeds to give well-

informed advice to the business owner on what he can do to grow his business.

• Business owner (Going for a loan from a savings and loans company) - A business

owner is looking for money to expand his business. He goes to a savings and loans

company which requests for any accounting information in order to grant him a loan for

him to expand his business. He opens the “My Accounts” app and shows his most recent

income statement as proof that his business is profitable and will be able to pay back the

loan.

Below is a use case diagram (Figure 2.1) to illustrate the different use cases for this

accounting app.

7

Figure 2.1: Use-case diagram of the accounting system

8

2.3 System Requirements

Below is a list of features and functions that the accounting software will perform. These

features and functions have been divided into functional and non-functional requirements.

2.3.1 Functional Requirements

• The system will allow users to input the names of their debtors and their creditors, which

is essentially those they owe as a result of the business and those who owe them. The

system would essentially track the amounts they owe, the amounts they are owed and

when all these payments are due. In accounting, individuals or businesses who owe the

business are recorded as account receivables and businesses or individuals, who a

business is in debt to are recorded as account payables[12].

• The system will allow users to input business transactions and keeps track of these

transactions, and classifies these transactions under sales, expenses and profits. The

system would graph these business transactions to help users analyse the performance

of their business.

• The system produces an income statement for users for a given period.

2.3.2 Non-Functional Requirements

• The system should be secure. As the system contains the accounting information of

users, these details should be encrypted and stored securely.

• The system should be user friendly and easily usable by the target users.

9

Chapter 3: Architecture and Design

In this chapter, a detailed overview of the architecture and the design of the proposed

application is given. Diagrams which describe how the application's architecture will also

be illustrated and explained in this chapter.

3.1 General System Overview

The choice of system architecture design types proposed for the application is influenced

by the following reasons:

• Security: The selected system architecture should enhance the application’s

security and should protect the data of users. The architecture should make it

difficult for individuals with malicious intent to perform system attacks such as

database injections.

• Modularity: The selected system architecture should be made of different layers

or modules. This should make it easier for further improvement of the different

aspects of the system It would make scaling easier, should there be the need.

In considering these factors, the type of system architecture type proposed for the design

of the system is a 3-tier client-server architecture; Reasons for this would be further

elaborated in the forthcoming sections of the chapter as these architecture types are

explained.

3.2 3-Tier Client-Server Architecture

A 3-tier client-server architecture pattern breaks down a computer system into three

different layers, each with a different responsibility [13]. These are:

• The presentation layer, which formats and displays data to user of the system.

10

• The application layer, which handles the business logic of the system. (The business

logic of a system refers to the possible sequences and ways in which the system uses,

manipulates and processes data [15])

• The data layer, which stores data and information being used by the system [13].

In the proposed system, the presentation layer can be accessed through a web browser.

The web app would be made progressive to adapt to different screen sizes as the app may

be used by users who have smartphones, tablets or/and traditional personal computers like

desktop and laptop computers.

The application layer, which controls how data in the system is created, stored, used

and manipulated will be built in the form of a Representational State Transfer (REST)

Application Programming Interface (API). An API is an interface which allows the

interaction and communication of two different software applications [18].

Representational State Transfer (REST) is an architectural style for creating Web service

software and technology [17]. In this system, the RESTful API will take user data inputs

keyed in through the presentation layer and upon verification and interaction with the data

layer, will return a response in the JavaScript Object Notation (JSON) format which will

be formatted for display by the presentation user.

The data tier, which handles the storage of data, would be built using a relational database.

A relational database is a type of database which stores data in tables, columns and rows

[33]. In a relational database, data items have predefined relationships between them [33].

Relational databases are ideal for storing data in the form of text (that is letters, numbers,

and characters) as opposed to multimedia and documents (pictures, videos and gifs) [7].

The numeric nature of accounting data makes this type of database ideal for data storage in

this system. The accounting details also have relational data. For example, your expenses

11

and sales must be tied to your user id. This type of data is stored in a more appropriate

format in relational databases [7].

Below is a diagram (Figure 3.1) illustrating the 3 Tier Architecture of this proposed web

application.

Figure 3.1: Diagram of the 3-Tier Client-Server architecture for the accounting system

3.3 Database Design

The proposed relational database design for the system comprises of six tables, namely:

“expenses”, “expenses_type”, “sales”, “creditors”, “users” and “debtors”. Below is a table

illustrating the different tables in the proposed database and a description of what kind of

data it stores:

Table 3.1: Table showing the structure of the relational database.

Table Description

users This table stores the user's details and

information. Details include the user’s

email, password, first name and last name.

expenses This table stores the details of the

expenses that a user has logged.

12

Expense_type This table stores the different type of

expenses in order to classify expenses. The

classification of expenses into production

expenses, administrative expenses, selling

expenses and miscellaneous expenses

makes it possible for the system to

produce an income statement for the user

at the end of a given period.

sales This table stores the details of every sale

that a user logs in.

debtors This table stores the details of clients and

businesses that owe the user money.

creditors This table stores the details of partners and

suppliers which the user owes money to.

Every table aside the “expenses_type” table is connected to the “users” table through a

user_id foreign key which references the id primary key of the users table. The expenses

table has an additional foreign key expense_type which references the expense_type table.

Below is an Entity Relational (ER) Diagram of the proposed database design for the

system which gives details on, the attributes and datatypes of the columns in the different

tables of the database. It also gives details on the type of relationship which the different

tables have with each other.

13

Figure 3.2: ER diagram illustrating the database design for the accounting system

3.4 Activity Diagrams

The diagram below shows the different activities a user would go through to view and

manage his expenses.

Figure 3.3: Activity diagram illustrating different activities involved in users managing

their expenses with the accounting system.

14

The user undergoes a similar series of activities to manage his sales, list of debtors

and list of creditors. Below is another diagram which illustrates the steps a user undergoes

to view his income statement.

Figure 3.4: Activity diagram illustrating different activities involved in viewing their

income statements with the accounting system

15

Chapter 4: Implementation

In this chapter, a description of the implementation technique, as well as a description of

the different tools, libraries, APIs, frameworks and components used, will be detailed.

Evidence of implementation in the form of screenshots of the code written and the

different interfaces built, will also be presented.

4.1 Technology, Libraries and Tools Used

• JavaScript: JavaScript is a web programming language that allows for the dynamic

display of information on web sites [10]. In the modern development of web

applications, JavaScript can be used for both server-side and client-side programming

as the language continuously evolves [10]. In the implementation of this application,

JavaScript was used to build both the client-side (with React. Js) and the server-side

(with Node.js and Express.js).

• React.js: React is an open-source JavaScript web framework created by Facebook to

make it easier for web developers to create dynamic web apps, as some find interacting

with the Document Object Model of HTML (HyperText Markup Language) pages

unfriendly and difficult [6]. The implementation of a Virtual DOM in React optimises

the overall performance of web applications [1]. For example, components which have

been rendered are not re-rendered unless changes have been made to those

components[1]. Hence if you load a header in a web application, that header would not

need to be loaded again hence saving time and space.

• Cascading Style Sheets (CSS): "CSS is one of a series of standards formulated by the

W3C (Worldwide Web Consortium) in December 1996” [16]. Web developers use

CSS to beautify and organise the content of web pages. In this application, CSS was

used to format and beautify the different components of the application.

16

• Bootstrap: Bootstrap is a CSS framework created by Twitter, which provides a set of

JavaScript functions and CSS classes to make web development easier and faster [4].

It allows developers to make cross-browser websites and web applications [4]. In this

application, bootstrap was used to create a standardised interface across different

browsers and devices.

• Axios.js: Axios is a JavaScript library which can be used to make a HyperText Transfer

Protocol (HTTP) request to an API’s endpoints in order to send and receive data from

the API [32]. In this application, Axios.js was used to make HTTP requests to the API,

for interaction with the database.

• Chart.js: Chart.js is a JavaScript library for data visualisation in the form of different

charts and diagrams on a web page [8]. Chart.js was used in the application to create

chart components through which a user's accounting data can be visualised.

• Node.js: Node.js is a runtime environment that executes JavaScript code outside a web

browser [20]. This serves as a platform to build networking applications like APIs using

JavaScript. Server-side programming for this application was written in JavaScript

code and executed using Node.js.

• Express.js: Express.js is a JavaScript web framework that can be used to build server-

side web applications and APIs for Node.js [29]. In this application, Express.js was

used to build an API with REST endpoints for manipulation of data.

• MySQL: MySQL is a relational database management system that stores data using

tables with rows and columns[14]. This system uses SQL queries to create, read, update

and delete data stored in the relational database[14]. For data storage in this application,

a MySQL database was set up and used.

• WAMPserver (WAMP): WAMP is a software development stack package that allows

software developers using personal computers running the Windows operating system

17

to create a virtual web server for the developer to build their application on their client

computer [5]. This package contains Apache, PHP and MySQL software.[5]

• Postman – Postman is an application for testing the different endpoints of APIs [31].

With Postman, developers can test HTTP requests and see the responses they get from

an API [31]. Postman was used to test the different endpoints of the REST API.

• Git: Git is a version control system designed to store and track changes in code that

developers make in the process of creating an application [21] . In this project, Git was

used to track any changes and to store and back up all programming files on an online

repository on github.com.

• Visual Studio Code: Visual Studio Code is an Integrated Development Environment

(IDE) produced by Microsoft for programming and software development [11]. It has

extension and plugins that aid in the programming by highlighting syntax errors and

making corrections in code [11]. It also has plugins which can integrate language

compilers and runtime environments for more efficient programming [25]. It was used

to write and build both the client-side and server-side of this application.

• MySQL WorkBench: This is a database design tool suited for the creation and

manipulation of MySQL databases [23]. It has an in-built IDE which was used to write

SQL queries to construct the database manipulate data in the database.

18

4.2 Hardware and Software

In order to utilise the app, the user should have a device with a web browser which

supports React.js web applications. Examples of such web browsers are Internet Explorer

9 and above. Microsoft Edge, Google Chrome, Firefox and Opera browser. The

application layer of the app was also stored on a web server which supports Node.js.

Node.js has compatibility with Windows, Linux and Macintosh Operating systems.

4.3 Implementation Techniques

In this section of the chapter, the different techniques and programming styles used in the

implementation of the application will be detailed.

4.3.1 Component-based Development

Component-based development is a style of software development that focuses on the use

of existing components to build new applications [17]. These components may be made in

house or may be used from an existing library. Component-based development allows for

components to be re-used in different views and aspects of an application and as such is a

development style under re-use software engineering. React.js, which was used to build

the presentation tier of the application, is a component-based library [1]. Hence to create a

web app using React.js, developers need to build components or import pre-existing

components from other libraries.

In the proposed web app, every web page is a separate component made up of different

React components. Some of these components, like the header, the side navigation bar,

and the modal, were specially made and developed in the process of making the

application. Some of the other components, like the charts, were imported from other

JavaScript libraries. The charts were imported from the Chart.js Library. Below is a

screenshot of the dashboard with the side navigation component and the header

component (Figure 4.1) as well as snippets of code used to build the header component

19

(Figure 4.2).

Figure 4.1 The side Navigation component and the header Component on the dashboard

export default class Dashboard extends React.Component{

 constructor(props) {

 super(props);

 this.state = { redirect : false, nextpage : ""}

 this.redirectTo = this.redirectTo.bind(this);

 }

 redirectTo = e => {

 this.setState({redirect : true,nextpage: e.target.name,})

 }

 render(){

 return(

 <div>

 <Header startPage="/home" />

 <div className="">

 <div className="row">

 <SideNav/>

 <section className="homepage-main col col-sm-10

container">

 <h5>Welcome

{localStorage.getItem('fname')}</h5>

 <div className="row">

 <div className="card col-xs-12 col-sm-5

col-lg-5" id="homepage-grid-item">

 <div className="card-body">

 <h5 className="card-title">Money

Figure 4.2 Snippet of the code for the header component

20

4.3.2 Feature Driven Development

Feature driven development is an agile software development technique that focuses on

the development of the different functionalities [28] of a system. The system was

developed functionality by functionality. The order in which the system was developed

was as follows:

• Develop the landing page

• Develop the sign up and login process

• Develop the dashboard

• Develop the processes and interface needed to manipulate and view expenses

• Develop the processes and interface needed to manipulate and view sales

• Develop the processes and interface needed to manipulate and view debtor and

creditor information

• Develop the processes and interface needed to view income statements for different

periods of time

4.4 Project File Structure

The project was stored in a folder named “myaccounts’. This folder had two sub-folders

and an SQL file titled "myaccounts.sql” which can be imported into an SQL database

management software and run to set up the SQL database. The two subfolders in the

myaccounts folder were “frontend” and “myaccounts_api”. The frontend folder was

created by running the “create-react-app project_name” command. This command

automatically creates an instance of the React framework on the computer being used for

development [1] . The default file structure for a React app created with the create-react-

app command is

• project_name

21

• node_modules

• public

• src

• .gitignore

• package-lock.json

• package.json

• README.md

The “node_modules” folder contains all the JavaScript libraries and modules which have

been preconfigured to allow the react application to run. It also contains all the additional

modules and libraries which were installed to provide additional react components and

functionalities, like the chart.js library and the axios.js library.

The “public” folder contains the HTML file through which the react application is

rendered. The “src” folder contains all the source code for the React app. Most of the files

created in the development process were placed in different folders in the src folder.

Below is the final structure for the src folder of this project.

• src

• assets

• bootstrap

• components

• css

• images

• pages

• creditors

• debtors

• expenses

• general

• reports

• sales

• App.js

• App.test.js

• index.css

• index.js

• routes.js

• serviceWorker.js

• setupTests.js

The pages folder contains each of the different pages. Each subfolder except the “general”

folder contains components that would be used to manipulate related data. For example,

the “sales” folder contains the different components used to add, edit and view sales

22

details. The “general” folder contains the landing page interface, the dashboard, and the

“login” and “sign up” components. The file structure of the pages folder is given below.

• pages

• creditors

• add-creditor.js

• all-creditor.js

• creditors-page.js

• edit-creditor.js

• debtors

• add-debtor.js

• all- debtor.js

• debtors-page.js

• edit- debtor.js

• expenses

• add-expense.js

• all- expenses.js

• expenses-page.js

• edit- expense.js

• general

• dashboard.js

• landing-page.js

• login-page.js

• signup-page.js

• reports

• income-statement.js

The “my_accounts_api” folder contains all files which make up the RESTful API used in

the application layer of the system. The file structure for this folder is given below:

• my_accounts_api

• database

• db.js

• node_modules

• routes

• creditors.js

• debtors.js

• expenses.js

• income.js

• sales.js

• users.js

• index.js

• package-lock.json

The files in the “routes” folder contain the different endpoints through which the react

application can communicate with the API to make changes in the database. The “db.js”

23

file contains JavaScript code which creates a connection to the SQL database.

4.5 Functionality and Graphical User Interface

On opening the web application, the user is presented the landing page from which he can

decide to Login or sign up.

Figure 4.3 Screenshot of the Landing page of the accounting system

If the user has an account, the user proceeds to click the login button and is met with a

form which demands his/her email address and password. On submitting the user's login

details, the React app makes an API call using the axios library to the database to check if

any email address and password of that form exist in the database.

Once it does, the system shows the user their dashboard. Below is a screenshot of

the User Interface when the user enters an invalid email or password during the log in

process.

24

Figure 4.4 Login component when the user enters an invalid email address or password

Once the user gains access to the dashboard, the user can decide to manage his expenses,

sales, creditors details, debtors details and view his income statement in reports (can be

seen in Figure 4.1) .

The four categories of details “sales”, “expenses” , "debtors" and "creditors" have 3 main

functionalities. For these categories, you can

• add a new entry: This means you can enter in details of a new expense, a new sale

the user has made, a new debtor, or a new creditor that the user has.

• Edit an existing entry: This means you can edit the details of an existing entry that

has previously been added in case some of the details were wrong.

• Display information in the form of graphs: this means that there is a graphical

representation of the expense, sale, debtor and creditor details on the page for easy

analysis.

On selecting the “expenses” option, the interface displays a bar graph showing the total

sum of expenditure for the past 6 months and lists the details of the most recent expenses

25

(Figure 4.5) . These details and figures used to draw the graph are received from an API

call by the axios library using an API endpoint which response with the expense details of

a user in the JavaScript Object Notation (JSON) format.

Figure 4.5 Screenshot of the page which gives a summary of a user’s expenses

 There is an “Edit” button beside each expense listed for the user to be able to edit the

details of that expense. On clicking the “Edit” button the user gets redirected to a page

which contains a form with all the expense details prefilled. From there the user can edit

these details.

Figure 4.6 Screenshot of the page which allows users to add a new expense

26

 On the expenses page, there is also an “add expense” and “view all expenses” button on

the page. The “add expense” button allows the user to add a new expense to the system.

On clicking the “add expense” button, the user is redirected to a page with a form similar

to that which is above us on the “edit expense” component in figure 4.2 . Upon filling the

form and clicking on the proceed button, the user is alerted that the expense has been

added and is redirected to the expense page. This procedure is similar for the other “sales”,

“creditors” and “debtors” categories.

The “reports” page shows an income statement for the most recent calendar year. At the

bottom of the “reports” page, is an HTML “select” element which allows users to select

the income statement of a new calendar year. Users can click on it and select from the

dropdown menu to select expenses from a different year.

Figure 4.7 Screenshot of the page which shows users their income statement

27

Chapter 5: Testing and Results

In this chapter, a detailed description of the different testing procedures the system

underwent to ensure full functionality is presented. Three different types of testing were

performed on the system. These were component testing, system testing and usability

testing. In addition to this, an analysis of the test results and a possible explanation for

these results will also be presented.

5.1 Component Testing

In component testing, and different integrated program units called components are tested

as a whole [30]. To perform tests on the different components, Jest, a JavaScript testing

framework was used to do so.

From the presentation layer, the following components were tested:

• the Login and sign up components

• all components which control the manipulation of details for debtors, creditors,

sales and expenses,

• and finally, the components which display the income statements.

A sample of the testing code and results with Jest is provided below. This was a test to

check the functionality of the login component .

28

test('check if error message on login without filling any field

works', async () => {

 const { findByText, getByText } = render(

 <BrowserRouter>

 <LoginPage/>

 </BrowserRouter>);

 fireEvent.click(getByText('Sign in'))

 const modal = await getByText("Please type your email in the

required field")

 expect(modal).toBeInTheDocument();

 //Checks if user receives an error message on failed Login

});

test('check if error message without password works', async () =>

{

 const { findByText, getByText,getByLabelText } = render(

 <BrowserRouter>

'kwaku.boohene1' } })

Figure 5.1 Code snippet showing a JavaScript Jest test for the Login component

The results of the test are shown in this screenshot:

Figure 5.2 Screenshot of the results from the Jest test for the Login component

29

Postman was used to test the different endpoints of the API. Postman allows developers to

perform tests to ensure that the API provides accurate and expected responses in different

scenarios [31]. Below are some screenshots of tests taken using Postman

Figure 5.3 Screenshot of a Postman test of the system’s API

5.2 System Testing

In system testing, some or all the components which make up the entire system are tested

together. The purpose of system testing is to focus on the interactions between components

and observe their results [30]. To test the accounting system, an end-to-end test was

performed on the accounting system. In this test, the system was taken through sequential

tests to ensure that it was fully functional. These were the following tests, results, and

comments from the End-to-End testing process:

30

Table 5.1: A Table showing the results of the End-to-end Testing

Test Expected Result Actual Result Comments

User creates

account

User's details can be

successfully seen in the

database and the app

redirects to the login

page

User’s details could

be seen in the

database, but the app

redirected to another

user's dashboard.

The route which

was used for

redirecting a

user had a

logical error.

User logs in User receives welcome

message in modal and

is redirected to the

dashboard

User received a

welcome message

and was redirected to

the dashboard.

User adds expense User’s new expense

and its details are

successfully added to

the database

User’s new expense

and its details were

successfully added to

the database

User edits an

existing expense

The user is redirected to

his expenditure page

after being alerted the

expense has been

successfully updated.

The user was

redirected to his

expenditure page

after being alerted

that the expense had

been successfully

updated.

User adds new sale

entry

User’s new sale entry

and its details are

successfully added to

the database

User’s new sale entry

and its details were

successfully added to

the database

User edits an

existing sale entry

The user is redirected to

his sales page after

being alerted the

expense has been

successfully updated.

The user was

redirected to his sales

page after being

alerted that the

expense had been

successfully updated.

User adds details of

a new debtor

The entered details are

successfully added to

the database

The entered details

were successfully

added to the database

User edits existing

details of a debtor

The user is redirected to

the page which lists all

debtors after the details

have been successfully

updated

The user was

redirected to the page

which lists all debtors

after the details were

successfully updated

User changes

income statement

period

The details on the

income statement page

reflect the details of

expenditure, revenue

and income of the

selected year

The details on the

income statement

page did not change

This was as a

result of a

syntax error.

31

All errors that were encountered during the end-to-end testing were resolved after.

5.3 Usability Testing

The application was tested by 3 business owners who fit the description of the user given

in Chapter 2. They tested the application through “Team Viewer”. Team Viewer is an

application that allows users to remotely control the computer of another [11]. Team

Viewer was used to gain access to the computer used to develop the system by the 3 users

who tested the system. They were instructed to open the application on the Google

Chrome Browser on the computer used to develop the system. In the browser, they were

instructed to go to “Developer mode”. “Developer mode” can be used to test a web

application on different screen sizes [24] . They described the user interface as simple and

easy to use and relevant as they liked the applications' functionality. They were able to

manage their expenses, sales, creditor details, debtor details and monitor their business'

income statement. They, however, complained about the following issues:

• The user interface was not mobile-friendly: They were instructed to resize the web

browser to the size of their mobile phone device screen through the developer

options available on the browser. Using the application with that interface, they

concluded that using the application on a smartphone through that interface would

be quite cumbersome.

• Lack of tutorials: Even though they were able to successfully use the application,

they hinted that it would have been easier to use if there were more instructions to

guide its usage.

32

Chapter 6: Conclusion and Future Works

6.1 Summary

This report contains a detailed description of the design, building and testing process of an

accounting app for sole proprietors of medium and small-scale businesses in Ghana. The

application allows users to keep track of the accounting information of their business

without the help of a professional accountant. This project was embarked on as an effort

to improve the poor accounting practices of Ghanaian businesses, as described in Chapter

one. The project, however, does need improvements in terms of user interface design and

security measures, should it be made available to users on the market.

6.2 Limitations

The project meets the stated functional requirements in chapter two. However, there are

some limitations to this project.

• Normalisation: The database, even though functional, has not been normalised to the

third normal form. In the event where the number of users increases or extra

functionalities are added to the software, the system may become slower or

experience failure.

• Security issues: Data entries to the database are not encrypted. The web application

is also not hosted on a secure server. This opens the users of the application up to

different forms of malicious attacks.

• User Experience /User Interface (UI/UX) Issues: Users complained about the user

interface when accessing the application from devices of different sizes. This may

make it difficult for users to adapt to the application. There is also a lack of tutorials

or training to educate users and train them on the different features of the application

33

and how to use those features efficiently. These may contribute to user experience

issues.

6.3 Future Work

Although the functional requirements for the application have been implemented, it would

be advisable to improve the application before making it available to the general market.

Ways in which this could be done would be to:

• Develop a native mobile application to support the current presentation layer: A native

mobile interface which utilises the already built business and data layer of the

application would help improve user experience and the general user interface.

• Upon further research, increase the project's scope: Additional functionalities may be

added to the system to satisfy the users. The application can be improved to present

other forms of financial statements aside, just income statements.

• General improvements in System security and efficiency: Non-Functional

requirements like system security and efficiency may be worked on in order to

generally improve the application’s overall performance. For example, an encryption

algorithm can be implemented to encrypt and decrypt data in the database. The

database can also be normalised to third normal form to increase its efficiency.

6.4 Conclusion

Accounting is important to the day to day running of a business. As said in chapter 1,

better accounting practices can essentially improve a business’ output and performance.

The use of technology and software development to create tools which can solve problems

in society is a benefit that the world currently enjoys. As the problem of bad accounting

practices is one which small businesses in Ghana face, this project is an essential step in

34

curbing and tackling it.

35

References

[1] Sanchit Aggarwal. 2018. Modern Web-Development using ReactJS. Int. J. Recent Res. Asp.

5, (2018), 133–137.

[2] Mohammed Amidu, John Effah, and Joshua Abor. 2011. E-Accounting Practices among

Small and Medium Enterprises in Ghana. J. Manag. Policy Pract. 12, 4 (August 2011), 146–

155.

[3] Gilbert Kwabena Amoako. 2013. Accounting practices of SMEs: A case study of Kumasi

Metropolis in Ghana. Int. J. Bus. Manag. 8, 24 (2013), 73.

[4] Viknes Balasubramanee, Chathuri Wimalasena, Raminder Singh, and Marlon Pierce. 2013.

Twitter bootstrap and AngularJS: Frontend frameworks to expedite science gateway

development. In 2013 IEEE International Conference on Cluster Computing (CLUSTER), 1–

1. DOI:https://doi.org/10.1109/CLUSTER.2013.6702640

[5] R. Bourdon. 2014. WampServer, the web development platform on Windows–Apache,

MySQL, PHP. Viitattu 25, (2014), 2014.

[6] CACM Staff. 2016. React: Facebook’s functional turn on writing Javascript. Commun. ACM

59, 12 (2016), 56–62.

[7] Satyadhyan Chickerur, Anoop Goudar, and Ankita Kinnerkar. 2015. Comparison of

Relational Database with Document-Oriented Database (MongoDB) for Big Data

Applications. In 2015 8th International Conference on Advanced Software Engineering Its

Applications (ASEA), 41–47. DOI:https://doi.org/10.1109/ASEA.2015.19

[8] Helder Da Rocha. 2019. Learn Chart. js: Create interactive visualizations for the Web with

Chart. js 2. Packt Publishing Ltd.

[9] M. David. 2017. Statistics for Managers, Using Microsoft Excel. Pearson Education India.

[10] Sanja Delcev and Drazen Draskovic. 2018. Modern JavaScript frameworks: A Survey

Study. In 2018 Zooming Innovation in Consumer Technologies Conference (ZINC), 106–

109. DOI:https://doi.org/10.1109/ZINC.2018.8448444

[11] Mala Dutta, Kamal K. Sethi, and Ajay Khatri. 2014. Web based integrated development

environment. Int. J. Innov. Technol. Explor. Eng. 3, 10 (2014), 56–60.

[12] John R. Dyson. 2007. Accounting for non-accounting students. Pearson Education.

[13] Eduardo B. Fernandez, Mihai Fonoage, Michael VanHilst, and Mirela Marta. 2008. The

Secure Three-Tier Architecture Pattern. In 2008 International Conference on Complex,

Intelligent and Software Intensive Systems, 555–560.

DOI:https://doi.org/10.1109/CISIS.2008.51

[14] Jay Greenspan and Brad Bulger. 2001. MySQL/PHP database applications. John Wiley

& Sons, Inc.

[15] Geoff Grindrod, Oto Slavos, Saigiridhar Kodali, and Clinton Hallman. 2005. System and

method for customizing and processing business logic rules in a business process system.

Google Patents.

[16] Zheng Hao, Zhu Limiao, and Huang Hua. 2012. A Web Design Mode for Browsers to

CSS Compatibility Issues. In 2012 Fourth International Conference on Multimedia

Information Networking and Security, 160–163.

DOI:https://doi.org/10.1109/MINES.2012.53

[17] Florian Haupt, Frank Leymann, Anton Scherer, and Karolina Vukojevic-Haupt. 2017. A

Framework for the Structural Analysis of REST APIs. In 2017 IEEE International

36

Conference on Software Architecture (ICSA), 55–58.

DOI:https://doi.org/10.1109/ICSA.2017.40

[18] Srikanth Jonnada and Jothis K Joy. 2019. Measure your API Complexity and Reliability.

In 2019 IEEE 17th International Conference on Software Engineering Research,

Management and Applications (SERA), 104–109.

DOI:https://doi.org/10.1109/SERA.2019.8886790

[19] Collins Owusu Kwaning, Kofi Nyantakyi, and Bright Kyereh. 2015. The challenges

behind smes’ access to debts financing in the Ghanaian financial market. Int. J. Small Bus.

Entrep. Res. 3, 2 (2015), 16–30.

[20] Kai Lei, Yining Ma, and Zhi Tan. 2014. Performance Comparison and Evaluation of

Web Development Technologies in PHP, Python, and Node.js. In 2014 IEEE 17th

International Conference on Computational Science and Engineering, 661–668.

DOI:https://doi.org/10.1109/CSE.2014.142

[21] Jon Loeliger and Matthew McCullough. 2012. Version Control with Git: Powerful tools

and techniques for collaborative software development. O’Reilly Media, Inc.

[22] Kan Lu, YingLi Fu, CaiDong Gu, and Liang Zhang. 2012. Problems and Solutions of

Popularization of Accounting Computerization. Phys. Procedia 33, (January 2012), 1155–

1159. DOI:https://doi.org/10.1016/j.phpro.2012.05.190

[23] Michael McLaughlin. 2013. MySQL Workbench: Data Modeling & Development.

McGraw Hill Professional.

[24] Prateek Mehta. 2016. Introduction to Google Chrome Extensions. In Creating Google

Chrome Extensions. Springer, 1–33.

[25] John Paul Mueller. 2006. Mastering Web Development with Microsoft Visual Studio

2005. John Wiley & Sons.

[26] Glenn Owen. 2007. Using Quickbooks Pro 2004 for Accounting. Thomson/South-

Western.

[27] Ozé Inc. 2018. OZÉ | Mobile App & Software to manage and grow your business. OZÉ |

Mobile App & Software to manage and grow your business. Retrieved September 16, 2019

from https://www.oze.guru

[28] Steve R. Palmer and Mac Felsing. 2001. A practical guide to feature-driven development.

Pearson Education.

[29] Andrew John Poulter, Steven J. Johnston, and Simon J. Cox. 2015. Using the MEAN

stack to implement a RESTful service for an Internet of Things application. In 2015 IEEE

2nd World Forum on Internet of Things (WF-IoT), 280–285.

DOI:https://doi.org/10.1109/WF-IoT.2015.7389066

[30] Ian Sommerville. 2011. Software engineering 9th Edition. ISBN-10 137035152, (2011).

[31] Adrian SROKA. 2016. POSTMAN– Powerful API testing tool. Diwebsity[online] 21,

(2016).

[32] Francesco Strazzullo. 2019. HTTP Requests. In Frameworkless Front-End Development:

Do You Control Your Dependencies Or Are They Controlling You?, Francesco Strazzullo

(ed.). Apress, Berkeley, CA, 113–138. DOI:https://doi.org/10.1007/978-1-4842-4967-3_5

[33] Ling-ling Wei and Wei Zhang. 2009. A Method for Rough Relational Database

Transformed into Relational Database. In 2009 IITA International Conference on Services

Science, Management and Engineering, 50–52. DOI:https://doi.org/10.1109/SSME.2009.79

37

Appendices

Appendix A – Requirements Gathering

1. Name of interviewer: ..

2. Place of interview: ...

3. Date of interview: ...

4. Duration Interview: ...

Questions:

1. What type of business do you own and what does your business do?

2. How big is your business?

3. What challenges or problems is your business facing?

4. Do you keep any accounting records?

5. If yes, how do you keep and update these records?

6. If no, why do you not keep accounting records?

7. Do you find accounting difficult? If yes, why?

8. Which financial details of your business would you like to keep track of?

9. Have you ever gone for a loan for your business? What was the experience and what

information were you required to show?

10. Do you use a smartphone, a computer, or any device to help you run your business? How do

you use these device(s) in the running of your business?

38

Appendix B – Component Testing

A. Automated Tests for Login Component

import React from 'react';

import { render,fireEvent } from '@testing-library/react';

import LoginPage from './login-page';

import Dashboard from './dashboard';

import { BrowserRouter } from 'react-router-dom';

import 'jest-localstorage-mock';

test('check if error message on login without filling any field

works', async () => {

 const { findByText, getByText } = render(

 <BrowserRouter>

 <LoginPage/>

 </BrowserRouter>);

 fireEvent.click(getByText('Sign in'))

 const modal = await getByText("Please type your email in the

required field")

 expect(modal).toBeInTheDocument();

 //Checks if user receives an error message on failed Login

});

test('check if error message without password works', async () => {

 const { findByText, getByText,getByLabelText } = render(

 <BrowserRouter>

 <LoginPage/>

 </BrowserRouter>);

 fireEvent.change(getByLabelText(/email/i), { target: { value:

'kwaku.kwayisi@gmail.com' } })

// fireEvent.change(getByLabelText(/password/i), { target: { value:

'kwaku.boohene1' } })

 fireEvent.click(getByText('Sign in'))

 const modal = await getByText("Please type your password in the

required field")

 expect(modal).toBeInTheDocument();

39

 //Checks if user receives an error message on failed Login

});

test('check if works', async () => {

 global.window = { location: { pathname: null } };

 var { findByText, getByText,getByLabelText } = render(

 <BrowserRouter>

 <LoginPage/>

 </BrowserRouter>);

 fireEvent.change(getByLabelText(/email/i), { target: { value:

'kwaku.kwayisi@gmail.com' } })

 fireEvent.change(getByLabelText(/password/i), { target: { value:

'kwaku.boohene1' } })

 fireEvent.click(getByText('Sign in'));

});

40

Appendix C – Code Snippet for Add Creditor Component

import React from "react";

import {Redirect} from "react-router-dom";

import Header from "../../components/header";

import SideNav from "../../components/sidenav";

import axios from 'axios';

export default class AddCreditor extends React.Component{

 constructor(props){

 super(props);

 this.state = {

 cname : "",

 amount : "",

 dBorrow : "",

 dPay:"",

 vPay:"",

 redirect: false,

 userid: Number(localStorage.getItem('userid')),

 quantity:"",

 };

 this.Change = this.Change.bind(this);

 this.addFormData = this.addFormData.bind(this);

 this.onProceed = this.onProceed.bind(this);

 this.validate = this.validate.bind(this);

 this.getDate = this.getDate.bind(this);

 }

 Change = e => {

 this.setState({

 [e.target.name]: e.target.value

 });

 };

 getDate(){

 var today = new Date().toISOString().split('T')[0];

 var date = String(today);

 return date;

 }

 addFormData(){

41

 axios

 .post('http://localhost:5000/creditors/add',

 {

 'name':this.state.cname,

 'amount':this.state.amount,

 'dBorrow':this.state.dBorrow,

 'dPay': this.state.dPay,

 'vPay': parseInt(this.state.vPay),

 'userid':this.state.userid,

 })

 .then(response =>{

 console.log(response);

 alert('sale added');

 this.setState({redirect: true})

 })

 .catch(error =>{

 console.log(error);

 alert(error);

 })

 }

 Change = e => {

 this.setState({

 [e.target.name]: e.target.value

 });

 var item = e.target.name;

 console.log(this.state);

 };

 validate = e => {

 if(this.state.name===""||this.state.amount===""){

 alert("Please fill out the name, amount and date of

Borrowing on the Form");

 return false;

 }

 if(this.state.date===""){

 this.setState(

 {date: this.getDate(),}

)

 return true;

42

 }else{

 return true;

 }

 };

 onProceed = e => {

 var validate = this.validate();

 if(validate===true){

 this.addFormData();

 }

 };

 render(){

 return(

 <div className="">

 <Header/>

 <div className="">

 <div className="row">

 <SideNav/>

 <div className="col col-sm-10 container">

 <div className="row">

 <div className="col col-sm-9">

 <h3>Please input the details of

your Creditor here</h3>

 <form>

 <div className="form-group">

 <label>Name</label>

 <input type="text"

 name = "cname" onChange =

{e => this.Change(e)}

 className="form-control"

placeholder="Name of the person or the Business"

 value={this.state.cname}

/>

 </div>

 <div className="form-group">

 <label>Amount /

Value</label>

 <input type="number" name=

"amount" onChange = {e => this.Change(e)}

 className="form-control"

placeholder="Value of the work done or item(s) bought on credit"

value={this.state.amount}/>

43

 </div>

 <div className="form-group">

 <label>Date

Recorded</label>

 <input type="date"

name="dBorrow" placeholder="YYYY-MM-DD" required

 className="form-control"

onChange = {e => this.Change(e)}

 title="Enter a date in

this format YYYY-MM-DD" value={this.state.dBorrow}/>

 *Default date would be the

current date*

 </div>

 <div className="form-group">

 <label>Deadline for

Payment</label>

 <input type="date"

name="dPay" placeholder="YYYY-MM-DD" required

 className="form-control"

onChange = {e => this.Change(e)}

 title="Enter a date in

this format YYYY-MM-DD" value={this.state.dPay}/>

 *Default date would be the

current date*

 </div>

 <div className="form-group">

 <label>Payment

Made</label>

 <div class="input-

group mb-3">

 <div class="input-

group-prepend">

 <label

class="input-group-text" for="inputGroupSelect01">Options</label>

 </div>

 <select class="custom-

select" id="inputGroupSelect01" value={this.state.vPay}>

 <option value='1'

>Yes</option>

44

 <option selected

value="0" >No</option>

 </select>

 </div>

 </div>

 {/* <input type="submit"

value="Proceed" className = "btn btn-danger btn-block"/> */}

 <button type="button"

className="btn btn-success btn-block"

 onClick = {this.onProceed}>

 Proceed

 </button>

 </form>

 </div>

 </div>

 </div>

 </div>

 </div>

 {this.state.redirect?<Redirect to="./all-

creditors"/>:null}

 </div>

)

 }

}

