

ASHESI UNIVERSITY COLLEGE

GENERAL COURSE SCHEDULING APPLICATION

APPLIED PROJECT

B.Sc. Computer Science

Ernest Kufuor Jr.

2017

 Page | 1

Branding and Identity Guide

The Ashesi brand and logo are integral parts of our worldwide image and identity. We must be

careful of how and where the Ashesi is used to ensure we maintain the integrity of our

organization.

This guide has been developed to help you clearly understand our policies towards the use of

the Ashesi logo in a variety of mediums, as well as type faces and a color palate to help you

produce materials that maintain the brand’s integrity. We would request that you seek

approval from the Ashesi University College Marketing Committee before creating any media

that reproduces the Ashesi logo.

Contents
The Logo .. 2

Using the Logo .. 3

Clear Space and Logo Design .. 5

Unacceptable Logo Uses ... 6

The Ashesi Seal .. 7

Color Palette ... 8

Fonts.. 8

Mission Statement .. 9

ASHESI UNIVERSITY COLLEGE

General Course Scheduling Application

APPLIED PROJECT

Applied Project submitted to the Department of Computer Science, Ashesi

University College in partial fulfilment of the requirements for the award of

Bachelor of Science degree in Computer Science

Ernest Kufuor Jr.

April 2017

I

Declaration

I hereby declare that this Applied Project is the result of my own original work and that no

part of it has been presented for another degree in this university or elsewhere.

Candidate’s Signature:

……………………………………………………………………………………………

Candidate’s Name:

……………………………………………………………………………………………

Date:

……………………………………………………………………………………………

I hereby declare that preparation and presentation of this Applied Project were supervised

in accordance with the guidelines on supervision of Applied Project laid down by Ashesi

University College.

Supervisor’s Signature:

……………………………………………………………………………………………

Supervisor’s Name:

……………………………………………………………………………………………

Date:

……………………………………………………………………………………………

II

Acknowledgment

I want to thank the God Almighty for helping me complete this applied project. I

would like to thank my mom and dad, who did their best to bring me up to this point in life

and give me that privilege of having quality education. I would also like to give a lot of

credit to Mr. David Sampah, Jane Amerley Annan and Stephanie Belnye for giving me hope

and support when I needed the most. Finally, I would like to thank all the people who

supported me in completing this Applied Project.

III

Abstract

Heuristic algorithms have been known to be the most common and effective methods

to solving the classical course scheduling problem which has been found to be a non-

deterministic polynomial time hard problem. Many software systems have been built on

these algorithms to provide a standard and working solution. This paper seeks to look at the

gaps of these solutions and propose a newer one which would potentially simplify the

process of course scheduling and provide an even more effective solution within the scope

of Ghana. This paper provides a course scheduling web application which implements a

genetic algorithm as a solution.

IV

Table of Contents

Declaration .. I

Acknowledgment ... II

Abstract ... III

Chapter 1: Introduction .. 1

1.1 Background Information .. 1

1.2 Project Overview ... 2

1.3 Objective .. 3

1.4 Importance of the System and Motivation ... 3

Chapter 2: Related Work ... 4

2.1 Overview.. 4

2.2 Related Works ... 4

Chapter 3: Requirements Specification ... 8

3.1 Overview.. 8

3.2 Project Scope ... 8

3.3 Overall Description .. 8

3.4 Requirements Gathering .. 8

3.5 Use Case .. 9

3.6 Product Features / User Requirements ... 9

3.7 Functional Requirements ... 10

3.7.1 Data Input by User .. 10

3.7.2 Schedule Creation ... 11

3.7.3 Schedule Display .. 13

3.8 Additional Features .. 14

3.9 Constraints ... 14

3.10 Stakeholders ... 15

3.11 Dependencies ... 15

3.12 Non-Functional Requirements ... 15

Chapter 4: Architecture and Design... 17

4.1 Overview.. 17

4.2 Architecture ... 17

4.2.1 Presentation Logic / Layer .. 18

4.2.2 Application Logic / Layer ... 19

4.2.3 Data Logic / Layer .. 20

V

4.3 External User Interface Requirements ... 21

Chapter 5: Implementation .. 26

5.1 Overview.. 26

5.2 Implementation Resources ... 26

5.2.1 Languages ... 26

5.2.2 Frameworks .. 29

5.2.3 Libraries .. 29

5.3 Implementation Techniques ... 30

5.3.1 Login and Sign Up .. 30

5.3.2 Data Input ... 31

5.3.3 Schedule Display .. 32

5.3.4 Schedule Creation ... 33

Chapter 6: Testing and Results .. 37

6.1 Overview.. 37

6.2 Unit Testing ... 37

6.3 Component Testing .. 39

6.4 User Testing ... 39

Chapter 7: Conclusion and Recommendations .. 40

7.1 Challenges.. 40

7.2 Conclusion ... 40

References.. 42

1

Chapter 1: Introduction

1.1 Background Information

Course scheduling is an essential part of a university’s core activities to ensure that

students get the best out of their lectures and lecturers can work under ideal and efficient

conditions. Course Scheduling is basically the act of organizing lectures on a specified

timetable that satisfies the recognized constraints (Wasfy & Aloul, 2006). The main issues

with course scheduling arise when certain constraints are not satisfied. The constraints may

include:

 A lecturer not being assigned to more than one lecture hall at the same time.

 A student not having more than one course at the same time.

 A lecture hall not hosting more than one course at the same time.

 More recently, a lecturer not having three or four courses assigned to him or her

running concurrently.

In some cases, some schools prefer to use online software’s to automate a course

schedule. This can sometimes slow down the process of drawing up a schedule but usually

does not provide an optimal solution or a working solution since certain constraints may

vary from institution to institution. Most often, schools prefer to manually draw up the

schedule using simple desktop tools like Microsoft Office or traditional methods like writing

out the schedule on paper. This often provides a suitable schedule and conforms with the

constraints of the set institution but is a very cumbersome and tiresome process. More

recently, the issue of lecturers been overloaded with courses has risen and most of these

techniques do not cater for this (Dahiya, 2015). Regardless of the number of courses a

student takes, it can be assumed that not all the courses would be offered on the same day.

2

This only means that a student would have enough time to draw up a personal schedule for

himself or herself and hence course overloading on the part of the student is not seen as a

constraint.

In 2000, the school-age population in Africa grew to 334 million people. (United

Nations, 2003) This increase in population has led to the enlargement of educational

institutions, Personnel, infrastructure, and courses have also increased in number or size as

a response to the population increase. For instance, Ashesi University College has

discussion classes which differ in time length from normal lecture classes. Hence a schedule

for Ashesi University College would differ from another school that uses a different system.

As such, an automated system with preference to lectures scheduling is key to school’s

today.

1.2 Project Overview

Growing colleges usually face the problem of course scheduling due to many

inconsistencies. These inconsistencies are usually with the number of lecturers available in

a semester, the growing number of students of the school each year and the number of

lecturer halls available in a semester. Usually, because of the inconsistency of the number

of lecturers, there might be the case where a lecturer may be required to teach more courses

than he usually does in a semester. This situation usually leads to a lecturer having back to

back classes which can be heavy on the lecturer.

This project seeks to build upon research done by a previous Ashesi University

College student, which used a particle swarm optimization algorithm to provide an

automated course scheduling system. This project hopes to extend the implemented

algorithm and build a graphical user interface for the algorithm thereby building a fully

3

functional system for general use. This project would be a web application making use of

Hypertext Preprocessor (PHP), JavaScript, and Hypertext Mark-up Language (HTML).

1.3 Objective

The objective of the project is to build an application that implements a course

scheduling algorithm. The application should be able to generate an optimal course schedule

based on given input. The schedule should hopefully be, conflict free and should be usable

by elementary schools, high schools, or universities.

1.4 Importance of the System and Motivation

Automated Systems have been increasingly popular and useful over the ages. Going

back to the years of industrial revolution, it was evident that work was made easier with a

reduced dependency on manpower and an increase in the precision of outcomes. (Mingo,

2000) Course scheduling, with all its hassle and complexity, is a problem that can be and

should be solved with an automated system. Course Scheduling has been found to be a non-

deterministic polynomial-time hard (NP-hard) problem and hence has no fixed or definite

solution. (Hamalainen, 2006) Many applications implementing various algorithms have

been developed to tackle course scheduling though they do not tackle the issue of lecturer

overloading.

4

Chapter 2: Related Work

2.1 Overview

This section provides information on works related to course scheduling and

identifies the limitations of the works and conceivably states how the work contributes

towards the solution to the problem identified.

2.2 Related Works

The classical course scheduling problem is considered as a non-deterministic

polynomial time hard problem (Hamalainen, 2006) It has no definite solution and can have

several solutions. Not all solutions may be optimal. The nature of this problem highlights

the difficulty to attain an optimal solution given that each solution does not guarantee

optimization. Generally, heuristic algorithms like genetic algorithms and tabu search have

been used to tackle the solution though each algorithm comes with its own benefits like

computation speed or number of allowable variables.

Karami and Hasanzadeh proposed a new hybrid genetic algorithm to the non-

deterministic polynomial time (NP Complete) problem of course scheduling (Karami, &

Hasanzadeh, 2012). Their algorithm used population-based metaheuristics algorithms and

evolutionary algorithms. The initial population is stored into a red-black tree data structure,

to which after their Hybrid genetic algorithm creates children from previous individuals by

its operators. The algorithm used Hill climbing to improve their results. The results of their

algorithm were impressive with regards to the algorithms convergence rate which proposed

a solution after 200 iterations. Karami and Hasanzadeh’s hybrid genetic algorithm was time

efficient but could not find a feasible solution for large instances. This seems to be a major

drawback because even though time efficiency is key when it comes to course scheduling,

5

it is important to find a feasible solution to satisfy all constraints. It is necessary that an

optimal algorithm should be able to satisfy larger university schedules.

Castrillón’s article considers how evolutionary algorithms and cognitive rhythms

can be used to tackle the university’s course scheduling problem and draw up an optimal

timetable (Castrillón, 2015). His algorithm suggests a new and improved algorithm based

on an evolutionary algorithm and students’ cognitive rhythm. After the tests and

comparisons, it was found that the algorithm proposed was 15% more efficient than the

already existing algorithms and shows more system stability. In choosing the right software

to look at to help solve the course scheduling problem, efficiency is key. Even though

Castrillón’s proposed algorithm tends to be more efficient, it does not fully satisfy the

context of Ashesi’s problem. The solution presented takes into consideration students’

cognitive rhythms but not the work load on the lecturer. A student in Ashesi’s context,

regardless of the schedule would still have time to indulge in his or her personal activities.

The problem arises when lecturers have consecutive classes on some days and end the day

exhausted.

A more ideal approach was found in Dahiya Saddharth’s solution to course

scheduling. It considers scheduling while taking into consideration the preference for course

and professors (Dahiya, 2015). His solution presents a hybrid genetic algorithm called

course scheduling with preference optimization. The algorithm considers the various

preferences and constraints and return a valid schedule where both the preferences for both

professors and courses had been maximized. The main limitation stated by Saddharth in his

thesis was the decrease in the algorithm’s run-time when there was an increase in courses

and faculty. This may seem a big drawback when it comes to large universities but for small

universities, it would be an optimal solution.

6

Over the years, several applications have been developed to tackle the problem of

course scheduling making use of different algorithms. From articles, the most common

algorithms used are genetic algorithms, swarm intelligence algorithms and hybrid

algorithms. These algorithms offer better computation time and seem to offer more optimal

solutions than other algorithms when it comes to course scheduling. Applications on the

market, be it open source or not, usually implement these algorithms.

Event Management System (EMS) software has been found to be a popular

scheduling software that offers optimal and institution tailored schedules. It offers a

premium service, where users are more of clients to the software and would have to work

with the administrators of the EMS software. Even though, effective, this process may be

inconvenient for users who would prefer a free and do-it-yourself process. The College

Scheduler by Civitas Learning bears the same similarities with the EMS software.

Open source and free applications like Unitime, ScheduleIt and CyberMatrix Course

Scheduler offer decent course scheduling functionality. The main problem with these is the

fact that schedules usually clash when slightly larger courses and lecturers are considered.

Because they are general purpose, some of the applications are quite complex to understand

and to further customize with additional functionalities.

 Ashesi University College has seen instances of solutions to its course scheduling

problem though none of them have proved to stand as a standard solution. The most recent

of which was proposed in 2015. The solution was an open-source application called Free

Timetabling Software (FET) (Papafio, 2015). The Registry complained of the application

not being able to satisfy all its constraints and hence could not provide an optimal schedule.

Another project only provided a theoretical solution using a particle swarm

optimization algorithm for Ashesi’s course scheduling problem. The algorithm took into

7

consideration lecturers preferences and was yet to be extended into a full application for

testing with real life variables. Mathematically, this approach was shown to be more

effective than other traditional algorithms like constraint programming, tabu search and

simulated annealing. (Agbenowosi, 2014)

Similar to Agbenowosi’s, George Donkor looked at providing an effective algorithm

to solve Ashesi University’s course scheduling problem. He compared different algorithms

based on their computational time, ease of implementation, solution quality and constraint

handling and concluded that the Particle Swarm Optimization was the best in the set criteria.

He concluded that the Particle Swarm Optimization was an easy algorithm to implement

which produced good results. (Donkor, 2014)

From the above, several solutions with different algorithms have been trialled and

tested. The problems with these applications differ by institution and user, either it is not

convenient or is not able to satisfy the school’s constraints. These solutions also tend to be

very rigid and cumbersome when editing and entering data.

To tackle this problem, a software which properly combines automation and manual

usage would be an ideal solution. In simplifying the process and improving upon the user

interface, an ideal and usable solution can be developed with a simple genetic algorithm

working in the backend. By context, this solution may also serve as a general-purpose

application to many schools in Ghana as existing online applications may either be too

complex or cannot provide an optimal schedule.

8

Chapter 3: Requirements Specification

3.1 Overview

This section provides an overview of the requirement chapter and a scope of this

project.

3.2 Project Scope

In recent times, optimization algorithms, like particle swarm optimization and

genetic, have been found to be popular approaches to solve non-deterministic polynomial-

time complete problems as they provide an optimal solution depending on the given

problem. The chosen solution makes use of an open-source genetic algorithm tailored

towards reducing schedule overloading on lecturers. This project seeks to interpret and build

a graphical user interface for this algorithm. With respect to this, an understanding of the

constraints, preferences and requirements are necessary. Throughout this section, the

application would be referred to as the Beehive Scheduling Application.

3.3 Overall Description

The Beehive Scheduling Application is meant to be a generalized application

software that can provide course scheduling features with preference to teaching times. It is

meant to be a web application.

3.4 Requirements Gathering

The purpose of this project is to provide a graphical user interface for a genetic

algorithm to resolve the course scheduling problem in schools in Ghana using Ashesi

University as its context. To get a suitable algorithm, the application must satisfy the

school’s preferences, constraints, and requirements. As such, conversations would be held

with the registrar’s office to draw knowledge from the existing solution to outline the user

and system requirements needed for course scheduling in general.

9

3.5 Use Case

This sections looks at a scenario and a use case diagram which highlight the user’s

interaction with the system and help define the user’s requirements.

Scenario: Herty is a school registrar who spends far too much time when scheduling courses

for the semester. She wishes to be able to automate the process with an easy to use

application. She wants to be able to create a schedule based on input categorized by different

lecturers, rooms, courses, and time slots. When the schedule is generated, she wants to be

able to make changes to her schedule and view the schedule in an event calendar.

Figure 3.1: Use Case Diagram

3.6 Product Features / User Requirements

The Beehive Scheduling Application seeks to provide generalized course scheduling

functionalities for general use via an effective algorithm. The Beehive Scheduling

Application should provide services to actors who use it. Therefore, the application should

be able to take in input and give output. The actor or user of this system is any user who is

10

found using the system for course scheduling purposes, be it a school registry or an

individual.

The input should be in the form of available lecturers, available rooms, lecture times,

available courses and course hours. The user should be able to generate a schedule based on

the parameters supplied, and view the resultant schedule. The Beehive Scheduling

Application should also return necessary reports and feedback to the user, in the event of an

error. The Beehive Scheduling Application should also be able to take in input as a file, read

the contents of file and distinguish between the attributes or entities within the file that are

necessary to produce a time table. The application should be able to give an error report

where necessary.

3.7 Functional Requirements

This section provides the stripped-down functional requirements of the scheduling

software. All of these functionalities would be addressed in this application. The major

functional requirements of the application can be found below:

a) Data Input by user / Adding data to the database.

b) Schedule Creation.

c) Schedule Display.

3.7.1 Data Input by User

Description: The user inputs the data necessary to implement a schedule (rooms,

courses, and lecturers).

Inputs: Course: name, number, department; Room: number, department; Lecturer:

name, department, respective courses;

11

Output: Confirmation or error message.

Classes to Implement: User class (main class), adb class

Methods to Implement: addCourse, addRoom, addLec, getRoom, getLec, getCourse,

addRoomGroup, addCourseGroup, addLecGroup, delLec, delRoom, delCourse

Test Plan: The test plan would be done using unit testing via a single user.

Figure3.2: Activity diagram for data input

3.7.2 Schedule Creation

Description: Application creates a schedule using data in the database, necessary

parameters and a genetic algorithm.

Inputs: Course name; room number, lecturer name, days, timeslots, year group, term,

day start, day end, room type.

Output: Confirmation or error message.

12

Classes to Implement: schedule, room, course, lecturer, department, algorithm,

population, data, entry and meetingTime

Test Plan: The test plan would be done using unit testing via a single user. Sample

schedules would be created to see whether an optimal schedule can be created.

Figure 3.3: Activity diagram for schedule creation

13

Figure 3.4: Activity diagram for algorithm

3.7.3 Schedule Display

Description: Application fetches data from the database and displays it on an event

calendar.

Inputs: none.

Output: Event Calendar filled with schedules or empty event calendar.

Classes to Implement: user class

Methods to Implement: getSchedules

Test Plan: The test plan would be done using unit testing via a single user. Sample

schedules would be created to see whether an optimal schedule can be created.

14

Figure 3.5: Activity diagram for schedule display

3.8 Additional Features

This section looks at additional features that the system would have.

 The Beehive Scheduling Application should be able to return error scripts and logs

in a human readable format.

 The user should be able to edit information within the system where necessary.

3.9 Constraints

The Beehive Scheduling Application would have to observe certain constraints to fully

produce an optimized schedule for a user.

 A lecturer cannot have two lectures at the same time.

 More than one lecture cannot occur at the same time in the same room.

 Two courses involving the same group of students cannot be taught at the same time.

 A lecturer should not have an overloaded schedule.

15

3.10 Stakeholders

This section highlights the various entities who would be affected by the usage of the

application.

1. Lecturers: Basically, the course scheduling provides a schedule for which lecturers

can follow in their work routines.

2. Students: Student’s would follow the schedule to know their course times and room

numbers.

3. Academic Registry / Department of a school: For a university or a school, this

department would use the Beehive Scheduling Application to create the schedule

that the students and lecturers would follow.

4. Organizations / Institutions: An institution with vested interest in drawing up a

calendar schedule for its workers can make use of the Beehive Scheduling

Application or any other department in the school that organizes sessions based on

the school’s course schedule times.

3.11 Dependencies

This Beehive Scheduling Application would be built on and depend on:

 Computer systems

 User Input

3.12 Non-Functional Requirements

The non-functional requirements for the Beehive Scheduling Application are as follows:

 Performance / Speed

The software would need to produce an optimized schedule or response within an

appropriate time.

16

 Security and Privacy

The software would need to provide some form of security and privacy for the users,

to protect the information or schedule they have provided.

17

Chapter 4: Architecture and Design

This chapter outlines the architecture and design of the Beehive Scheduling

Application. It takes into perspective the different layers of the application and the various

components, languages and tools needed to develop the application.

4.1 Overview

The graphical interface consists of a web based software that implements a genetic

algorithm that finds an optimal schedule. The software is a web application and will be built

on PHP: Hypertext Preprocessor (PHP), Cascading Style Sheets (CSS), JavaScript, and

Hyper Text Markup Language (HTML). A Structured Query Language (SQL) database will

be used to store the applications data.

4.2 Architecture

The project makes use of these languages because of researcher proficiency in these

languages and the large community of developers that support the language. That being said,

development and debugging is made easier.

The Beehive Scheduling application is implemented using a three-tier architecture,

a type of client-server architecture. This architecture separates the application (business

logic and data management), data (data storage), and presentation logic (graphical user

interface) of the system into three separate components or layers. This architecture properly

defines the functions and operations of each layer and hence debugging and testing of each

layer is easier.

18

Figure 4.1: High-Level Architecture (Three Tier)

4.2.1 Presentation Logic / Layer

This is the topmost tier in the three-tier architecture. It consists of the user interface

that enables the user to communicate with the application by translating the results and tasks

of the system into a form the user can understand. (Sommerville, 2011) The frontend of the

system is divided into two parts: an interaction screen and a client side which sends requests

to the application layer. This layer guides the user through data input, schedule generation

and display.

The Beehive Scheduling Application’s user interactive frontend is built in HTML

and CSS. The client side that sends requests to the application layer is built in JavaScript.

The software makes use of frameworks to enhance performance, look and experience. These

19

templates include; Bootstrap, Creative Tim’s Paper Dashboard and Intensify by

TEMPLATED, all under the Creative Commons Public License. The event calendar is a

JavaScript library plugin created by DayPilot. The client side communicates with the

application layer by sending Asynchronous JavaScript and XML (AJAX) requests.

Data sent from the data layer is finally visualized here. The user’s desire to visualize

the schedule is done in this layer. The user interacts with the application at this level and

can put in necessary data needed by the application to be able to generate a schedule.

4.2.2 Application Logic / Layer

The application layer serves as the middleware between the presentation layer and

data layer. It holds the main logic of the application defined in classes and files.

(Sommerville, 2011) It also contains the logic needed to send queries to the data layer and

retrieve data. It returns necessary data, if requested, to the presentation layer to display to

the user.

The algorithm of the application is found in this layer, which is the most important

aspect of the application. This is where the automatic assigning of courses into slots would

take place using the genetic algorithm. The algorithm is an open source Java code translated

into JavaScript. This layer contains classes with sets of functions necessary for the operation

of the application and for data management. Requests from the user to add, insert, delete,

update, or fetch data is channelled from the presentation layer to the data layer through the

application layer. The main language used by the application layer is PHP. It replies to

requests made by the client via Java String Object Notation (JSON). Data management is

achieved via SQL Queries sent from the application layer to the data layer.

20

Figure 4.2: Class diagram for beehive scheduling application

4.2.3 Data Logic / Layer

The data layer is the third layer in the architecture. It is responsible for storing and

retrieving data and handling SQL requests sent to it by the application layer. The

information from the database is ultimately sent back to the user after processing.

The Beehive Scheduling Application uses a relational database to store data. It is

convenient to use due to the relationships that exists between the room, course, lecturer, and

schedule tables. It communicates with the application layer via SQL. SQL requests are

received from the application layer and sent back in the form of results.

21

Figure 4.3: Enhanced entity relationship model for beehive scheduling application

4.3 External User Interface Requirements

This section looks at the individual interfaces of the system and describes the logical

characteristics of each interface. (REBox, 2017). The focus of this section is on user

interfaces in the interaction process.

22

The user interface is emphasized by vibrant colours categorized by shades of gold,

teal, white and grey. Highlights and animations are used to guide the user. Alerts, dialogs,

and string messages are used to give the user feedback on actions and serve as data input

structures. The fonts used, Open Sans and Montserrat, are readable and easy on the eye.

Buttons, Icons, Pagination, Links, and Sidebars are used to keep navigation and

identification of elements simple. The application’s ideal screen resolution is 1280 x 600

and would see elements distort if used beyond this. The main user interfaces of the software

are below:

Figure 4.4: Landing or index interface of application

23

Figure 4.5: Log in dialog box on landing page

Figure 4.6: Dashboard of the scheduling application

24

Figure 4.7: Schedule view interface of scheduling application

Figure 4.8: Forms (Data Addition) interface of scheduling application

25

Figure 4.9: Schedule addition to the calendar on the schedule interface

26

Chapter 5: Implementation

5.1 Overview

This chapter highlights the implementation of the Beehive Scheduling Application.

It delves into the techniques and procedures used to build the application. It also looks at

the implementation resources, tools and components used in the development of the Beehive

Scheduling Application.

5.2 Implementation Resources

This section looks at the different languages, libraries, frameworks, Application

Programming Interfaces (API’s) and components used in the development of the

application. The languages used include PHP, HTML, JavaScript, JSON, SQL, CSS, and

AJAX. The application also makes use of various frameworks and libraries to simplify the

development process.

5.2.1 Languages

HTML: The user interface of the application is built with HTML. HTML is used to

describe the structure of the website and the different elements found on the application.

Text, images, and other visuals are all defined in HTML files by elements. Elements defined

by HTML are static but can be changed if necessary. The frontend files of the Beehive

Application are HTML files with blocks of JavaScript code. All libraries and dependencies

are defined in HTML files.

CSS: CSS is used to style and animate the elements in an HTML file. This is done

by assigning IDs and classes to elements and applying styles to those classes or IDs.

Beehive’s sleek and minimalistic interface is heavily edited with CSS. The colour scheme

of the interface is characterized by teal, gold, shades of grey and white. The design of

27

elements of the application is consistent and easy on the eye, highlighting event-driven

elements to help the user navigate around the application.

JavaScript: JavaScript is used in the frontend of the application. It is needed to send

requests to the server, implemented in PHP, and enforce the dynamic interactivity of HTML

web elements. Beehive is heavily dependent on JavaScript as a lot of data is pulled from a

database and dynamically displayed on the web interface. The event calendar that displays

the schedule is fully dependent on JavaScript. All event-driven elements on the website like

clicking and drag-and-drop are aided by JavaScript.

AJAX: The most important aspect of the Beehive’s client-server architecture is the

mode of communication between client and server. Beehive uses AJAX requests to send

data and requests to the server side for processing and response. AJAX functions are

implemented in JavaScript and require parameters like the destination URL and the data to

send. The AJAX function has a success feature which receives the response from the server.

Figure 5.1: Screenshot of AJAX function

28

JSON: The server responds to the client using JSON. JSON encodes the data in a

form which both languages can interpret and decode. Beehive uses JSON to transfers arrays,

objects, strings, integers, and any permitted data type from the server to the Client. The

client receives the JSON message via the AJAX function.

Figure 5.2: Screenshot of JSON reply

PHP: Beehive’s server side is built with PHP. As seen in Chapter 4, the server side

contains the application’s business and data management logic. PHP is used to build classes

and functions necessary for receiving and responding to requests from the client and

communicating with the data storage entity. The server sends insertion, deletion, updating

or fetching queries to the database and receives results on success.

Figure 5.3: Screenshot of PHP code

SQL: SQL commands are used to query data in the relational database. SQL queries

are sent to the database manager for execution. The database manager is PHPMyAdmin.

PHPMyAdmin is an interactive graphical user interface which simplifies the management

of the database. Result sets are sent back to the server from the database manager. The

29

database is mainly used for storing data, however it can execute queries to perform functions

like deletion, fetching, and insertion.

Figure 5.4: Screenshot of database manager

5.2.2 Frameworks

Bootstrap: Beehive’s frontend is built on Bootstrap, an open source framework built

on JavaScript, HTML, and CSS for developing responsive and mobile friendly websites.

Bootstrap simplifies the development process by providing documentation for custom

HTML elements and JavaScript plugins.

 Paper Dashboard and Intensify: Beehive’s admin pages and index pages

are built on two free licensed bootstrap templates, Paper Dashboard and

Intensify respectively.

5.2.3 Libraries

DayPilot: DayPilot is an open source JavaScript library which dynamically creates

an event calendar on a website. Beehive uses this to display the scheduled classes.

30

Figure 5.5: Screenshot of DayPilot in use on Beehive

5.3 Implementation Techniques

5.3.1 Login and Sign Up

User Accounts allows for the personalization of Beehive. A user can create an

account by entering his email, username, and password in a modal window that appears

upon clicking the sign-up button. Once done, the user is notified on success or failure. On

success, the user can then proceed to log in into the application’s admin panel. The admin

panel is basically the part of the application for data manipulation and schedule generation.

The user requires username and password to be authenticated to log in to the application.

The user logs in via a modal window like that of the sign-up modal. When logged in, the

user is redirected to his dashboard.

31

Figure 5.6: Screenshot of login/sign up window

5.3.2 Data Input

For a new user, the application would have no data and hence the user would be required

to provide data for class and schedule creation. Data input can be done on the forms page.

A user can perform the following:

 Enter the desired name and course number of the course.

 Enter the desired name and department of the room.

 Enter the desired name of the lecturer and his department.

 Add data via a Comma Separated File(CSV).

When complete, the user clicks done and the new entry can be seen in the panel below

the input fields. On success or failure, the user would be notified accordingly. The

pagination below the panels is used to switch between the data input options (rooms,

lecturers, courses, classes/entries).

32

Figure 5.7: Screenshot of data input via input fields and file upload

5.3.3 Schedule Display

Schedules are displayed on an event calendar found on the schedule view page.

Classes are displayed as boxes on the time slots on the event calendar with the respective

information of that class.

Figure 5.8: Screenshot of schedule view

33

5.3.4 Schedule Creation

Classes can be added to the event calendar by simply clicking on a day. When

clicked, a modal pops up. The modal fetches data entered into the database and makes them

accessible to the user by putting them in drop downs. Other parameters to describe the class

like period, semester, year group, time slot, days taken are also available on the modal.

When satisfied, the user simple clicks the add button and the entry is inserted into the

calendar and stored in the database. For a new user, requirements like the time the day starts,

slot length in minutes and break period between each course must be fulfilled before being

able to add an entry. If a new user tries to add an entry without completing these, the user

would be prompted to do so before being allowed to create a schedule.

Figure 5.9: Screenshot of schedule creation

5.3.4.1 Genetic Algorithm

The Genetic Algorithm stands as the core of Beehive’s functionality. It is responsible

for generating an ideal schedule based on the data and constraints presented to it. Genetic

Algorithms are built on the concept the Darwinian Theory of “Survival of the Fittest” and

34

hence prioritize three main things: Variation, Heredity, and Selection. It is an evolutionary

algorithm and hence iterates over a population to evolve into an ideal solution (Neville &

Sibley, 2003). Beehive’s Genetic Algorithm was built with the aid of materials from ZA

Software Development Tutorials, The Coding Train, Tutorialspoint and Code Project. The

algorithm is built on PHP and hence resides in the server side of the application. The

algorithm’s logic was built using ten classes which represent objects necessary for course

scheduling like classes, schedules, and rooms.

The algorithm starts off with a data object and a population object. The data object

pulls all the necessary data needed to create a schedule from Beehive’s database. A

population object then uses this data to create schedules with randomized classes. The

randomization of schedules ensures that there is variation in the population and hence there

is a high tendency for the occurrence of conflicts.

Figure 5.10: Population class constructor

 Each schedule has a fitness function which calculates how fit the schedule is. The

fitness of the schedules is calculated based on how many conflicts it has based on the

constraints specified. The fitness function can be found below.

35

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = (
1

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠 + 1
)

4

The population sorts the schedules by fitness in descending order. If the elite

schedule has a fitness of 1, then that schedule is conflict-free and is selected as the solution.

If not, the population goes through a process called crossover. Selection is done when

crossing over. In crossing over, a whole new generation of schedules is generated from two

parents, the elite schedule of the current population and any two other random schedules

selected based on randomization. The purpose of this is to keep on creating a new generation

of schedules which would eventually converge at an optimal schedule.

Figure 5.11: Crossover method in algorithm class

Every time instance of a crossover, comes with a chance of mutation. Mutation

replaces all schedules apart from the elite’s schedule with new randomized schedules

different from those within the population. The purpose of this is to ensure that variation is

maintained in the population as the algorithm depends on a varied population. Mutation only

occurs if a picked random number falls below the mutation rate specified.

36

Figure 5.12: Mutation method in algorithm class

After a crossover, the fitness of the elite schedule is checked again to see whether it

is conflict free. If not, a new generation is created. This process goes on and on until a

conflict free schedule is found. The code and algorithm listings can be found at the end of

the document.

Figure 5.13: Driver of algorithm

37

Chapter 6: Testing and Results

6.1 Overview

This chapter looks at the various methods used to test the functionalities of the

Beehive Scheduling Application and respective results. Unit testing of functions,

component testing, system, and user testing will be carried out to verify and validate the

requirements of the application. A Dell Inspiron 13 Core I7 was used in testing and

debugging the application.

6.2 Unit Testing

Unit testing is an important aspect of programming development that helps to find

errors and correct them to ensure the proper functioning of the application. (Sommerville,

2011) The functions was tested by passing various inputs to see whether they will return the

expected result. Data management functions residing in the server were tested using

PHPUnit. To test the AJAX functions, the AJAX URL’s were passed into browser to test

whether the proper JSON response was sent from the server. Postman, a GUI for

constructing requests and reading responses, was also used to help test the AJAX functions.

The table below highlights some of the main functions that were tested using unit testing.

Table 6.1: Summary of Unit Testing

Unit Test Point Testing Result

addUser method

in User Class

Write code to Create an object of the class and call the method

with test inputs and compare output in database

Test input= username= assigned random bytes method,

Email=john@john.com, password=blah

Result: Data

was inserted

into the

database

getUser method

in User Class

Write code to Create an object of the class and call the method

to get result set of users and compare output in database

Result= array

of results

38

Connect method

in adb class

Write code to Create an object of the class and call the method

to connect to database.

Result=

connected

Query method in

adb class

Write code to Create an object of the class and call the method

query to return true if successful.

Result= true

Fetch method in

adb class

Write code to Create an object of the class and call the method

to return a result set of the query.

Result= array

of results

delLec method in

User Class

Write code to Create an object of the class and call the method

query to return true if successful.

Test input: id of user.

Result= lecturer

deleted from

database

getRooms

method in User

Class

Write code to Create an object of the class and call the method

query to return true if successful.

Result= array

of results

updateCon

method in User

Class

Write code to Create an object of the class and call the method

query to return true if successful.

Test input: username=’ernie’, day_start=’8:00’, break=’10’,

slot_length=’90’

Result= row

with username

ernie is updated

in database

Figure 6.1: Snippet of PHPunit test class.

39

6.3 Component Testing

Components testing looks at the testing and debugging of system components,

functions or classes interacting to perform a common function. (Sommerville, 2011)

Beehive’s main components were tested by viewing results from the user interface. The

main components of the application are logging in, signing up, viewing data, deleting data,

inserting data, and creating classes.

6.4 User Testing

User testing is one of the most important aspects of software development. Here,

user or potential users of the system try out the application and give feedback to the

developer. Beehive is a course scheduling application and hence it was tested by Ashesi’s

academic registry for feedback and error detection. The Registry pointed out certain aspects

of course scheduling that the application did not capture. Consequently, the application was

updated accordingly.

40

Chapter 7: Conclusion and Recommendations

7.1 Challenges

When developing the Beehive Scheduling Application, these challenges were encountered.

1. Defining the scope of the constraints and variables: Hardly do institutions share the

same schedule structures and models and hence they differ in structure. This made

it difficult to consider which variables to include in development.

2. Finding an algorithm and getting it to work: This was the biggest challenge, as

deciding on which algorithm to use and making it work with data was a big worry.

3. Working within the time constraints: Although familiar with the programming

languages, a lot of the implementations were new and took a lot of time to build.

7.2 Conclusion

The aim of this project was to find a solution to the classical course scheduling

problem. A lot of systems and algorithms were considered. Common gap was pointed out

that no system is 100% efficient and each output is susceptible to change. Beehive

Scheduling Application was introduced as a solution to this problem. Beehive offered both

manual and automated scheduling in one software and this simplified the course scheduling

process. It can be said that Beehive is an easy to use general course scheduling software to

be used by institutions. The main limitation with Beehive is its inability to satisfy the

constraints for every single institution as the scheduling criteria for institutions differ as it

did not fully satisfy Ashesi’s constraints. However, Beehive’s manual accessibility helps

bridge the gaps automation leaves. The algorithm also takes some time to generate a solution

as it goes through several generations.

 For future works, Beehive can be improved upon to satisfy more constraints

necessary per an institution. The algorithm can be optimized further to perform better, have

41

a better run time, and provide better results. It can also be extended to provide more

functionality where necessary.

42

References

Agbenowosi, J. F. (2014). Automated Course Scheduler For Ashesi. Berekuso: Ashesi

University College.

Castrillón, O. (2015). Cognitive rhythms and evolutionary algorithms in university

timetables scheduling. RMTA, 22(1), 135. Retrieved from:

http://dx.doi.org/10.15517/rmta.v22i1.17559.

Dahiya, S. (2015). Course Scheduling With Preference Optimization. Pennsylvania: The

Pennsylvania State University.

Donkor, G. (2014). A Process for Automated Class Scheduling at Ashesi. Berekuso:

Ashesi University College.

 Hamalainen, W. (November 6, 2006). Class NP, NP-complete, and NP-hard

problems.Finland: http://www.uef.fi.

Hinkin, T. R., & Thompson, G. (2002). SchedulExpert: Scheduling Courses in the Cornell

University School of Hotel Administration. The Scholarly Commons, 57.

Janković, M. (2008, January 22). Making a Class Schedule Using a Genetic Algorithm.

Retrieved from: https://www.codeproject.com/Articles/23111/Making-a-Class-

Schedule-Using-a-Genetic-Algorithm.

Karami, A., & Hasanzadeh, M. (2012). University course timetabling using a new hybrid

genetic algorithm. 2012 2Nd International Econference On Computer And

Knowledge Engineering (ICCKE). Retrieved from:

http://dx.doi.org/10.1109/iccke.2012.6395368.

43

Mingo, S. (2000). A Brief History of Automation – SEMCI: A Paperless Future.

Insurance Journal West Magazine.

Neville, M., & Sibley, A. (2003). Developing a Generic Genetic Algorithm. ACM SIGAda

Ada Letters , 45-52.

Papafio, W. N. (2015). Ashesi Course Scheduling. Berekuso: Ashesi University College.

REBox. (2017, March 21). External Interface Requirements. Retrieved from:

http://isg.inescid.pt/REBox/WiegersTemplate@17.aspx?page=4ExternalInterfaceR

equirements.

Siddharth, D. (2015). Course Scheduling with preference optimization. Pennsylvania: The

Pennsylvania State University.

Sommerville, I. (2011). Software Engineering. Boston: Addison-Wesley.

The Coding Train (2016, July 29). Genetic Algorithms - The Nature of Code [Video file].

Retrieved from https://www.youtube.com/watch?v=9zfeTw-uFCw&list=PLRqwX-

V7Uu6bJM3VgzjNV5YxVxUwzALHV.

Tutorialspoint. (2016). Genetic Algorithms - Introduction. Retrieved from:

https://www.tutorialspoint.com/genetic_algorithms/index.htm.

United Nations. (2003). Population,Education and Development: The Concise Report.

New York: United Nations Publication.

Wasfy, A., & Aloul, F. A. (2006). Solving the University Class Scheduling Problem Using

Advanced ILT Techniques. Sharjah: American University of Sharjah publications.

44

ZA Software Development Tutorials (2016, September 15). Genetic Algorithms Tutorial

04 - Class Scheduling JAVA Application [Video file]. Retrieved from

https://www.youtube.com/watch?v=cn1JyZvV5YA&t=389s.

