
 

 

 

 
 
 
 
 

ASHESI UNIVERSITY COLLEGE 
 
 
 
 
 
 
 
 

BOARD-O-BACT: AN EDUCATIONAL SYNTHETIC 

BIOLOGY GAME APPLICATION 

 
 
 
 
 
 
 
 

APPLIED PROJECT 
 

 

B.Sc. Computer Science 
 
 
 
 
 
 
 

Goodie Dawson 
 

 

2021 
 

 



 

 

ASHESI UNIVERSITY COLLEGE 
 
 
 
 
 
 
 
 
 
 
 

BOARD-O-BACT: AN EDUCATIONAL BOARD-O-BACT 

SYNTHETIC BIOLOGY GAME APPLICATION 

 
 
 
 
 
 
 
 
 
 
 
 
 

APPLIED PROJECT 
 
 
 
 
 

Applied Project submitted to the Department of Computer Science, Ashesi 

University College in partial fulfilment of the requirements for the award of 

Bachelor of Science degree in Computer Science. 

 

 
 
 
 
 
 

Goodie Dawson 
 

 

2021



i 

DECLARATION 
 
 
 
 
I hereby declare that this applied project is the result of my own original work and that no 

part of it has been presented for another degree in this university or elsewhere. 

 
 

 

 
 
Date: 

 
 

 
 
 
 
 
 
 
 
 
 
 
I hereby declare that preparation and presentation of this applied project were supervised in 

accordance with the guidelines on supervision of applied project laid down by Ashesi 

University. 

 
 
 

 
 

 
 

 
 

Elena Rosca  
 
Date: 

14/4/2021  
  

Goodie Blake Akorli Dawson 

14/05/2021 

 



ii 

Acknowledgements 
 

 
To my supervisor, whose encouragement and academic advice helped me undertake this 

project.



3 

Abstract 
 

 
From small scale mobile apps to large scale esports, games have become one of the most 

pervasive creations across humankind in recent years. Although initially seen as simple pastimes, 

the cognitive value of games has increasingly become apparent. However, the use of games as 

educational technology is still relatively uncommon. Likewise, the Synthetic Biology field has 

been gaining a lot of traction. Applications in medicine, manufacturing and agriculture have been 

groundbreaking and yet only scratch the surface of what may be practically achieved. 

Unfortunately, interest in the field does not mirror the great value it holds. In this project, a 

desktop game application is implemented with the goal of allowing users to entertain themselves 

whiles casually learning about important foundational material in the Synthetic Biology sector 

as well as facilitating/refreshing their intrigue in the field. 

 

 

 

 

 

 

 

 

 

 

 

  



4 

Table of Contents 

Chapter 1: Introduction ................................................................................................................... 1 

1.1 Context .................................................................................................................................. 1 

1.2 Personal Stake ....................................................................................................................... 2 

1.3 Proposed Solution ................................................................................................................. 2 

1.4 Solution Significance ............................................................................................................ 3 

Chapter 2: Requirements................................................................................................................. 4 

2.1 Requirements Elicitation ....................................................................................................... 4 

2.2 Procedure ............................................................................................................................... 4 

2.3 Analysis of Survey Results ................................................................................................... 5 

2.4 Key Insights from Interviews ................................................................................................ 6 

2.5 Potential Use Cases ............................................................................................................... 7 

2.6 Functional Requirements..................................................................................................... 10 

2.7 Non-Functional Requirements ............................................................................................ 10 

Chapter 3: Architecture and Design .............................................................................................. 11 

3.1 Architecture Overview ........................................................................................................ 11 

3.2 Development Model ............................................................................................................ 12 

3.3 Key Considerations ............................................................................................................. 13 

3.3.1 Physics System ............................................................................................................. 13 

3.3.2 Input Handling .............................................................................................................. 13 



5 

3.3.3 User Interface ............................................................................................................... 13 

3.4 Key Modules and Control Flow .......................................................................................... 14 

3.5 Low Fidelity Prototype........................................................................................................ 16 

Chapter 4: Implementation ........................................................................................................... 17 

4.1 Technologies Used .............................................................................................................. 17 

4.1.1 Figma ............................................................................................................................ 17 

4.1.2 Godot ............................................................................................................................ 17 

4.2 Key Components ................................................................................................................. 17 

4.2.1 Nodes ............................................................................................................................ 17 

4.2.2 Scenes ........................................................................................................................... 19 

4.2.3 Resources ...................................................................................................................... 20 

4.3 Key Implementation Techniques ........................................................................................ 20 

4.3.1 Player Movement .......................................................................................................... 20 

4.3.2 Player Queue (Turn-based Gameplay) ......................................................................... 22 

4.3.3 Board Slot Actions........................................................................................................ 23 

4.3.4 Save Structure ............................................................................................................... 24 

Chapter 5: Testing and Results ..................................................................................................... 25 

5.1 Component and System Testing .......................................................................................... 25 

5.2 User Testing ........................................................................................................................ 25 

Chapter 6: Conclusions and Recommendations ........................................................................... 27 



6 

6.1 Requirements ....................................................................................................................... 27 

6.2 Current Limitations ............................................................................................................. 28 

6.3 Future Development ............................................................................................................ 28 

6.3.1 Animation ..................................................................................................................... 28 

6.3.2 Shaders.......................................................................................................................... 29 

6.3.3 Game Logic Evolution.................................................................................................. 29 

6.3.4 Tutorials ........................................................................................................................ 30 

6.4 Final Conclusion ................................................................................................................. 30 

References ..................................................................................................................................... 31 

Appendix ....................................................................................................................................... 32 

A.1 Survey Results .................................................................................................................... 32 

A.2 Student Interview Guide Questions .................................................................................... 36 

A.3 User Testing Questions ...................................................................................................... 37 

 

 



1 
 

 

Chapter 1: Introduction 

1.1 Context 

From the creation of the discovery of new chemical and iron production methods and their 

facilitation of the industrial revolution in about 1760 to the day Thomas Edison patented the 

electric bulb in 1879 all the way to the 1960s when the  precursor ARPANET was born, 

human history is littered with many notable moments and fields of study that have drastically 

changed how we operate for the better. In the current world we live in, with so many promising 

fields, rom? 

This capstone project hinges on the belief that micro/synthetic biology is one of the leading 

candidates for this next big change. 

the study of all living organisms that are too small to be visible 

with the naked eye , whereas synthetic biology refers to the application of engineering 

principles to biology to allow us to redesign organisms in brand new ways in order for them to do 

some useful work. Although the field is new and exciting, public approval of its work seems mixed, 

largely due to most not feeling a personal stake in the advancements made [2]. This is quite 

intriguing as one does not have to do much research to discover many practical applications of 

micro/synthetic biology. In the agricultural sector (particularly relevant in the African context), 

synthetic biology is being used to do things like engineering insects for pest control; in medicine, 

it is being used to enhance vaccine development (a point that resonates even louder with the events 

of the ongoing pandemic), in manufacturing we now have self-replicating rubber and new green 

chemicals from agricultural waste[3], and these are only some of the uses we can find. When we 



2 
 

 

truly think about it, the possibilities of where we may likely go with these technologies is even 

more exciting than some of the extraordinary things being done now. 

1.2 Personal Stake  

Consequently, it is here I find my personal stake in the project. In the second semester of 

my junior year in university, I found myself struggling to find a course that interested me enough 

to complete my course load. This was until the head of our computer science department informed 

us of a new synthetic biological engineering course we could take as a non-major elective. I was 

quickly hooked on the idea and immediately registered, yet when the idea was proposed to friends, 

they instantly turned it down. A bit of this stemmed from the aforementioned inability to see a 

personal stake, but a large part came from a strange preconception that the field was unreasonably 

difficult and, in the beginning, I almost started to think they might be right; the early housekeeping 

information we initially had to learn seemed quite daunting. Yet, by the end of the semester, I was 

more than glad I had chosen this path. The applications seemed so practical, and I almost felt I 

would be left behind in the world if I had not done this. So why were others so hesitant? Further 

conversations with my lecturer revealed this to be a problem that was not isolated to me, begging 

the question of how this strange bias could be addressed. 

1.3 Proposed Solution 

The proposed solution for this comes in the form of a video game based on micro/synthetic 

biology. The game is inspired by a board game developed by the 2020 AshesiGhana iGEM team. 

The game in itself is a monopoly style game that allows players to gather the parts for and construct 

their own plasmid, key building components in the synthetic biology sector that everyone needs to 



3 
 

 

learn of. It then allows them to use these to degrade some arbitrary amount of plastic to help teach 

them the power and real-world applications these biological tools can have. 

1.4 Solution Significance 

 The video game industry has grown over the years to become one of the most penetrative 

in existence, with the BBC reporting that the industry had become worth more than the video and 

music industry in the United Kingdom alone [4]. It is no wonder that as the industry grows in 

popularity, certain stigmas of video games (like the brain) start to seem too rash, and the 

academic value of gaming in various sectors becomes more apparent. In this case, education is the 

area where games could facilitate massive gains. Studies have shown that when used as an 

educati in various fields, those of 

which include situational learning and knowledge integration [5]. What this means is that games 

have the capacity to teach students in a way that prepares them more towards applying the newly 

developed skills in a professional setting and allows them to consolidate what they learn with other 

knowledge models. This is all achieved whiles still providing the information in a fun and engaging 

package. What this means is that not only does this solution serve to address our goals of piquing 

new interest in the micro/synthetic biology sector and plateauing the relatively steep learning curve 

many struggle with, in the beginning, but it also does this in a way that encourages knowledge 

retention and pushes enthusiasts to use this knowledge for something purposeful. As this idea was 

generated from my personal experience as a university student, I find this point particularly 

meaningful as university students tend to be exposed to mountains of information during their 

tenure to the point where they go through extreme levels of abstraction and toss away much of 

what is learnt; this solution seeks to make sure that does not happen. 



4 
 

 

Chapter 2: Requirements 

2.1 Requirements Elicitation 

This portion of the project covers the process of gathering and analysing data in order to 

generate requirements to help contextualise the problem. This step is key in helping to streamline 

the development process and make sure there is a clear direction and guide that we can always fall 

back on to push the project forward. Seeing as this project seeks to flatten/plateau the steep learning 

curve that students often feel when they encounter synthetic biology and encourage interest in the 

field, three key users were identified: students, potential students, and lecturers. These were 

selected as it was felt that they gave a holistic view of the subject space and would provide the 

most relevant data for the planning of the project. 

2.2 Procedure 

It was decided that interviews would be one of the chief tools in the primary research 

process as data was gathered to help generate and finalise the list of requirements that would 

describe the goals the project would seek to meet. This was targeted towards the student and 

lecturer group as the sample size for these group was relatively small. This presented the 

opportunity to give each individual more attention in the research rather than hand them a generic 

survey. Interviews in this way tend to provide richer information, allow for the extraction of themes 

across respondents and, due to the organic nature of the semi-structured interview approach used, 

allow for insights into points that may otherwise have not been touched in a simple survey.  

Students and lecturer interviews were treated slightly differently, with student interviews 

focusing more on their experiences learning in the field and lecturer interviews focusing more on 

their experiences teaching in the field. The guide questions for the student interviews are provided 



5 
 

 

in the appendix under section A.2. Unfortunately, interviews with lecturers did not occur as 

planned. 

Potential students, however, were queried using a simple online survey. This was done as 

their numbers were much greater, and the data needed from this group did not need to be as 

personalised as the former groups. The survey contained questions designed to assess  

perception of games as an educational and also assess their perception of Synthetic Biology as a 

field. This would help to prove the existence and relevance of the problem. The questions and 

results from this, in the form of pie charts and bar graphs, are provided in the appendix under 

section A.1. 

2.3 Analysis of Survey Results 

The survey done focused on a total of about 70 young adults currently enrolled in university 

case study into how/why people at this age may choose to pursue or not pursue certain academic 

tools or fields. The majority (98%) of the target demographic fell within the age range of 20-24 

years old, with about 1% falling between the 15-19 years old category and 1% being older than 

24. About 66% of these participants were female, with the other 34% being male. 

Interestingly, the overwhelming majority, 94%, indicated they had used games as a 

learning tool before, and of this majority group, 88% said they enjoyed this experience, with the 

remaining 12% reporting a mixed experience; no one reported having a bad experience. More 

importantly, though, 88% of those who had used games as a learning tool prior again indicated 

that the experience was genuinely helpful, with 11% reporting a mixed experience and only 1% 

indicating that it was not helpful. Regardless, 88% of the entire participant group agreed that games 



6 
 

 

could be a good tool for introducing new fields of study, and a slightly lower 85% agreed games 

could be a good tool for furthering study in already familiar fields of study. Overall, it seems the 

data shows a very positive outlook on games as a learning technology by people. 

On the other hand, participants showed much less awareness of Synthetic Biology, with 

only 30% of participants knowing about the field coming into the survey. A brief description of 

what Synthetic Biology is was then provided to allow those without prior knowledge a chance to 

form their initial impressions of the field. The responses to the next questions seemed to echo some 

information discovered during the secondary research process as although 59% of participants 

agreed to the practicality of the field, with a further 36% thinking it might have some practical 

value, only 17% of participants felt any personal stake in the field; 49% were indifferent, and 34% 

felt no personal stake whatsoever. Although, the final questions give some insight into this as 33% 

of participants gave the field the highest possible rank for potential difficulty and a further 40% 

did the same for potential steepness of the learning curve. University students tend to be incredibly 

stressed and busy already, and the idea that a course might be difficult combined with that of a 

steep learning curve is more than enough to put them off. 

Clearly, Synthetic Biology does not have a good reputation amongst students, yet at the 

same time, games show great potential as tools to encourage more people to take an interest in the 

field. 

2.4 Key Insights from Interviews 

The following are key themes discovered from interviews carried out with prior Synthetic Biology 

students. These students consist of two females and one male of all falling within the 20 24-year-

old age range. 



7 
 

 

 The theory content introduced at the start of the course was the most difficult aspect of the 

course. 

 Students are very open to using a game as a learning tool. 

 Students would like a gaming tool to have some form of data persistence to allow them to 

revisit learnt content. 

2.5 Potential Use Cases 

The following section lists out a series of potential use cases for the solution based on the 

data gathered thus far. The tables introduce potential flows for how a user might interact with the 

proposed solution and outline some of the considerations that might need to be made. 

Table 2.1: Use Case 1 

Use Case Name Lecturer looking to introduce course material to new students 

Preconditions N/A 

Primary Actor The Lecturer 

Basic Path -The lecturer introduces the game to their class. 

-Students play the game during their free time. 

-Students come to class with a better understanding of some course content. 

- Lecturer fills in any gaps students may have. 

Alternative Path -The lecturer introduces the game to their class. 

-Students play the game during class. 

-Lecturer fills in any gaps students may have. 

-Lecturer introduces more advanced content which students can now grasp. 

 



8 
 

 

Table 2.2: Use Case 2 

Use Case Name Student looking to learn some course material 

Preconditions Student already has prior knowledge in field* (For alternative path) 

Primary Actor The Student 

Basic Path -Student begins Synthetic Biology class. 

-Student attends class and struggles to grasp early material. 

-Student plays the game during their free time. 

-Student returns to class with a better grasp of foundational material 

Alternative Path N/A 

 

Table 2.3: Use Case 3 

Use Case Name Student looking to casually play some games 

Preconditions N/A 

Primary Actor The Student 

Basic Path -Student casually plays the game during their free time. 

-Students casually gains new knowledge from playing. 

-Students come to class with a better understanding of some course content. 

Alternative Path -Student casually plays the game during their free time. 

-Students gains no new knowledge from playing. 

-Students interest in the field is reinvigorated by the enjoyable experience. 

-Student continues to study the field. 

 



9 
 

 

Table 2.4: Use Case 4 

Use Case Name Potential student looking to get a taste of Synthetic Biology 

Preconditions The potential student has no prior Synthetic Biology experience 

Primary Actor The Potential Student 

Basic Path -Potential student discovers the game. 

-Potential student casually plays the game. 

-Potential student gains interest in Synthetic Biology. 

-Potential student enrols in a Synthetic Biology course becoming a student. 

Alternative Path -Potential student discovers the game. 

-Potential student plays the game. 

-Potential student gains interest in Synthetic Biology. 

-Potential seeks out an expert (e.g. lecturer) to gain more information on 

the field. 

 

 The use cases above cover the bases of the various types of users expected for the proposed 

solution. The first addresses lecturers and instructional personnel who may be interested in using 

the solution as a learning tool for their pupils, showing the different ways this could be 

implemented inside or outside the classroom. The next two focus on students themselves and the 

various contexts in which they could potentially gain from using the solution, taking both 

educational and conversational value into account. The final use case then covers potential students 

and paths of use that could lead them to pursue Synthetic Biology in some way outside the game. 



10 
 

 

2.6 Functional Requirements 

1. The user should be able to visualise the subject matter when playing the solution. 

2. The solution should have a reference point where users can review material learned. 

3. The solution should deliver approved synthetic biology subject material as they play. 

4. The user should be able to save specific pieces of information they come across and consider 

important to their device. 

5. The user should be rewarded for progressing through the solution and retaining information. 

2.7 Non-Functional Requirements 

1. It should be easy for the user to learn how to play the solution. 

2. The solution should limit any confusion to the user as they play. 

3. The solution should have good replay value, encouraging users to return to it often. 

4. The solution should be lightweight and not intensive to allow it to 

devices. 

5. The user should feel excited to use the solution rather than it feeling like a chore. 

  



11 
 

 

Chapter 3: Architecture and Design 

3.1 Architecture Overview 

The software architecture serves as a blueprint for the proposed solution and aids in guiding 

the development process. Since the proposed solution is a game, this section will look somewhat 

different from a conventional software architecture document but will seek to address the same 

compositional concerns. A pseudo-layered architecture has been chosen for the solution as it helps 

to abstract the solution into clear sections with their own components, and with the help of arrows, 

we can help to show how these interact with each other on a high level. 

 

Figure 3.1: General game structure [6] 

 The above image gives an overview of the usually key components that come together to 

form a good game structure for the modern game. This served as a good starting point for 

architectural design by highlighting some considerations that might need to be made in designing 

the solution and deciding which development tools would be appropriate/necessary. 



12

Figure 3.2: Abstracted structure inspired by figure 1

The above diagrams show how the development process has been abstracted so far from 

the initial diagram. The Godot game engine has been selected for the development of the solution

based on this abstraction. It allows for the development of the game logic, storage and graphics 

integration all in one environment and is ideal for 2D and decent for 3D development. Game logic 

will be handled through various scripts and code written in the Godot GDScript languages, data 

storage via Godot resources and graphics implemented through Godot nodes. This will be further 

elaborated on in chapter 4. All these components come together to interact with the player through 

I/O devices, play and perhaps speaker 

audio.

3.2 Development Model

In deciding which development approach the project would utilise, many features had to 

be considered. Some of the primary considerations include, but were not limited to, the scale of 



13 
 

 

the project, how testing would be carried, flexibility and the linearity (or lack thereof) of the 

project. In the end, it was decided that the agile methodology was most appropriate for this project 

and would be consequently used. This approach is heavily in line with the user-oriented nature of 

the solution as it places a heavy focus on customer involvement and satisfaction. It is more 

appropriate for the relatively small size of the project and allows for some malleability in 

requirements that could change with time and with testing, which can and will be conducted 

concurrently with development to provide a bespoke and relevant solution rather than a more 

general and passive one. 

3.3 Key Considerations 

3.3.1 Physics System 

This system handles how the game object interacts with each other. This is particularly 

important in properly determining collisions and various dynamics. Hence, when objects come 

into contact with each other, they should respond appropriately. This will be handled at the 

programming level using tools provided by the game engine. Godot uses a node structure that 

makes the development of this module quite intuitive. 

3.3.2 Input Handling 

This system handles the input the user puts into the game. If the user clicks on something 

or presses a key, the appropriate response should be triggered. This is a key part or result of the 

game logic and hence will be handled at a programming level. 

3.3.3 User Interface 

This is the interface that allows communication with the user in the game. This is important 

in conveying information to the user and allowing them to navigate the game properly. An 



14 
 

 

advantage of the Godot engine is that many of the tools used in scene building lend themselves to 

designing good, responsive user interfaces.  

3.4 Key Modules and Control Flow 

 Before development could properly begin, it was necessary to develop a blueprint of the 

key events that would make up the application and outline how the flow of data and control may 

be structured between these key components. 

 

Figure 3.4: Activity Diagram 



15 
 

 

 The preceding activity diagram shows the workflow of the application and how the users 

choice affects their navigation of the solution. Activity diagrams are often described as an 

advanced or enhanced version of a flowchart which is what makes them good tools for discussing 

the flow of control through the application. The initial and final states of the application are 

represented by the two black circles, the initial being on top and the final being at the bottom. The 

rounded rectangles represent activities. The arrows indicate the flow of control from one state to 

another, and the horizontal bars are forks/joins. Forks start with one arrow and split into multiple, 

whereas joins take multiple arrows and combine them into one. 

 As we can see, the initial state gives control to the main menu, which is the central point 

of navigation for the solution. From here, the user can access various options. 

, which is where the user may set up initial 

parameters for the start of a game (number of players, player icon etc.). This event, along with the 

, which read a saved game file from disk, then lead to the gameboard event, 

which is where the majority of actual gameplay will take place. Once the user is done playing, they 

can then trigger the save game event. The titbits and options events both open their own pages; the 

options event allows users to tweak their user configuration settings, and titbits allow users to 

review pieces of synthetic biology they may have picked up whiles playing the game. The latter 

of these was especially inspired through concerns shared by prior students during interviews in the 

requirements elicitation process. Finally, the 

 events both lead to the end of application use and thus flow control to 

the final state. 



16 
 

 

3.5 Low Fidelity Prototype 

 

Figure 3.3: Low Fidelity Prototypes 

 The final prerequisite to development was the creation of low fidelity mock-ups that would 

provide the first visual representations of how the final solution could appear. These were 

malleable and prone to frequent change even during development but also allowed for high-level 

interface testing. As shown in the above image, many important events from the activity diagram 

translated directly to screens that required their own separate designs. Also, designs were made for 

the various blocks that make up the gameboard. This approach allowed many different design ideas 

to be explored quickly and at low cost, which streamlined the development process as it was much 

easier to visualise what needed to be achieved.  



17 
 

 

Chapter 4: Implementation 

4.1 Technologies Used 

4.1.1 Figma 

This is a prototyping tool developed by Figma, Inc. that is used to create vector graphics 

and prototypes of various fidelities. In this project, the tool was used to generate some graphics, 

tables, blueprints and mock-ups in service of many architectural aspects of the development 

process. This was very helpful in planning out some aspects of the game (e.g. gameboard layout, 

menu layouts etc.) and in creating graphics that could directly feature in the final solution. 

4.1.2 Godot 

 The Godot software is a tool initially developed by Juan Linietsky and Ariel Manzur, which 

serves as the main developmental environment of this solution. Godot is a game engine which 

means it serves a similar purpose to what an Integrated Development Environment (IDE) does in 

conventional software engineering. This is where the construction of architectural designs and 

writing of code and game logic is done. For this solution, Godot own GDScript scripting 

language is used for development. The a high-level, dynamically typed 

programming language used to create content 7] with similar syntax to Python, which has many 

helpful tools and functions that are helpful to the development of the solution. 

4.2 Key Components 

4.2.1 Nodes 

 Nodes are the building blocks of any projects undertaken in Godot and are integral to the 

development of this solution. Nodes are very similar to objects in more conventional software 

solutions as they have names and editable properties that define them and can be extended to add 



18 
 

 

more functionality. A key point about how nodes work is that each node can have one parent and/or 

many children. This creates a tree structure that is integral to how the solution functions. 

 

Figure 4.1: Main Menu Node Tree 

The figure above shows the node tree structure for the main menu. The root node 

(node with no parents) is named TitleScreen. Much like objects, most nodes have been given more 

meaningful names to help guide development. The tree structure is important as, amongst other 

things, it determines the order in which nodes are drawn to the screen on execution which can 

affect application performance. Each node can have scripts attached to it to outline its functionality, 

as seen with the buttons, where each has scripts attached to aid in switching scenes (more on scenes 

to be discussed) when clicked. Signals are also a powerful tool node are capable of utilising. As 

ria are met. In 

this tree, we can observe that the ColorRect node, , emits a signal. This signal 

is actually a custom signal called fadeInFinished, which is emitted when a different signal is 



19 
 

 

emitted by the animation player attached to it, letting it know the animation has played. This 

fadeInFinished signal is detected in the script for the root node, telling it to switch scenes. All these 

together create a transition effect as one scene is switched to another, which is just one of the many 

ways the nodes interplay in the solution. 

4.2.2 Scenes 

Scenes are the next logical step from nodes. In actuality, a tree of nodes, as we have just 

seen, is, in fact, a scene. Scenes always have one root node. As shown in figure 3, they can be 

saved to disk and reloaded as needed, but most importantly, they can be saved instanced much like 

an object might be. For this section, it may help to have a more visual representation of the scene 

 

Figure 4.2: Main Menu Scene 

 



20 
 

 

4.2.3 Resources 

Resources refer to the data container tools that exist in Godot. These can include a range 

of anything that involves storing data to the  disk from game assets, all the way to scenes 

themselves which can be considered a resource. There are external resources that are saved 

singularly as their own files and built-in resources which are saved inside other files, often the 

.tscn and .scn files that scenes are stored as. These resources are only ever loaded once when the 

application is in use, and once the resource is no longer in use, the engine automatically frees it. 

The main idea here is that nodes often rely on resources to provide some data or information to aid 

in their functionality. Resources play a crucial role in the save structure of the game, which is 

discussed later in this chapter. 

4.3 Key Implementation Techniques 

4.3.1 Player Movement 

Player Movement may have seemed like one of the simplest aspects to implement in a 

game like this, but it quickly became one of the most complicated. This was largely due to the 

plethora of approaches that could be taken to achieve player movement in Godot. From linear 

interpolation to the move_toward() function to the use of the AnimationPlayer node, careful 

consideration was necessary to determine the right approach.  



21 
 

 

 

Figure 4.3: Early Player Movement Code Sample 

As shown in the figure above, the approach chosen in the end was the use of the 

move_and_slide() function. This is a type of movement that is particularly used for objects of the 

KinematicBody2D node as well as its 3D counterpart. When the dice are rolled, it triggers a signal 

which connects to the _on_Node2D_diceRolled() function, which sets the moving variable to true. 

This is important as player movement needs to be tied to a _process() or _physics_process() 

function. These functions are called and executed each frame (one single image in the sequence of 

images constantly displayed to the screen). We use the _physics_process() function in this case as 

it executes later in the main loop cycle and executes at regular delta steps, delta being a variable 

passed by the engine, which is meant to represent the length of time since the previous frame 

displayed. Consequently, the _physics_process() function allows for more accurate state variables 

for physics objects (such as the position of the object which we get using the get_origin()) to be 

retrieved. The movePlayer() function is then called, which uses the player s current position and 



22 
 

 

destination position to calculate the direction in which to move. Finally, the move_and_slide() 

function is called to enact the movement to the appropriate tile. The moving variable is then set 

back to false, indicating that the current movement is complete and preparing it for the next 

movement. 

4.3.2 Player Queue (Turn-based Gameplay) 

Conceptually the player queue was relatively simple to plan out but required some 

implementation in practice. The player queue refers to the structure that allows different players 

on the same board to carry out their own action in their own separate atomic turns, one after the 

other. Queues are often implemented using arrays, and this was the approach chosen here. 

However, instead of just explicitly declaring an array, a more abstract approach was taken. It was 

decided that a group of player nodes would instead be created as children under one parent Node2D 

node that would act as the controller of the queue. Doing this, we could then give control to one 

child (player) at a time and then move on to the next  

 

Figure 4.4: Early Player Queue Code Sample 

 As shown in the preceding image, the key method in this implementation is the yield() 

function, which provides us with the ability to utilise the power of coroutines to facilitate the turn-



23 
 

 

based system. We first create an initialise() function for the queue, which can be called by the 

board ( parent node) when the game first starts to set the first active player. In our 

next_turn() function, we can then use the yield() command to wait for the active player to complete 

its turn, after which we can then move down our player list and set the next player as active 

4.3.3 Board Slot Actions 

 When initially planning out how actions for the various slots on the board would be carried 

out, the first major issue that needed to be addressed was how player position on the board would 

be tracked. Godot includes many node structures for dynamic interaction between game objects. 

The KinematicBody2D node and CollisionShape2D nodes were considered for this in the 

beginning. These two nodes are very commonly used in Godot development for basic movement 

and collision detection; however, they take a more physics-based approach. This means when 

objects collide, the KinematicBody2D node responds using either with a move_and_collide() 

method, which would cause the object to stop when a collision is detected, or a move_and_slide() 

method, which would cause the object to slide along the other. These properties, although useful 

for moving the player specifically, are not ideal for this context as we need the player to be able to 

insert itself inside these slots, so although the KinematicBody2D node is used earlier for player 

movement, CollisionShape2D was not used. Hence, a more abstract approach was developed. 

 

Figure 4.5: Early Slot Action Code Sample 



24 
 

 

 Firstly, a new totalSteps variable was added to the player object. This variable would keep 

track of the total number of steps taken by a player along the board. During the first pass along the 

board, this variable would indicate the slot the player would currently be standing on (the player 

position) and on subsequent passes along the board, the calculation , provided a 

way to always ascertain the player position and hence the slot that had been landed on. The number 

20 was used as there are 20 total slots on the board. Functions for the various behaviours of these 

slots were then created and where stored in a dictionary using the funcref() function, which allows 

us to save functions as variables. This dictionary could then be indexed based on the player position 

value obtained, triggering the appropriate response. 

4.3.4 Save Structure 

As mentioned earlier, resources play a key role in developing the save structure for the 

game. Specifically, we use the Godot File object, which is a resource that allows us to permanently 

it is needed. Files can be used for many 

purposes; however, for this project, the main applications identified were for the implementation 

of a save data module and the implementation of user configuration settings, the former of which 

was prioritised as user configuration falls into the non-functional requirement category and hence 

could be added later. 

 There are two key functions that come into play here; the save() method, which handles 

the writing of data, and the load() method, which handles the reading of data. A dictionary is used 

to save the key object and variables at the current state of the application and when load is called, 

these are read from memory and used to draw the canvas and setup the game. 

 



25 
 

 

Chapter 5: Testing and Results 

5.1 Component and System Testing 

 Testing for separate modules was done concurrently as an agile approach was used for 

development with integration of these features still being worked on. This is elaborated on in the 

requirements section of the Chapter 6. 

5.2 User Testing 

User testing took priority in this project as the aim was to create a solution that was catered 

towards the user. To properly test and assess the quality of the proposed solution, two forms of 

testing were developed, the results of which are below. Two test groups with varying backgrounds 

but with demographics similar to those surveyed were selected for testing. 

Table 5.1: Usability Testing Results 

Tester Q1 Q2 Q3 Q4 Q5 

Tester 1 Maybe Yes Yes 4 A lot of the buttons have scary robot faces, 

could that change 

Tester 2 Maybe Somewhat No 1 More colours 

Tester 3 Yes Yes Yes 1 Improved graphics 

Tester 4 Yes Somewhat Yes 1 A short tutorial would be a nice touch 

 

 The table above shows the results from the usability testing, the goal of which to discern 

just how users felt using the application. The outcome was generally quite positive with a few 

things coming up that will be addressed in the following chapter, six. It would seem most  



26 
 

 

issues lay in visual problems. This is not a problem as this version of the prototype heavily 

neglected this in favour of functionality, hence, such responses were somewhat expected. The 

questions used for this can be found at appendix A.3.  

 

Table 5.1: Effectivity Biology Quiz Results 

Tester Initial Score Final Score 

Tester 1 20% 50% 

Tester 2 10% 60% 

Tester 3 10% 20% 

Tester 4 10% 30% 

Tester 5 20% 50% 

Tester 6 30% 70% 

 

 The table above shows the performance of testers on the Synthetic Biology before and after 

they were given time with the application. These results show a clear difference. The initial results 

show testers averaging a very low value of about 16%; however, final results, although not exactly 

perfect, show a marked improvement of 30% on average. This serves as a bit of proof of concept 

for this entire project as even with a limited amount of time interacting with an early prototype of 

the solution, testers show a noticeable improvement in a quiz that was designed to test foundational 

information found in the game, along with a few less familiar questions to test if their intuition or 

interest in the field had also been stimulated. These are quite positive findings. 



27 
 

 

Chapter 6: Conclusions and Recommendations 

6.1 Requirements  

Functional Requirements Current Progress 

The user should be able to visualise the subject matter when 

playing the solution. 

In Progress 

The solution should have a reference point where users can 

review material learned. 

Achieved 

The solution should deliver approved synthetic biology subject 

material as they play. 

Achieved 

The user should be able to save specific pieces of information 

they come across and consider important to their device. 

In Progress 

The user should be rewarded for progressing through the solution 

and retaining information. 

Not Achieved 

 

 The table above shows how much progress was made in addressing the functional 

requirements outline earlier in this report. The first requirement will be addressed more with 

changes to design concepts discussed more in the future developments section. As is shown, the 

second and third were achieved largely through the implementation of the titbits section of the 

game. The third requirement is only partially accomplished by this as although titbits store key 

pieces of information, the user does not have direct control over what is stored. There is currently 

no reward system which results in the fifth requirement not being achieved; however, 



28 
 

 

considerations are being made to adjust the number of titbits shown based on user playtime to 

address this requirement.  

6.2 Current Limitations 

 The three main limitations of the current solution implementation come in the form of game 

rules, feature isolation and aesthetics. The evolution of the game rules/logic will be expanded upon 

later. However, the primary issues boil down to it being a bit too simplistic for testers. A new 

structure with a necessary complexity needs to be 

for longer. Feature isolation is also a bit of an issue as during implementation, some features, 

although somewhat functional, were developed in isolation of each other; hence, more work needs 

to be done to adapt and integrate these with each other. This need to be done in a way that creates 

a better, more cohesive system but does not necessarily compromise the modularity of the solution. 

The final limitations are simply aesthetics. As functionality was prioritised, the design for the game 

ended up being relatively low quality. Game assets require higher quality textures and some UI 

and UX elements require major overhauls. In the future, these design aspects may be outsourced 

to better-skilled designers to ensure a high-quality experience is developed for the user. This is 

key as it related directly to non-functional requirement 5. 

6.3 Future Development 

6.3.1 Animation 

 Animation often refers to the creation of moving images on the screen. Leveraging these 

can be a necessary or supplementary part of an application on a case by case. For this project, 

animation did not directly affect the functionality and hence was not prioritised for the developed 

prototype. Although we observe the player move along the board, this was not achieved using 



29 
 

 

explicit animation tools and rather, the only explicit use of animation was done during transitions 

between some scenes.  

 Future iterations of the project would seek to improve on this by providing more animation 

for various aspects of the game, such as rolling dice, UI navigation, drawing cards etc. This actually 

plays a role in addressing functional requirement one and non-functional requirement two by 

making it more obvious to the user when events take place and helping them to really envisage 

what they are doing. 

6.3.2 Shaders 

Shaders are another tool that could be used to enhance the visual aspects of the game in 

pursuit of fully achieving requirement 1. They are described as programs used to render pixels and 

detailing shadows, lighting, texture gradients, and more  Introducing these to 

the game would allow for the creation of new visual effect that, in hand with more robust 

animation, can alleviate the usability of the application and the user experience as a whole. 

6.3.3 Game Logic Evolution 

 As functional as the current prototype of the game is, a key point that was both noticed 

during development and subsequently echoed by the test group was how the solution felt like a 

game of chance. At the current stage, this may not necessarily be a bad thing as the prototype is 

based on a physical version with its own limitations; however, moving forward, it would be ideal 

to alter the rules of the game to provide more interactivity to the application and users. This would 

aim to improve application retention and replay value (the capacity of a game for continued play 

after the first completion). Proposed changes are presented by, but not limited to, the points below: 



30 
 

 

 Introduce special attributes to different variants of each type of plasmid part that affect how 

the constructed plasmid functions. 

, which would affect how well the plasmid could be cloned. 

  and part variants cost varying 

amounts of energy causing users to carefully consider whether or not to acquire a part card 

they may draw. 

 Introduce antibiotic gameplay, both in terms of antibiotics that can be played against other 

players and new antibiotic part cards that can be added to a plasmid to provide immunity. 

 Overhaul the gameboard design to allow for more game-altering board slots. 

Further, testing with students/potential students and meetings with lectures will also be held to 

determine how best to address these and any other new changes. 

6.3.4 Tutorials 

It was revealed by testers that it might initially be difficult to know what to do when playing 

the game for the first time, and thus some guidance would be beneficial. Hence, a tutorial needs to 

be developed. This could start out as something relatively simple such as a new scene that just lists 

out the rules or a new event that actively guides the user on their first playthrough showing them 

what to do, similar to how modern applications increase the learnability of their products. 

6.4 Final Conclusion 

All in all, what this project has shown is that although it may seem quite a niche, Synthetic 

Biology is indeed a field that has the capacity to retain much more attention than it currently does 

if only people could get over their initial inhibitions; games can be a very helpful tool in fostering 

this change.  



31 
 

 

References 

[1]Microbiology Society. What is Microbiology? Retrieved October 14, 2020 from 

https://microbiologysociety.org/why-microbiology-matters/what-is-microbiology.html 

[2]Eleonore Pauwels. 2013. Public Understanding of Synthetic Biology. BioScience 63, 2 (2013), 

79 89. DOI:https://doi.org/10.1525/bio.2013.63.2.4 

[3]Current Uses of Synthetic Biology. BIO. Retrieved October 14, 2020 from 

https://www.bio.org/articles/current-uses-synthetic-biology 

[4]2019. Gaming worth more than video and music combined. BBC News. Retrieved October 14, 

2020 from https://www.bbc.com/news/technology-46746593 

[5]C. Aaron Price, Katherine Gean, Claire G. Christensen, Elham Beheshti, Bryn Pernot, Gloria 

Segovia, Halcyon Person, Steven Beasley, and Patricia Ward. 2016. Casual Games and Casual 

Learning About Human Biological Systems. Journal of Science Education and Technology 25, 1 

(2016),  

[6]Understanding Basic Game Architecture | Studytonight. Retrieved November 18, 2020 from 

https://www.studytonight.com/3d-game-engineering-with-unity/game-development-architecture 

111 126. 

[7]GDScript basics. Godot Engine documentation. Retrieved March 31, 2021 from 

https://docs.godotengine.org/en/stable/getting_started/scripting/gdscript/gdscript_basics.html 

[8]2020. What Are Shaders in Video Games? The Ultimate Resource for Video Game Design. 

Retrieved April 27, 2021 from https://www.gamedesigning.org/learn/shaders/ 



32 
 

 

Appendix 

A.1 Survey Results 

 



33 
 

 

 



34 
 

 



35 
 

 

 

  



36 
 

 

A.2 Student Interview Guide Questions 

Name? 

Gender? 

Age? 

Education Level? 

Do you have any experience with synthetic Biology? 

Why were u attracted to it? 

How do u feel about your experience? 

Was it challenging in any way? 

How/why? 

Learning curve? 

Have you ever used a game to help learn something in any way? 

Describe? 

Did you enjoy it? 

Would you be interested in such an experience for synthetic biology? 

What kind would you like to see in such a solution? 

What Platform would be preferable for you to play on? 



37 
 

 

A.3 User Testing Questions 

1. Do you feel any new interest in Synthetic Biology after your experience? 

2. Did you find navigating the application easy? 

3. Did the application run as informed? 

4. How likely are you to check out the final version of this application? 

5. What do you think could be improved about the solution? 


