
i

ASHESI UNIVERSITY

BUILDING A CHEAP SECURITY SOLUTION FOR A SMART

HOME NETWORK USING A RASPBERRY PI AND SNORT 3

UNDERGRADUATE THESIS

B.Sc. Computer Science

Sharon Adelaide Asomani-Wiafe

2020

ASHESI UNIVERSITY

Supervisor: Dr Stephane Nwolley

ii

BUILDING A CHEAP SECURITY SOLUTION FOR A SMART

HOME NETWORK USING A RASPBERRY PI AND SNORT 3

UNDERGRADUATE THESIS

Undergraduate thesis submitted to the Department of Computer Science,

Ashesi University in partial fulfilment of the requirements for the award of

Bachelor of Science Degree in Computer Science

Sharon Adelaide Asomani-Wiafe

2020

iii

Declaration

I hereby declare that this undergraduate thesis is the result of my own original work and that

no part of it has been presented for another degree in this university or elsewhere.

Candidate’s Signature:

……………………………………………………………………………………………

Candidate’s Name:

……………………………………………………………………………………………

Date:

……………………………………………………………………………………………

I hereby declare that preparation and presentation of this undergraduate thesis were supervised

in accordance with the guidelines on supervision of undergraduate thesis laid down by Ashesi

University.

Supervisor’s Signature:

……………………………………………………………………………………………

Supervisor’s Name:

……………………………………………………………………………………………

Date:

……………………………………………………………………………………………

iv

Acknowledgements

I would first like to thank my supervisor, whose encouragement, support and academic advice

helped me undertake this project. I am grateful to Claude Noel Tamakloe for his help with

brainstorming to arrive at this topic. I would like to express my most profound appreciation to

all my friends for their support and motivation when things got difficult, especially Yaw Botwe

and Nutifafa Cudjoe. Finally, I am thankful to Ebo Adjepon-Yamoah for always being ready

to listen and give constructive advice.

v

Abstract
Digitisation is moving at breakneck speed, and soon almost all devices will be

interconnected via a network. The goal of the Internet of Things (IoT) is to extend internet

connectivity to such devices. In a smart home, examples of such devices are a toaster or a

refrigerator that could be linked to the Internet and accessed remotely. This predicted future

promises to improve the standard of living; however, it brings with it a new set of security

challenges, such as a denial of service attack and ARP spoofing, among others. This paper

therefore, seeks to discover if using Snort 3, a popular intrusion detection system deployed on

a Raspberry Pi would be able to protect these devices.

vi

Table of Contents
Declaration... iii

Acknowledgements .. iv

Abstract .. v

List of Tables .. 1

List of Figures ... 2

Chapter 1: Introduction ... 3

1.1 Introduction ... 3

1.2 Brief History ... 3

1.3 Future of IoT ... 4

1.4 Security of IoT Networks .. 5

1.5 Problem Statement .. 6

1.6 Research Questions ... 7

1.7 Objective of the Thesis .. 7

1.8 Organization of the Paper .. 7

Chapter 2: Background and Related Work ... 8

2.1 Introduction ... 8

2.2 Security Issues ... 8

2.3 Related Work .. 9

Chapter 3: Methodology/Approach ... 18

3.1 Description of Research Design ... 18

3.2 Research Method ... 18

3.2.1 Phase One ... 18

3.2.2 Phase Two .. 19

3.3Experiments Procedure ... 21

3.3.1 CPU Performance. .. 21

3.3.2 Number of alerts generated ... 21

Chapter 4: Results ... 23

Chapter 5: Conclusion ... 25

References .. 26

Appendix .. 29

1

List of Tables
Table 2.1: Summary of comparative analysis of top four NIDS……………………………..12

Table 3.1: Statistics monitored during the experiments...…………………………………….21

2

List of Figures
Figure 1.1: The predicted number of smart objects…………………………...4

Figure 2.1: Types of attacks on IoT systems ………………………………………………...9

Figure 3.1: Python Code snippet…………...……………………………………………… ..21

Figure 4.1: Average CPU performance per packet category…………………..22

Figure 5.1: The number of alerts generated by Snort 3 per protocol………………………..24

3

Chapter 1: Introduction
1.1 Introduction

The term, Internet of Things (IoT), has become very popular and widely used recently

to signify the connection of everyday traditional devices and systems such as ventilation

systems, refrigerators, factory equipment and medical devices to a network such as the Internet.

There are numerous IoT devices in airports, filling stations, offices and warehouses that

perform specific tasks to improve efficiency and generally improve the quality of life. For

instance, for IoT systems centred around people, specifically elderly and disabled people, these

systems help to increase their autonomy [1]. IoT solutions centred around safety seek to reduce

the number of precarious situations people may face. For example, interconnected vehicles on

a highway would be able to communicate with each other, thus helping the driver to avoid

driving into other cars; and autonomous mining equipment helps to reduce the percentage of

human life lost to mining incidents [2]. With the above-stated examples, there is evidence that

connecting these devices would improve overall efficiency and increase the quality of life.

Furthermore, in the future, it would be possible to predict the amount of alcohol party goers

would consume and deploy more taxis to such locations to reduce alcohol-related road

accidents.

1.2 Brief History
 The first proof of the Internet of Things concept can be referenced to a project

undertaken by the Carnegie Melon University in 1982 where the team improved a Coke

dispensing machine. It became the first machine connected to the Internet with it being capable

of reporting its inventory. It also reported on the temperature of the drinks in the device [3].

However, the term Internet of Things (IoT) was popularised by Kevin Ashton in 1999, during

a presentation highlighting the value of Radio Frequency Identification (RFID) technology in

the supply chain industry [4].

4

1.3 Future of IoT
 Since then, the number of connected devices is exponentially increasing, and the term

being used to describe the environment where such devices can be found is a smart

environment. The market for the emergence of such environments is so lucrative that the

market of smart homes was expected to peak at $26 billion by the end of 2019 [5]. It has

likewise been predicted that by 2020 the number of IT devices in circulation would surpass

fifty (50) billion [6].

Figure 1.1: The predicted number of smart objects (taken from [6])

These smart environments provide a plethora of opportunities to individuals and

businesses alike. The connection of these devices to the Internet allows for remote access to

the sensors and devices which make up the IoT systems, thus efficiently collecting data from

these devices and sensors for monitoring, forecasting and improving the intelligence of the

devices themselves. The connection of these devices to the Internet allows for enhanced

interaction among people and the smart environment; and provides a cost-effective method for

saving energy [38]. As mentioned, there is a myriad of smart environments, but the focus of

this thesis is on the security of the most private of all smart environments: the smart home.

5

1.4 Security of IoT Networks
Many IoT devices and systems produced are geared towards consumers, and a study

conducted in the U.S. estimates two-thirds of U.S. households are expected to own some form

of smart device by the end of 2019 [8]. As a result of the wide range of business opportunities

provided by such devices, manufacturers are continually churning out new IoT devices.

However, security mechanisms have not been produced at the same pace as the IoT systems

and devices themselves, causing a massive gap in the security and protection of these IoT

devices and systems [7]. For instance, one point of vulnerability due to the protection gap was

discovered in 2016. This vulnerability of the system was exploited by a malware called Mirai

[9]. This malware particularly hijacks poorly secured closed-circuit devices like digital video

cameras and routers [10]. According to Angrishi, in just under two weeks, Mirai gained control

of about 200,000 devices, which were later used as botnets to mount large-scale Distributed

Denial of Service attacks (DDoS) [9]. This example is just one of the consequences of IoT

devices lacking sufficient security mechanisms.

As mentioned earlier, the scope of this thesis is limited to the security of IoT networks

in a smart home. The home is a very private space for individuals hence the lack of adequate

protection would leave the members of smart homes open to attacks by malicious hackers who

tend to harm. For instance, the CCTV cameras in a household may be connected to the Internet

to allow the members of the family to remotely access live feed when they are away from

home. It could also alert security services of any intrusions. All these services provided are

meant to ensure that the members of the household enjoy a more comfortable standard of living.

However, due to the lack of security, hackers with malicious intent may exploit this weakness

and intrude on the privacy of the individuals in the household. They may also turn off the

functionality to alert security services of any intrusions or break-ins to the homes causing

physical and psychological harm to the members of the household. All these attacks can be

6

prevented or at least detected if there are robust security mechanisms ingrained in the

architecture of IoT systems to ensure consumer protection.

1.5 Problem Statement
The problem of having vulnerabilities in a smart home environment would grow to a

much bigger scale if left unchecked. It would be every hacker’s dream considering the

estimated number of devices in circulation. All data and devices would be left vulnerable to

attacks, and people would not feel safe in their homes. Despite the advancements in IoT

systems, there have not been comparatively significant advancements in terms of the security

of the network linking these devices. There is a considerable gap in terms of the security and

protection of IoT devices in smart homes. This thesis seeks to find a highly portable and

extremely scalable security mechanism for IoT systems in a smart home environment.

There are various alternatives to protecting IoT systems from malicious actors. Some

of these alternatives include creating a gateway to serve as a central point of control between

the IoT devices and the outside world (i.e. the Internet) [11]. However, this solution does not

secure the system from malicious attacks but only secures the system based on user

configuration. Another solution such as public-key cryptography is not feasible because the

IoT devices are resource-constrained and public-key cryptography is resource-intensive [12].

Furthermore, there is research being done into lightweight cryptography solutions [13,14].

However, they are not robust enough to protect the network from internal attackers (i.e., nodes

that have been granted more access than required), or from external attacks like DDoS. One

other possible solution to protect the IoT system is using an intrusion detection system on a

Raspberry Pi. This low-powered resource-constrained device is the security mechanism being

investigated in this thesis.

An intrusion detection system (IDS) is a software tool that monitors and scans traffic

on a network for suspicious activity and, based on configuration, sends alerts when any

suspicious activity is detected. IDSs installed at a point within the network to examine traffic

7

from all devices on the network are known as Network Intrusion Detection Systems (NIDS).

NIDS are mainly developed to be run on laptops and hence the existing software may not be

used on IoT systems because of the limited resources available in the network. One such

example is Snort 3, a well-known open-source system that uses both signature-based and

anomaly-based methods to detect anomalies.

1.6 Research Questions
 The research questions for this thesis, based on the problem identified, are as follows:

1. Can a Raspberry Pi provide the computational requirements of Snort 3?

2. Would Snort 3 installed on a Raspberry Pi be able to identify malicious behaviour?

1.7 Objective of the Thesis
This thesis seeks to propose a cheap way to ensure the security of IoT networks by

successfully mounting Snort 3 on a Raspberry Pi. This resource-constrained low powered

device is typical of most devices that form part of the network.

1.8 Organization of the Paper
This thesis is structured as follows: Chapter 1 introduces the background and expected

future of IoT systems. It also describes the scope of the thesis and mentions the main objective

of this thesis. Chapter 2 describes related work in the field of security mechanisms in IoT

systems, specifically those that utilise NIDSs. Chapter 3 describes the methodology used in

this research. Chapter 4 discloses and analyses the results of this research and Chapter 5

summarises the research conducted and serves as the conclusion for this thesis.

8

Chapter 2: Background and Related Work
2.1 Introduction

Generally, the IoT concept is a new and fresh concept that offers so many opportunities

in terms of improving the efficiency of systems and generally making life easier and more

comfortable [15]. An example would be using your smartphone to turn the lights off when no

one is home [16]. Before IoT became as popular as it is now, it started as Machine to Machine

(M2M) communication. M2M primarily signifies two machines communicating with each

other without human control. The mode of communication could be wired, i.e. with cables or

wireless, or over a network such as the Internet. However, with this rapid increase in the

technological advancement of IoT systems, there has been a lag in the development of security

protocols administered to these systems [17]. The various new features added to these systems

have dramatically increased the attack surface areas of these systems, making these systems

more vulnerable to attacks.

2.2 Security Issues
This section describes the various security issues related to an IoT system, specifically,

a smart home automation system. Since there is no standardised architecture for IoT systems,

the architecture referenced to in this thesis is that propounded by Hassija, Chamola, Saxena,

Jain, Goyal, and Sikdar, [18].

The authors of this paper propose that any IoT application, whether it be for home

automation, smart cities or smart retail, can be divided into four layers, which are:

- Sensing layer – the primary purpose of this layer is to collect data from the smart

environment where these devices can be found. As the name suggests, the sensors that

form part of the IoT system can be found in this layer.

- Network layer – the main purpose of this layer is to transmit collected data to the

appropriate endpoints

9

- Middleware layer - the middleware layer helps to create some form of abstraction

between the network layer and the application layer. This layer provides application

programming interfaces (APIs) to the application layer. Hence, the application layer

does not interact directly with the network layer.

- Application layer– the main purpose of the application layer is to provide services

requested to the user. The user interacts with the entire system through this layer[18]

- Gateway –this part of the architecture does not constitute a layer. However, it is used

to support administrative services, such as the addition of new interfaces.

The authors go ahead to report on the various types of attacks that can be encountered

at the layers mentioned above. The different types of attacks that can be leveraged against

the multiple layers have been summarised in Figure 2.1 below.

Fig. 2.1: Types of attacks on IoT systems (taken from [18])

2.3 Related Work
 This section presents the works done by other researchers into using IDSs as a security

mechanism for IoT networks.

Li et al. [19] present an IDS that makes use of signature-based approaches and employs

Artificial Immune System Mechanism. The authors propose that attack signatures are modelled

as immune cells that can be classified as malicious or normal. The authors do not recommend

which placement strategy should be adopted. According to them, the computational

10

requirements needed to run the algorithms cannot be handled by the IoT network due to the

resource constraint.

Misra et al. [20] propose a specification-based detection method as a solution to prevent

DDoS attacks over the middleware layer of IoT systems. The limitation of this solution is that

there is no standardised architecture for IoT. Hence, some IoT systems may lack the

middleware layer. Therefore, this solution is not compatible with all IoT systems.

Gupta et al. [21] present an architecture for an IDS that constructs standard behaviour

profiles for each device on the network with an assigned IP address. The authors propose that

profiling would be done using Computational Intelligence algorithms. Aside from the resource

constraints of IoT devices, no type of attack could be detected by the proposed solution.

Cho et al. [22] propose an IDS whereby packets that pass through the border router (the

router connecting physical devices and the network) are examined to detect botnet attacks.

Their proposed solution utilises anomaly-based approaches and assumes that botnets caused

unexcepted changes in traffic. The limitation of this solution is that there may be a device that

has unusual traffic simply because of increased usage. Hence, the proposed IDS would classify

the device as an intruder.

Khanum and Usman [23] propose an IDS mechanism that makes use of wireless

authentication and encryption systems. The result of the study showed that the proposed

mechanism resulted in numerous false alarms detected and failed to adjust to discover new

types of attacks.

Hugelshofer et al. [24] propose a lightweight IDS that majorly decrease memory

consumptions. However, their solution does not identify the majority of the primary attacks

and only detects a few, such as IP spoofing.

Farooqi and Khan [25] propose a distributed IDS to monitor nodes that are neighbours

to the other. The authors assume that a malicious actor cannot take over existing nodes or

11

introduce a new node into the system. The proposed solution creates a form of the trust

relationship between neighbour nodes, and hence the solution is not plausible if one of the

trusted nodes is being attacked.

Krimmling and Peter [26] propose an IDS that employs a hybrid detection method by

merging signature-based approaches as well as anomaly-based approaches. The tests they

conducted showed that the proposed system failed to detect some frequent attacks such as Man-

In-The-Middle attacks.

Cervantes et al. [27] propose an IDS where the role of each node in the system is to

monitor a superior node, estimating the traffic patterns of that node. This approach also utilises

the concept of trust, just like what was employed by Jonckers[11]. Since all the nodes are

monitoring the superior nodes, one of the nodes can be under the control of malicious actors,

and the other nodes would not detect this.

 Thanigaivelan et al. [28] propose a hybrid IDS where network nodes and the border

router are assigned different tasks. Each node monitors the other and sends notifications of

possible attacks to the border router. The border router then utilises anomaly-based detection

based on normal behaviour learned to determine if there was an actual intrusion or not. This

solution as at now is not plausible because the authors did not define the scope of normal

behaviour.

Based on the literature review conducted, I identified some gaps that my proposed

solution would attend to. One gap identified is that some authors failed to offer a placement

strategy along with their proposed solution. Hence, the placement strategy I am adopting would

be to connect the Raspberry Pi with Snort 3 installed directly into the router in the smart home.

I chose this because the router is the entry point for data packets into that environment. Hence,

the device is placed right after the entry point and, therefore, can start to detect anomalies in

the network.

12

Another such gap identified is that the previous solutions failed to detect certain

anomalies and intrusions. This is mainly because the authors proposed new IDSs from scratch.

However, these IDSs were not robust enough and the IoT networks were still susceptible to

attacks. One way to solve this issue is to use a tried and tested intrusion detection software.

Thus, the IDS chosen for this Thesis is Snort 3, which is an open-source NIDS. It was selected

because it is the de facto standard for IDS, and its modular design allows for flexibility.

Table 2.1 below outlines a comparative analysis undertaken to identify the Network

Intrusion Detection Systems (NIDS) with the lowest resource intensity among the top four

NIDS. This analysis seeks to reinforce the use of Snort 3 as the best NIDS to undertake this

research because of its low resource intensity.

Table 2.1: Summary of comparative analysis of top four NIDS

NIDS Features Deploymen

t Platform

Benefits Weaknesses

Snort [29] • Support multiple packet

processing threads

 • Use a shared configuration

and attribute table

• Autodetect services for port

less configuration

• Modular design

• Plugin framework with over

200 plugins

• More scalable memory

profile

Windows

NT and

2000, Unix

(Solaris,

HP-UX,

IRIX,

OpenBSD,

NetBSD,

Free BSD,

and Mac OS

X), Linux,

-A vast

community of

users, many

support

resources

available

online [29]

- It has low

CPU usage

[35]

-Snort has no

user interface

or easy-to-use

administrativ

e console [35]

13

• LuaJIT configuration,

loggers, and rule options

• Hyperscan support

• Rewritten TCP handling

• New rule parser and syntax

[29]

and even on

PowerPCs.

Suricata

[30]

• High performance - multi-

threaded, scalable codebase

• Multipurpose Engine -

NIDS, NIPS, NSM, offline

analysis, etc.

• Cross-platform support -

Linux, Windows, macOS,

OpenBSD, etc.

• Modern TCP/IP support

including a scalable flow

engine, full IPv4/IPv6, TCP

streams, and IP packet

defragmentation

• Protocol parsers - packet

decoding, application layer

decoding

• HTTP engine - HTTP

parser, request logger,

keyword match, etc.

• Linux

• FreeBSD

•OpenBSD

•macOS /

Mac OS X

•Windows

[30]

- Suricata

supports

multithreading

, which means

it can use

multiple cores

at once. Hence,

it can process

large

quantities of

traffic without

having to cut

back on rules.

[30]

- Suricata is

prone to false

positives.

- System and

network

resource-

intensive

14

•Autodetect services for

portless configuration

• Lua scripting (LuaJIT)

• Application-layer logging

and analysis, including

TLS/SSL certs, HTTP

requests, DNS requests, and

more [30]

Zeek [31] • Fully passive traffic analysis

off a network tap or

monitoring port

• Standard libpcap interface

for capturing packets

• Real-time and offline

analysis

• Cluster-support for large-

scale deployments

• Unified management

framework for operating both

standalone and cluster setups.

• Open source under a BSD

license

• Support for many

application-layer protocols

Runs on

commodity

hardware

on standard

UNIX-style

systems

(including

Linux,

FreeBSD,

and

macOS)

[31]

- It can be

tailored for a

variety of

network use

cases in

addition to

NIDS

(Network

Intrusion

Detection

System)

-It is different

from other

tools in that it

doesn’t depend

on a specific

- Zeek is

aimed at

providing

security

solutions for

high-

performance

networks.

This is listed

as a weakness

because it

makes the

system

resource-

intensive

15

(including DNS, FTP, HTTP,

IRC, SMTP, SSH, SSL)

• Analysis of file content

exchanged over application-

layer protocols, including

MD5/SHA1 computation for

fingerprinting [31]

detection

approach

Another

critical point is

that it is not

dependent on

traditional

signatures [31]

- It is

primarily a

wireless

solution [31]

Sguil [32] This software is a collection

of free software components

for Network Security

Monitoring (NSM) and

event-driven analysis of IDS

alerts. Below are the various

tools which form part of Sguil

as well as their multiple

functions. [33]

MySQL 4.

x or 5.x

Data storage

and retrieval

Snort 2.x

/ Suricata

Intrusion

detection

alerts, scan

It can run

on any

operating

system that

supports

tcl/tk

(including

Linux,

*BSD,

Solaris,

macOS, and

Win32)

[33]

- It provides a

GUI, which

makes it easier

to use

- It is a

resource-

intensive

application as

the

specification

of

recommende

d server

hardware is as

follows.

CPU = 3.0

GHz

RAM = 2GB

Disk Storage

= 150 [32]

https://en.wikipedia.org/wiki/Suricata_(software)

16

detection,

packet

logging

Barnyard /

Barnyard2

Decodes IDS

alerts and

sends them to

sguil

SANCP

TCP/IP

session

records

Tcpflow

Extract an

ASCII dump

of a given

TCP session

p0f

Operating

system

fingerprintin

g

17

tcpdump

Extracts

individual

sessions from

packet logs

Wireshark

Packet

analysis tool

[34]

18

Chapter 3: Methodology/Approach
 The primary purpose of this study is to demonstrate that a Raspberry Pi device has the

computational power to run Snort 3 continuously. The study also seeks to show that a

Raspberry Pi equipped with Snort 3 can be used to protect a smart home from malicious actors

by being able to detect malicious activity such as the different types of attacks summarised in

Fig. 2.1. This chapter outlines the steps taken to find answers to the above research questions

and thoroughly describes the tools and devices used to conduct this research.

3.1 Description of Research Design
The research is conducted in two phases. The first phase employs the use of build

methodology. Build methodology is a type of research approach that consists of the building

of an artefact to demonstrate the possibility of the existence of such a system. This

methodology is appropriate because it establishes that it is indeed possible to deploy Snort 3

on a Raspberry Pi.

The second phase employs experimentation. Using the device, it would be used to

assess how the Raspberry Pi performs as the Snort 3’s host based on:

- CPU performance; and

- The number of alerts generated.

As a way to ensure the credibility of the experiment results and to determine that Snort

is functioning as correctly as it would on an ideal device, a control experiment was conducted

by assessing the number of alerts generated by Snort running on an ideal device (a laptop).

3.2 Research Method

3.2.1 Phase One
 As described above, this phase involves installing and configuring Snort 3 on a

Raspberry Pi.

Snort 3: The IDS chosen for this research is Snort 3. It is a robust network intrusion detection

system, which is capable of analysing network traffic in real-time. This was the IDS chosen for

the project because:

19

- It is open-source; hence other developers and members of the Snort 3 community

identify loopholes that can be exploited and report back to the Snort 3 development

team to add new rules to fix gaps identified. This feature of Snort 3 helps to ensure

that the system is robust because it is always updated to match new security threats

identified.

- It is widely used by private users and institutions.

- Additional reasons can be found in the comparative analysis conducted and reported

in the previous chapter.

Raspberry Pi: It is a small-sized computer with relatively significant computing power. One

alternative to the Raspberry Pi I considered was Arduino. However, a Raspberry Pi is utilised

in the research because, among the two devices, the Raspberry Pi is the more suitable candidate

in terms of storage and computing speed [36].

Installation and configuration were done following Noah Dietrich’s guide to installing Snort 3

on Ubuntu. This guide was useful because Ubuntu is based on Debian, which is the OS running

on the Raspberry Pi.

3.2.2 Phase Two
The next phase of the research involved experimentation to assess the performance of the

Raspberry Pi as Snort 3’s host. The two primary devices used to conduct this experiment were:

1. The Raspberry Pi 2 Model B is a Quad-Core ARM Cortex-A7 with 1 GB of memory.

We installed the operative system Raspbian (Debian Wheezy) and Snort 3.0.0. We

equipped the Raspberry Pi with a 32 GB class 10 MicroSD card.

2. The computer’s hardware configuration was a 3.3 GHz Intel Core i5 with 8 GB of

memory and equipped with Ubuntu 18.04.

3. An Ethernet crossover cable to serve as a link between both devices. It is worth

mentioning that the maximum speed on the link between the two devices was 100 Mbit/s.

20

3.2.2.1 Network traffic simulation
 To simulate network traffic, both malicious and normal, a pcap file downloaded from

https://www.netresec.com/index.ashx?page=PcapFiles, an online public repository was used.

The 654401 packets in this file were divided into three categories based on the sizes of the

packets present in the pcap file. This pcap file was chosen because it contains packets that are

likely to be present in a smart home network e.g.

Small – packets of length less than 150 bytes

Long – packets of length of at least 1000 bytes

Mixed– packets of all sizes.

The categorisation of the files is necessary because packet length influences CPU consumption.

To simulate network traffic, both devices were connected via the crossover cable. A python

script mainly utilising the python library Scapy, a packet manipulation tool was used to

categorise packets and sent to the Raspberry Pi mimicking normal network conditions.

3.2.2.2 Recorded statistics
 Sysstat, a performance monitoring tool on Linux systems was installed on the

Raspberry Pi to record the average CPU usage in percentages. This was necessary to observe

the CPU utilisation as the sizes of the packets on the testing network were changing as well as

to observe whether a Raspberry Pi could provide the necessary computational resources

required by Snort 3.

3.2.2.3 IDS Rules
Snort 3 employs the use of rules to perform its detection duties as these rules are what

provide the desired security. Thus enabling more rules does not translate into increased

security. Rather, it translates into more CPU consumption as would be described in Chapter

4. The ruleset utilised in this Thesis is Snort 3 subscriber ruleset.

21

3.3 Experiments Procedure

3.3.1 CPU Performance.
This part of the experiment was carried out in three waves. The python script below

was used to facilitate the first wave, which involved sending the packets in the small category

to the Raspberry Pi with Snort 3 listening for packets on the Raspberry Pi’s ethernet interface.

Figure 3.1: Python Code snippet

Simultaneously, sysstat was monitoring the CPU usage twice every second. For the

second and third wave, the above procedure was repeated but with the packets from the other

two categories: large and mixed. The number of packets in each category was approximately

70000.

3.3.2 Number of alerts generated
For this part of the experiment, Snort 3 was installed and configured on a computer.

The computer’s hardware configuration was a 1.60 GHz Intel Core i5 with 8 GB of memory

and equipped with Ubuntu 18.04. The same network traffic was simulated on both the

Raspberry Pi and on the laptop with Snort 3 listening for packets on the ethernet interfaces of

both devices. The alerts generated from both devices were stored in a text file for analysis.

Table 3.1: Statistics monitored during the experiments

22

Name Description

Avg. CPU Average Raspberry Pi CPU usage for a given

experiment

Alerts No. of alerts generated by Snort for a given

experiment

23

Chapter 4: Results

This chapter discusses the results from the experiments described in the previous

chapter. This thesis sought to answer two research questions: Can a Raspberry Pi provide the

computational requirements of Snort 3? Would Snort 3 installed on a Raspberry Pi be able to

identify malicious behaviour?

In the assessment of the computational abilities, the CPU consumption of the Raspberry

Pi was recorded while packets of different sizes were transmitted from the computer to the

Raspberry Pi. The graph below summarises the research findings.

Figure 4.1: Average CPU performance per packet category

Figure 4.1 shows that, for the packets in the small category, the average CPU

consumption is 4.6% with 93.5% idle time and for the large category, the average CPU

consumption is 15.29% with 80.02 idle time. For the mixed category, the average CPU

consumption is 24.69% with 74.05% idle time. This trend asserts the logic that CPU

consumption increases as it is subjected to higher processing power. However, it is worth

noting that even with the packets in the large and mixed category, the CPU consumption is not

up to 50%. This proves that a Raspberry Pi can provide the necessary computational

requirements Snort 3 requires thereby answering the first research question in the affirmative.

4.6 15.29

24.69

93.5

80.02
74.05

1 3

Graph showing CPU performance

Avg. CPU Usage(%) Idle Time (%)
Small Large Mixed

24

It is also worth noting that the process of loading the rule set in Snort 3 requires an average of

25% CPU consumption. However, this happens only once on start up of Snort 3.

To answer the second research question, the same network activity was simulated on

both the Raspberry Pi and a laptop, which served as a control experiment. The objective of this

experiment was to determine whether Snort 3 on a Raspberry Pi would be able to correctly

detect malicious packets as it would on an ideal device (laptop). All the alerts generated were

stored in a .csv file for analysis. From the pcap file containing 654401 packets, 76119 of those

packets were flagged as malicious by Snort 3 running on the laptop. There was a 100% match

between the alerts generated by Snort 3 on the laptop and Snort 3 on the Raspberry Pi. Figure

4.2 below summarises the number of alerts generated per protocol. This graph is representative

of the results from both the Raspberry Pi and the laptop.

Figure 4.2: The number of alerts generated by Snort 3 per protocol

 The 100% match between the results of both devices proves that Snort 3 can

function as effectively on a Raspberry Pi as it would on a laptop.

1934

15379

58804

2
0

10000

20000

30000

40000

50000

60000

70000

 ARP TCP UDP IP

NUMBER OF ALERTS PER
PROTOCOL

25

Chapter 5: Conclusion
In conclusion, this study sought to prove that a Raspberry Pi can serve as an effective

and efficient host of Snort 3. This study mainly monitored the CPU consumption and the

number of alerts generated by Snort 3 running on a Raspberry Pi, connected to an apparent

smart home network. The results demonstrated that a Raspberry Pi has the computational

resources necessary to host Snort 3. It is worth mentioning that Snort 3 resource demands did

not overwhelm the Raspberry Pi. As such, it would be a very useful tool in smart homes. By

utilising this placement strategy, all the packets entering the network are scanned and analysed

before they are allowed into the network. This thesis highlights one of the affordable ways to

ensure the security of IoT networks by successfully mounting Snort 3 on a Raspberry Pi.

 One limitation of this study is that tests were carried out with network traffic recorded

in trace files rather than real live traffic in a smart home. Future research may focus on running

experiments with intrusion detection over wireless protocols such as MQTT, WiFi and

Bluetooth. Additionally, further research can be conducted by investigating some alternatives

to Snort 3, such as Suricata and Zeek. Additional examinations can be directed at uncovering

the suitability of an Arduino Uno as a host for Snort 3.

26

References
 [1] Domingo, M.C. 2012. An overview of the Internet of Things for people with disabilities.

Journal of Network and Computer Applications. 35, 2 (Mar. 2012), 584–596.

DOI:https://doi.org/10.1016/j.jnca.2011.10.015.

[2] IoT In Mining: Benefits, Challenges And Latest Case Studies: 2019.

http://www.fitchsolutions.com/corporates/metals-mining/IoT-mining-benefits-challenges-

and-latest-case-studies-20-03-2019. Accessed: 2019-10-11.

[3] The little-known story of the first IoT device:

2019. https://www.ibm.com/blogs/industries/little-known-story-first-IoT-device/. Accessed:

2019- 10- 11.

[4] Ashton, K. 2009. That “Internet of Things” Thing. 1.

[5] Wilson, C., Hargreaves, T. and Hauxwell-Baldwin, R. 2015. Smart homes and their users:

a systematic analysis and key challenges. Personal and Ubiquitous Computing. 19, 2 (Feb.

2015), 463–476. DOI:https://doi.org/10.1007/s00779-014-0813-0.

[6] Vermesan, O. and Friess, P. 2013. Internet of things: converging technologies for smart

environments and integrated ecosystems. River Publishers.

[7] Khera, M. 2017. Think Like a Hacker: Insights on the Latest Attack Vectors (and Security

Controls) for Medical Device Applications. Journal of Diabetes Science and Technology. 11,

2 (Mar. 2017), 207–212. DOI:https://doi.org/10.1177/1932296816677576.

[8] “2015 U.S. Digital Future in Focus,” comScore, 2015.

[9] Angrishi, K. 2017. Turning Internet of Things (IoT) into Internet of Vulnerabilities (IoV) :

IoT Botnets. arXiv:1702.03681 [cs]. (Feb. 2017).

[10] Hackers release source code for a powerful DDoS app called Mirai:

2019. https://techcrunch.com/2016/10/10/hackers-release-source-code-for-a-powerful-ddos-

app-called-mirai/. Accessed: 2019- 10- 13.

[11] Jonckers, D. 2016. A security mechanism for the Internet of Things in a smart home

context. KU Leuven. 108.

[12] Atzori, L., Iera, A. and Morabito, G. 2010. The Internet of Things: A Survey. Comput.

Netw. 54, 15 (Oct. 2010), 2787–2805. DOI:https://doi.org/10.1016/j.comnet.2010.05.010.

[13] Feldhofer, M., Dominikus, S. and Wolkerstorfer, J. 2004. Strong Authentication for

RFID Systems Using the AES Algorithm. Cryptographic Hardware and Embedded Systems -

CHES 2004 (2004), 357–370.

[14] Eschenauer, L. and Gligor, V.D. 2002. A Key-management Scheme for Distributed

Sensor Networks. Proceedings of the 9th ACM Conference on Computer and

Communications Security (New York, NY, USA, 2002), 41–47.

https://doi.org/10.1016/j.jnca.2011.10.015
http://www.fitchsolutions.com/corporates/metals-mining/iot-mining-benefits-challenges-and-latest-case-studies-20-03-2019
http://www.fitchsolutions.com/corporates/metals-mining/iot-mining-benefits-challenges-and-latest-case-studies-20-03-2019
https://doi.org/10.1007/s00779-014-0813-0
https://doi.org/10.1177/1932296816677576
https://doi.org/10.1016/j.comnet.2010.05.010

27

[15] Lanzisera, S., Weber, A.R., Liao, A., Pajak, D. and Meier, A.K. 2014. Communicating

power supplies: Bringing the internet to the ubiquitous energy gateways of electronic devices.

IEEE Internet of Things Journal. 1, 2 (Apr. 2014), 153–160.

DOI:https://doi.org/10.1109/JIOT.2014.2307077.

[16] Atzori, L., Iera, A. and Morabito, G. 2010. The Internet of Things: A survey. Computer

Networks. 54, 15 (Oct. 2010), 2787–2805.

DOI:https://doi.org/10.1016/j.comnet.2010.05.010.

[17] Mandeep Khera. 2017. Think Like a Hacker: Insights on the Latest Attack Vectors (and

Security Controls) for Medical Device Applications. J Diabetes Sci Technol 11, 2 (March

2017), 207–212. DOI:https://doi.org/10.1177/1932296816677576

[18] Hassija, V., Chamola, V., Saxena, V., Jain, D., Goyal, P. and Sikdar, B. 2019. A Survey

on IoT Security: Application Areas, Security Threats, and Solution Architectures. IEEE

Access. 7, (2019), 82721–82743. DOI:https://doi.org/10.1109/ACCESS.2019.2924045.

[19] Liu, C., Yang, J., Chen, R., Zhang, Y. and Zeng, J. 2011. Research on immunity-based

intrusion detection technology for the Internet of Things. 2011 Seventh International

Conference on Natural Computation (Jul. 2011), 212–216.

[20] Misra, S., Krishna, P.V., Agarwal, H., Saxena, A. and Obaidat, M.S. 2011. A Learning

Automata Based Solution for Preventing Distributed Denial of Service in Internet of Things.

Proceedings of the 2011 International Conference on Internet of Things and 4th

International Conference on Cyber, Physical and Social Computing (Washington, DC, USA,

2011), 114–122.

[21] Gupta, A., Pandey, O.J., Shukla, M., Dadhich, A., Mathur, S. and Ingle, A. 2013.

Computational intelligence based intrusion detection systems for wireless communication

and pervasive computing networks. 2013 IEEE International Conference on Computational

Intelligence and Computing Research (Dec. 2013), 1–7.

[22] Cho, E.J., Kim, J.H. and Hong, C.S. 2009. Attack Model and Detection Scheme for

Botnet on 6LoWPAN. Proceedings of the 12th Asia-Pacific Network Operations and

Management Conference on Management Enabling the Future Internet for Changing

Business and New Computing Services (Berlin, Heidelberg, 2009), 515–518.

[23] Khanum, S. and Usman, M. 2012. Mobile Agent Based Hierarchical Intrusion Detection

System. in Wireless Sensor Networks." International Journal of Computer Science Issues,

IJCSI (2012).

[24] Hugelshofer, F., Smith, P., Hutchison, D. and Race, N.J.P. 2009. OpenLIDS: a

lightweight intrusion detection system for wireless mesh networks. Proceedings of the 15th

annual international conference on Mobile computing and networking - MobiCom ’09

(Beijing, China, 2009), 309.

[25] Farooqi, A.H. and Khan, F.A. 2009. Intrusion Detection Systems for Wireless Sensor

Networks: A Survey. Communication and Networking (2009), 234–241.

https://doi.org/10.1109/JIOT.2014.2307077
https://doi.org/10.1016/j.comnet.2010.05.010
https://doi.org/10.1177/1932296816677576
https://doi.org/10.1109/ACCESS.2019.2924045

28

[26] Krimmling, J. and Peter, S. 2014. Integration and evaluation of intrusion detection for

CoAP in smart city applications. 2014 IEEE Conference on Communications and Network

Security (San Francisco, CA, USA, Oct. 2014), 73–78.

[27] Cervantes, C., Poplade, D., Nogueira, M. and Santos, A. 2015. Detection of sinkhole

attacks for supporting secure routing on 6LoWPAN for Internet of Things. 2015 IFIP/IEEE

International Symposium on Integrated Network Management (IM) (Ottawa, ON, Canada,

May 2015), 606–611.

[28] Thanigaivelan, N.K., Nigussie, E., Kanth, R.K., Virtanen, S. and Isoaho, J. 2016.

Distributed internal anomaly detection system for Internet-of-Things. 2016 13th IEEE Annual

Consumer Communications & Networking Conference (CCNC) (Las Vegas, NV, USA, Jan.

2016), 319–320.

[29] Snort - Network Intrusion Detection & Prevention System: 2020.

https://www.snort.org/snort3. Accessed: 2020- 04- 02.

[30] Suricata: 2020. https://suricata-ids.org/. Accessed: 2020- 04- 02.

[31] The Zeek Network Security Monitor: 2020. https://zeek.org/. Accessed: 2020- 04- 02.

[32] Sguil - Open Source Network Security Monitoring: 2020.

https://bammv.github.io/sguil/docs.html. Accessed: 2020- 04- 02.

[33] Lockhart, A. 2006. Network Security Hacks. Hack 108 - Monitor Your IDS in Real Time

- Use Sguil's advanced GUI to monitor and analyse IDS events in a timely manner. O'Reilly

Media.

[34] Cox, K. and Gerg, C. 2004. "13: Strategies for High-Bandwidth Implementations of

Snort". Managing security with Snort and IDS tools. O'Reilly.

[35] Pukkawanna, S., Pongpaibool, P. and Visoottiviseth, V. 2008. LD2: A system for

lightweight detection of denial-of-service attacks. (Dec. 2008), 1–7.

[36] Patnaikuni, D.R.P. 2017. A Comparative Study of Arduino, Raspberry Pi and ESP8266

as IoT Development Board. International Journal of Advanced Research in Computer

Science. 8, 5 (Jun. 2017), 2350–2352. DOI:https://doi.org/10.26483/ijarcs.v8i5.3959.

[37] Snort 3 on Ubuntu 18 & 19: 2020. https://snort-org-

site.s3.amazonaws.com/production/document_files/files/000/000/211/original/Snort3.pdf?X-

Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-

Credential=AKIAIXACIED2SPMSC7GA%2F20200410%2Fus-east-

1%2Fs3%2Faws4_request&X-Amz-Date=20200410T180355Z&X-Amz-Expires=172800&X-

Amz-SignedHeaders=host&X-Amz-

Signature=8047df5fb4445db46f091cf72ac039d587152f99f6d91b5b7088cc53fd62bed1.

Accessed: 2020- 04- 10.

[38] Zouinkhi, A., Ayadi, H., Val, T., Boussaid, B. and Abdelkrim, M.N. 2020. Auto-

management of energy in IoT networks. International Journal of Communication Systems.

33, 1 (Jan. 2020), e4168. DOI:https://doi.org/10.1002/dac.4168.

https://doi.org/10.26483/ijarcs.v8i5.3959
https://doi.org/10.1002/dac.4168

29

Appendix
Statistics after Snort 3 processes packets

--

Packet Statistics

--

daq

 pcaps: 1

 received: 654401

 analyzed: 654401

 allow: 654401

 rx_bytes: 1266212769

--

codec

 total: 713201 (100.000%)

 discards: 174215 (24.427%)

 arp: 3810 (0.534%)

 eth: 713201 (100.000%)

 ipv4: 709391 (99.466%)

 tcp: 242682 (34.027%)

 udp: 62829 (8.809%)

--

Module Statistics

--

appid

 packets: 535176

 processed_packets: 448655

 ignored_packets: 86521

 total_sessions: 77380

 appid_unknown: 3316

 service_cache_adds: 3657

--

arp_spoof

 packets: 3810

--

back_orifice

 packets: 62829

--

binder

 packets: 75902

 inspects: 75902

--

detection

 analyzed: 654401

 hard_evals: 4

 raw_searches: 9394

 cooked_searches: 67216

 pkt_searches: 76610

 total_alerts: 76119

 logged: 76119

30

--

dns

 packets: 1429

 requests: 1322

 responses: 107

--

normalizer

 test_tcp_options: 15970

 test_tcp_trim_win: 893

 test_tcp_ts_nop: 30413

 test_tcp_block: 793

--

perf_monitor

 packets: 717409

--

port_scan

 packets: 709391

--

search_engine

 max_queued: 44

 total_flushed: 3179

 total_inserts: 3179

 total_unique: 3179

 non_qualified_events: 3183

 searched_bytes: 484308361

--

stream

 flows: 75902

 total_prunes: 15256

 idle_prunes: 15256

--

stream_ip

 sessions: 64682

 max: 43393

 created: 64682

 released: 64682

 total_frags: 403880

 current_frags: 58800

 reassembled: 58800

 trackers_added: 64682

 trackers_freed: 64682

 trackers_cleared: 64682

 trackers_completed: 58800

 nodes_inserted: 403880

 nodes_deleted: 403880

 reassembled_bytes: 485553180

 fragmented_bytes: 589027452

--

stream_tcp

 sessions: 6420

31

 max: 2052

 created: 6420

 released: 5705

 timeouts: 1776

 instantiated: 2001

 setups: 6420

 discards: 112

 events: 52

 syn_trackers: 4091

 syn_ack_trackers: 1

 data_trackers: 1613

 segs_queued: 5465

 segs_released: 5465

 segs_used: 5433

 rebuilt_packets: 4208

 rebuilt_bytes: 388184

 client_cleanups: 2606

 server_cleanups: 1600

 syns: 14715

 syn_acks: 1039

 resets: 6

 fins: 8172

--

stream_udp

 sessions: 4800

 max: 2238

 created: 6278

 released: 6278

 timeouts: 1478

--

tcp

 bad_tcp4_checksum: 174215

--

wizard

 tcp_scans: 5433

 udp_scans: 61400

--

Appid Statistics

--

detected apps and services

 Application: Flows Clients Users Payloads Misc Incompat. Failed

 unknown: 893 4747 0 0 0 0 0

--

Summary Statistics

--

timing

 runtime: 00:03:22

 seconds: 202.244956

 packets: 654401

 pkts/sec: 3239

32

o")~ Snort exiting

33

Statistics after Snort 3 processes packets (on laptop)

Packet Statistics

--

daq

 pcaps: 1

 received: 654401

 analyzed: 654401

 allow: 654401

 rx_bytes: 1266212769

--

codec

 total: 713201 (100.000%)

 discards: 174215 (24.427%)

 arp: 3810 (0.534%)

 eth: 713201 (100.000%)

 ipv4: 709391 (99.466%)

 tcp: 242682 (34.027%)

 udp: 62829 (8.809%)

--

Module Statistics

--

appid

 packets: 535176

 processed_packets: 448655

 ignored_packets: 86521

 total_sessions: 77380

 appid_unknown: 3316

 service_cache_adds: 3657

--

arp_spoof

 packets: 3810

--

back_orifice

 packets: 62829

--

binder

 packets: 75902

 inspects: 75902

--

detection

 analyzed: 654401

 hard_evals: 4

 raw_searches: 9394

 cooked_searches: 67216

 pkt_searches: 76610

 total_alerts: 76119

 logged: 76119

--

dns

34

 packets: 1429

 requests: 1322

 responses: 107

--

normalizer

 test_tcp_trim_win: 81

 test_tcp_ts_nop: 2489

 test_tcp_block: 52

--

pcre

 pcre_rules: 2091

 pcre_native: 2091

--

port_scan

 packets: 709391

 trackers: 76

--

search_engine

 max_queued: 2

 total_flushed: 3179

 total_inserts: 3179

 total_unique: 3179

 non_qualified_events: 3183

 searched_bytes: 484308361

--

stream

 flows: 75902

 total_prunes: 15256

 idle_prunes: 15256

--

stream_ip

 sessions: 64682

 max: 64682

 created: 64682

 released: 64682

 total_bytes: 573680012

 total_frags: 403880

 current_frags: 58800

 reassembled: 58800

 trackers_added: 64682

 trackers_freed: 64682

 trackers_cleared: 64682

 trackers_completed: 58800

 nodes_inserted: 403880

 nodes_deleted: 403880

 reassembled_bytes: 485553180

 fragmented_bytes: 589027452

--

stream_tcp

 sessions: 6420

35

 max: 6420

 created: 6420

 released: 5705

 timeouts: 1776

 instantiated: 2001

 setups: 6420

 discards: 112

 events: 52

 syn_trackers: 4091

 syn_ack_trackers: 1

 data_trackers: 1613

 segs_queued: 5465

 segs_released: 5465

 segs_used: 5433

 rebuilt_packets: 4208

 rebuilt_bytes: 388184

 client_cleanups: 2606

 server_cleanups: 1600

 syns: 14715

 syn_acks: 1039

 resets: 6

 fins: 8172

--

stream_udp

 sessions: 4800

 max: 4800

 created: 6278

 released: 6278

 timeouts: 1478

 total_bytes: 483270676

--

tcp

 bad_tcp4_checksum: 174215

--

wizard

 tcp_scans: 5433

 udp_scans: 61400

--

Appid Statistics

--

detected apps and services

 Application: Flows Clients Users Payloads Misc Incompat. Failed

 unknown: 66 190 0 0 0 0 0

--

Summary Statistics

--

timing

 runtime: 00:00:19

 seconds: 19.037240

 pkts/sec: 34442

36

 Mbits/sec: 508

o")~ Snort exiting

37

Image showing CPU usage when small packets are transmitted from Snort 3 on the raspberry

Pi.

38

Image showing CPU usage large packets are transmitted from the computer to Raspberry Pi

39

Image showing CPU usage when mixed packets are transmitted from the computer to

Raspberry Pi

40

Image showing CPU consumption when rules are being loaded into Snort 3 on start-up

41

Snippet from csv file showing some logged alerts

