

ASHESI UNIVERSITY COLLEGE

MYSQL DATABASE ENGINES REVIEW, ANALYSIS, COMPILATION

AND CUSTOMIZATION

MAC-ANTHONY MANU

2013

Applied Project

ASHESI UNIVERSITY COLLEGE

MYSQL DATABASE ENGINES REVIEW, ANALYSIS, COMPILATION AND

CUSTOMIZATION

By

MAC-ANTHONY MANU

Dissertation submitted to the Department of Computer Science

Ashesi University College

In partial fulfillment of the requirements for the award of Bachelor of

Science degree in Computer Science

APRIL 2013

Applied Project

i

Declaration

I hereby declare that this dissertation is the result of my own original

work and that no part of it has been presented for another degree in

this university or elsewhere.

Candidate’s Signature: ……………………………………………………………………

Candidate’s Name: Mac-Anthony Manu

Date: …………………………..

I hereby declare that the preparation and presentation of the

dissertation were supervised in accordance with the guidelines on

supervision of dissertation laid down by Ashesi University College.

Supervisor’s Signature: ………………………………………………………………..

Supervisor’s Name: Mr. Kwadwo Gyamfi Osafo-Maafo

Date: …………………………………..

ii

Acknowledgements

I am extremely grateful to my supervisor Mr. Kwadwo Gyamfi Osafo-

Maafo for assisting me to choose a project that is very relevant to my

future carrier and also for his immense contribution towards the

successful completion of this project. I am also appreciative of the

contributions of Mr. Aelaf Dafla and Dr. Nathan Amanquah who taught me

lessons in Operating Systems and programming in C++ respectively. My

sincere thanks to all the lectures who taught me in the numerous courses

I have taken in Ashesi University College.

iii

Abstract

This project is a review of several MySQL database storage engines. It

shows what engines are available and the features they have. It also

investigates the compilation and extension of these storage engines and it

finally discusses and demonstrates how to add a customized engines.

iv

Contents
Chapter One ... 1

1.1: Introduction .. 1

1.2: Objects of the Project ... 1

Chapter Two ... 2

2.1: A Review of a Selection of MySQL Engines ... 2

2.1.1: InnoDB Storage Engine .. 3

2.1.2: MyISAM Storage Engine .. 4

2.1.3: InnoDB Verses MyISAM ... 5

2.1.4: MEMORY Storage Engine ... 7

2.1.5: Comma-Separated Values (CSV) Storage Engine ... 8

2.1.6: ARCHIVE Storage Engine .. 9

2.1.7: BLACKHOLE Storage Engine ... 10

2.1.8: MySQL Engines that Store Raw Data ... 12

2.2: Related MySQL Projects .. 14

2.2.1: MySQL Cluster .. 14

2.2.2: Drizzle ... 15

2.2.3: MariaDB ... 16

2.2.4: Percona Server ... 17

2.2.5: OurDelta Server ... 18

2.3: Chapter Conclusions ... 18

Chapter Three .. 19

3.1: Implementing a Custom MySQL Engine ... 19

Chapter Four .. 24

4.1: Tests and Results .. 24

4.2: Time Taken to Make 10000 Insertions by the Storage Engines 24

4.3: Time Taken to Make 8000 updates by the Storage Engines ... 26

4.4: Time Taken to Make 8000 Deletions by the Storage Engines 27

Chapter Five ... 28

5.1: Conclusions and Recommendations ... 28

Bibliography ... 29

Appendix A ... 33

A.1: Screen Shots of Tests Performed on InnoDB Storage Engine 33

v

A.1.1: Update Operations .. 33

A.1.2: Delete Operations.. 33

A.2: Screen Shots of Tests Performed on MyISAM Storage Engine 34

A.2.1: Update Operations .. 34

A.2.2: Delete Operations.. 34

A.3: Screen Shots of Tests Performed on ARCHIVE Storage Engine 35

A.3.1: Plugging in ARCHIVE Engine to the Running Server .. 35

A.3.2: Prove of ARCHIVE Storage Engine Enabled. .. 35

A.3.3: Update and Delete Operations .. 35

A.4: Screen Shots of Tests Performed on MEMORY Storage Engine 36

A.4.1: Update Operations .. 36

A.4.1: Delete Operations.. 36

A.5: Screen Shots of Tests Performed on CSV Storage Engine .. 37

A.5.1: Update Operations .. 37

A.5.2: Delete Operations.. 37

A.6: Screen Shots of Tests Performed on BLACKHOLE Storage Engine 38

A.6.1: Plugging in ARCHIVE engine to the Running Server .. 38

A.6.2: Select, Update and Delete Operations .. 38

Appendix B ... 39

B.1: How to Get MySQL Source Files ... 39

B.2: Installing the Libraries Needed to Build MySQL Source Files 40

B.3: The Build Process .. 40

B.4: How to Start the Server .. 42

B.5: How to Start the MySQL Client ... 45

1

Chapter One

1.1: Introduction

MySQL is a relational database management system (RDMS). Its original

author is Michael Monty Widenius and it was first released in 1996

(CrunchBase, 2009). It is known to be the world’s most popular open

source database management system. MySQL was first owned by MySQL

AB but was bought by Sun Microsystems in January 2008 and was later

purchased by Oracle.

MySQL is written in C and C++ programming languages. It has pluggable

storage engine architecture. This allows storages engines to be plugged-in

or plugged-out whiles the server is running. This project uses the source

code for MySQL 5.5 server.

1.2: Objects of the Project
The objective of this project is to review several MySQL database storage

engines, investigate the compilation and extension of these storage

engines, and demonstrate how a custom MySQL storage engine can be

developed.

2

Chapter Two

2.1: A Review of a Selection of MySQL Engines

MySQL 5.5 server came with about nine (9) pluggable storage engines,

giving users the flexibility to choose the storage engine that best fits their

specific need. Nevertheless, these engines defer in performance levels and

scalability among other features. The engines include InnoDB, MyISAM,

MEMORY, CSV, ARCHIVE, BLACKHOLE, MERGE, FEDERATED and the

EXAMPLE storage engines.

Not all of these engines have the ability to store data. Some of these

engines make use of the data stored by some other engine to create their

data. The engines that are able to store their own data are InnoDB,

MyISAM, CSV and ARCHIVE storage engines. MEMORY and MERGE storage

engines mostly use data stored by other engines to create theirs.

BLACKHOLE and EXAMPLE storage engines do not store any data at all.

FEDERATED storage engine is a special engine for distributed database

systems.

InnoDB “is the mostly widely used storage engine for Web/Web 2.0,

eCommerce, Financial Systems, Telecommunications, Health Care and

Retail applications built on MySQL” (Oracle, 2013) and has become the

default storage engine as of MySQL 5.5.5 server. The following

subsections of this chapter deal with some features and functionalities of

these engines mentioned above. It is important to note that the sections

will not discuss the performance capabilities of the engines but only their

functionalities.

3

2.1.1: InnoDB Storage Engine

InnoDB has the features of a complete database engine. It is a

transaction-safe ACID1 compliant storage engine for MySQL. It has

commit, rollback, and crash-recovery capabilities to protect the data of

users. A feature that makes InnoDB transactional than the other engines

is its row-level locking mechanism. This mechanism ensures that several

read and write operations can be carried out on one table concurrently

without destroying the integrity of the data in the table. Another

advantage of the row-level locking mechanism is that it improves

performance.

Another key feature of InnoDB is its ability to maintain data integrity by

supporting foreign key referential-integrity constraints. Therefore a

relationship can be defined between tables and this relationship ensures

that only acceptable operations are carried out on the tables involved.

InnoDB also supports full-text search indexes. Usually, an index of the

words in a document is created with references to their locations. A search

is then map against the index and the word or phrase is retrieve from the

exact location. The table below is a summary of the features supported by

InnoDB.

1
 ACID stands for Atomicity, Consistency, Isolation and Durability.

4

Table 2.1.1: InnoDB Storage Engine Features (Oracle, 2013)

2.1.2: MyISAM Storage Engine

MyISAM is the default storage engine prior to MySQL 5.5.5. MyISAM is not

ACID complaint and non transactional and unlike InnoDB, it supports

table-level locking. For this reason, it is able to carry out several read

operations than write operations within a specific period (Oracle, January

2011). It is therefore the preferred engine for Web, data warehousing and

other application environments (Oracle, 2013). The key features of

MyISAM are shown in the table below.

Storage Limits 64TB Transactions Yes Locking

granularity

Row

Multi-Version

Concurrency

Control (MVCC)

Yes Geospatial

data type

support

Yes Geospatial

Indexing

Support

No

B-tree indexes Yes T-tree indexes No Hash Indexes No[a]

Full-text search

indexes

Yes

[b]

Clustered

indexes

Yes Data caches Yes

Index caches Yes Compressed

data

Yes

[c]

Encrypted

data [d]

Yes

Cluster

database

support

No Replication

support [e]

Yes Foreign key

support

Yes

Backup /

point-in-time

recovery [f]

Yes Query cache

support

Yes Update

statistics for

data dictionary

Yes

[a] InnoDB utilizes hash indexes internally for its Adaptive Hash Index

feature.

[b] InnoDB support for FULLTEXT indexes is available in MySQL 5.6.4

and higher.

[c] Compressed InnoDB table required the InnoDB Barracuda file

format.

[d] Implemented in the server (via encryption functions), rather than

in the storage engine.

[e] Implemented in the server, rather than in the storage engine.

[f] Implemented in the server, rather than in the storage engine.

5

Table 2.1.2: The key features of MyISAM

Storage Limits 256TB Transactions No Locking

granularity

Table

Multi-Version

Concurrency

Control

(MVCC)

No Geospatial

data type

support

Yes Geospatial

Indexing

Support

Yes

B-tree indexes Yes T-tree indexes No Hash

Indexes

No

Full-text

search indexes

Yes Clustered

indexes

No Data caches No

Index caches Yes Compressed

data

Yes

[a]

Encrypted

data [b]

Yes

Cluster

database

support

No Replication

support [c]

Yes Foreign key

support

No

Backup /

point-in-time

recovery [d]

Yes Query cache

support

Yes Update

statistics for

data

dictionary

Yes

[a] Compressed MyISAM tables are supported only when using the

compressed row format. Tables using the compressed row format with

MyISAM are read only.

[b] Implemented in the server (via encryption functions), rather than

in the storage engine.

[c] Implemented in the server, rather than in the storage engine.

[d] Implemented in the server, rather than in the storage engine.

2.1.3: InnoDB Verses MyISAM

InnoDB and MyISAM are the two major storage engines for MySQL

database. The first fact about these engines is that, MyISAM was

developed and made available for public usage before InnoDB (Yang,

2009). However, in terms of functionality, InnoDB is much more capable

than MyISAM. Basically, where data integrity and writer intensive

operations become the priority (Yang, 2009), InnoDB should be used

6

otherwise MyISAM is the best choice. The table below highlights the key

feature differences between InnoDB and MyISAM.

Table 2.1.3 Comparison between InnoDB and MyISAM storage engines

Feature InnoDB MyISAM

ACID Transactions Yes No

Configuration ACID Properties Yes No

Crash Safe Yes No

Foreign Key Support Yes No

Row-Level Locking Granularity Yes No (Table)

Multi-Version Concurrency

Control (MVCC)

Yes No

Geospatial Data Type Support Yes Yes

Geospatial (R-Tree) Indexing

Support

No Yes

B-tree Indexes Yes Yes

Full-text search indexes No Yes

Clustered Index Yes No

Data Caches Yes No

Index Caches Yes Yes

Compressed Data Yes [b] Yes [a]

Read and Write to Compressed

Table

Yes No (read-only)

Encrypted Data [c] Yes Yes

Replication Support [d] Yes Yes

Backup / Point-in-Time

Recovery [d]

Yes Yes

Query Cache Support Yes Yes

Update Statistics for Data

Dictionary

Yes Yes

Storage Limits (Table Size) 64TB 256TB

[a] Compressed MyISAM tables are supported only when using the

compressed row format.

[b] Compressed InnoDB tables required the InnoDB Barracuda file

format.

[c] Implemented in the server (via encryption functions), rather than in

the storage engine.

[d] Implemented in the server, rather than in the storage engine.

7

2.1.4: MEMORY Storage Engine

The MEMORY engine, formerly known as the Heap engine, creates its

tables in the MEMORY of the computer. The content of the tables are

usually from the database stored permanently on the physical disc drive.

MEMORY tables use dynamic hashing for inserts (Oracle, 2013). The

tables are highly volatile. The rows of a MEMORY table are destroyed

when the server goes off. However, the tables continue to exit because

their definitions are stored in .frm files on disk (Oracle, 2013).

MEMORY engines are useful in some situations. It is the appropriate

engine to use if an application does a lot of reading from the database but

does not need to update the database or does very few updates. In this

use case keeping a copy of the data in the MEMORY of the computer will

allow a quicker access to the data than if it being read from the physical

hard disc drive. The table below shows the key features of the MEMORY

Engine.

8

Table 2.1.4: Key features of the MEMORY Engine.

Storage Limits RA

M

Transactions No Locking

granularity

Table

 Multi-Version

Concurrency

Control (MVCC)

No Geospatial

data type

support

No Geospatial

Indexing

Support

No

B-tree indexes Yes T-tree

indexes

No Hash Indexes Yes

Full-text search

indexes

No Clustered

indexes

No Data caches N/A

Index caches N/A Compressed

data

No Encrypted data

[a]

Yes

Cluster database

support

No Replication

support [b]

Yes Foreign key

support

No

Backup /

point-in-time

recovery [c]

Yes Query cache

support

Yes Update statistics

for data

dictionary

Yes

[a] Implemented in the server (via encryption functions), rather than

in the storage engine.

[b] Implemented in the server, rather than in the storage engine.

[c] Implemented in the server, rather than in the storage engine.

N/A means not applicable.

2.1.5: Comma-Separated Values (CSV) Storage Engine

The CSV “storage engine stores data in text files using comma-separated

values format” (Oracle, 2013). It became fully enabled in MySQL 5.1

server. When a command is issued to create a CSV table, three items are

created. First item is a table format files created in the database directory

by the server. It has the table name with .frm extension. The second item

is plain text data file created by the storage engine. It also has the table

name with .CSV extension. The last item is a “Metafile that stores the

state of the table and the number of rows that exist in the table” (Oracle,

2013). It has the name of the table with CSM extension.

9

CSV files can be imported into any standard spreadsheet program and “it

allows for the instantaneous loading of massive amounts of data into the

MySQL server” (Schumacher, 2008). The CSV table offers a great way of

bringing a spreadsheet into a real database for analysis, manipulation and

extraction. The CSV engine however does not support both indexing and

transactions. It does not support indexing because files can be taken in

and out of the table directory without having to worry about rebuilding the

directory. Like the MyISAM storage engine, CSV engine is not ACID

complaint and non transactional.

2.1.6: ARCHIVE Storage Engine

The ARCHIVE storage engine stores large amount of data without indexing

in highly compressed data tables (Oracle, 2013). The zlib library is used

for the data compression. Table rows are compressed during insert

operations and uncompressed on retrieval. Its architecture provides high

inserting speed.

ARCHIVE tables do not support delete, replace or update operations. A

select operation performs a complete table scan because ARCHIVE tables

do not support indexing (Oracle, 2013). When an ARCHIVE table is

created, a table format file is created by the server in the database

directory. The table format file is named with the table name with

an .frm extension. “The storage engine creates other files, all having

names beginning with the table name. The data file has an extension

of .ARZ. An .ARN file may appear during optimization operations” (Oracle,

2013).

10

The ARCHIVE storage engine is useful for storing enormous amount of

data that is not frequently accessed (Refulz, 2011). The table below shows

the key features of the ARCHIVE storage engine.

Table 2.1.6: Key features of the ARCHIVE storage engine.

Storage Limits None Transactions No Locking

granularity

Table

 Multi-Version

Concurrency

Control (MVCC)

No Geospatial data

type support

Yes Geospatial

Indexing

Support

No

B-tree indexes No T-tree indexes No Hash

Indexes

No

Full-text search

indexes

No Clustered

indexes

No Data caches No

Index caches No Compressed

data

Yes Encrypted

data [a]

Yes

Cluster

database

support

No Replication

support [b]

Yes Foreign key

support

No

Backup / point-

in-time

recovery [c]

Yes Query cache

support

Yes Update

statistics for

data

dictionary

Yes

[a] Implemented in the server (via encryption functions), rather

than in the storage engine.

[b] Implemented in the server, rather than in the storage engine.

[c] Implemented in the server, rather than in the storage engine.

Table … Key features of the ARCHIVE storage engine.

2.1.7: BLACKHOLE Storage Engine

BLACKHOLE storage engine successfully creates tables, accepts data but

does not store this data. Retrieval operations as a result return empty

result. INSERT triggers are accepted by this engine. UPDATE, DELETE and

clauses such as ‘FOR EACH ROW’ do not apply since there are no rows

11

(Oracle, 2013). When a BLACKHOLE table is created, the server creates a

table format file in the database directory. This table has the table name

with frm extension. Unlike some of the engines discussed above, there are

no other files associated with the table.

Although BLACKHOLE engines do not have data storage ability, they are

useful in some use cases. One of the situations where BLACKHOLE

engines are of use is in distributed database systems (Schneller, 2006). In

this use case, there is usually one master server and several slave

servers.

The binary log on the master server provides a record of the data changes

to the database. The events contained in the master’s binary log file are

sent to the slave servers. The slave servers execute these events to make

the same data changes that were made on the master server. Usually, the

events are filtered and each slave server receivers only those events that

are necessary to make its database update to date. Figure 2.1 shows a

distributed database use case.

12

Figure 2.1.1 Distributed Database Design (Oracle, 2013)

However, replicating the data in the slave servers may not be necessary

because what is actually desired is to update the binary log of the slave

servers for data recovery. Therefore, whilst the master server tables are

created with the InnoDB or MyISAM storages engines, the tables in the

slaver servers can be created with BLACKHOLE storage engine. The key

advantage of this use case is that disc spaces are reserved for other

purposes. It is also appropriate to use BLACKHOLE storage engine to

perform performance test or benchmarking especially when storing data is

not necessary.

2.1.8: MySQL Engines that Store Raw Data

The interest of this project is in the primary data storage engines of

MySQL. These are MyISAM, InnoDB, MEMORY and ARCHIVE. From the

discussion of the storage engines above, it can be concluded that in terms

of functionality, InnoDB and MyISAM carryout a lot of operations than the

other engines. The table below presents some comparison between

MyISAM, InnoDB, MEMORY and ARCHIVE storage engines.

13

Table 2.1.8: Comparing the data storage engines

Features MyISAM InnoDB MEMORY ARCHIVE

Storage Limits 256TB 64TB RAM None

Transactions No Yes No No

Locking Granularity Table Row Table Table

Multi-Version Concurrency

Control (MVCC)

No Yes No No

Geospatial Data Type

Support

Yes Yes No Yes

Geospatial Indexing Support Yes No No No

B-Tree Indexes Yes Yes Yes No

T-Tree Indexes No No No No

Hash Indexes No No [a] Yes No

Full-Text Search Indexes Yes Yes [b] No No

Clustered Indexes No Yes No No

Data Caches No Yes N/A No

Index Caches Yes Yes N/A No

Compressed Data Yes [c] Yes [d] No Yes

Encrypted Data [e] Yes Yes Yes Yes

Cluster Database Support No No No No

Replication Support [f] Yes Yes Yes Yes

Foreign Key Support No Yes No No

Backup / point-in-time

recovery [g]

Yes Yes Yes Yes

Query Cache Support Yes Yes Yes Yes

Update Statistics for Data

Dictionary

Yes Yes Yes Yes

[a] InnoDB utilizes hash indexes internally for its Adaptive Hash Index

feature.

[b] InnoDB support for FULLTEXT indexes is available in MySQL 5.6.4

and higher.

[c] Compressed MyISAM tables are supported only when using the

compressed row format. Tables using the compressed row format with

MyISAM are read only.

[d] Compressed InnoDB tables require the InnoDB Barracuda file

format.

[e] Implemented in the server (via encryption functions), rather than

in the storage engine.

[f] Implemented in the server, rather than in the storage engine.

[g] Implemented in the server, rather than in the storage engine.

N/A means not applicable

14

2.2: Related MySQL Projects

2.2.1: MySQL Cluster

This is a highly specialized distributed node architecture storage solution

designed for fault tolerance and high performance (Bell, 2010) for the

distributed environment. Data is stored and replicated on individual

storage nodes. Each storage node executes a separated server and

preserves a replica of the data.

MySQL Cluster ensures the highest performance and availability possible

by using multiple MySQL servers for load distributing and data storage. An

update operation executed one on storage node is immediately made

available to the rest of the nodes. The nodes use a sophisticated

transmission protocol for data transfer across the network.

Basically, MySQL Cluster is made up of three components. These are the

MySQL server component, the network database (NDB) component and

the NDB cluster storage engine. MySQL Cluster mostly refers to MySQL

server and the NDB component while NDB Cluster usually refers to the

NDB Cluster technologies only. Using the NDB cluster storage engine as

an interface, MySQL Cluster uses the MySQL server as the frontend to

support standard SQL queries. In other words, the MySQL server

processes the SQL commands and communicates to the NDB storage

engine.

However, NDB cluster storage engine cannot be used without NDB Cluster

components thought it is possible to use the NDB Cluster technologies

15

without the MySQL server (Bell, 2010). The engine as well as the entire

MySQL Cluster has been developed to achieve three primary objects.

These are the assurance of the highest achievable performance, high

availability and data redundancy. To achieve these objectives MySQL has

functionality such as node recovery, logging, check pointing, system

recovery, hot backup and restore, failover, partitioning, online operations

and no single of point of failure.

2.2.2: Drizzle

Drizzle was developed out of MySQL 6.0 server. Drizzle developers took

away the components of MySQL they considered as “bad” and built a new

system out of the remaining good ones. The end product is a lightweight

micro-kernel designed database system for cloud infrastructure and web

applications. The database functionalities such as durability and relational

properties are built into the kernel as default design. The kernel has been

designed to be small, simple, clear and do little operations as much as

possible. Drizzle therefore supports a number of pluggable interfaces to

allow users extend the database by writing simple plug-ins (Drizzle

Developers, 2010).

Drizzle has been “designed for massive concurrency on modern multi-

cpu/core architecture” (Drizzle Developers, 2008). The design and

architecture of Drizzle gives it the ability to be reconfigured to take

advantage of the processing power of new servers with better

technologies without disturbing the state of the database. This adaptive

approach of integrating Drizzle with server infrastructure and making it a

16

part of it is better than the historical situation where database servers

dictate infrastructure of server computers and operating systems.

Drizzle uses InnoDB storage engine as the default storage engine (Otto,

2010). This makes Drizzle transactional and ACID compliant. Since the

functionalities of InnoDB have been discussed above, much will not be

said about it here. All other MySQL engines have been removed. Other

items in MySQL that are not in Drizzle include keywords such as

ENGINES and CLIENT, commands such as ALTER TABLE UPGRADE and

SET NAMES and objects such as TIME and TINYBLOB. There are no FRM

files and grant or privilege tables in Drizzle. “Drizzle does not currently

have any plug-ins that implements stored procedures” (Drizzle

Developers, 2010) and does not also have any plug-in that provides SQL

triggers.

2.2.3: MariaDB

MariaDB is similar to MySQL in many ways except that it has improved

features. It is based primarily on MySQL source code. The most important

reason for the development of MariaDB is to continue to make MySQL

open to users should Oracle decides to make MySQL fully commercial. The

second reason is that, Michael Monty Widenius, the main author of the

original version of MySQL who left MySQL Aktiebolag soon after MySQL

was obtained by Sun Microsystems became dissatisfied with the quality of

MySQL releases (Bartholomew, 2012).

MariaDB has all the standard storage engines of MySQL. In addition, it has

the following storage engines: Aria, XtraDB, FEDERATEDX, OQGRAPH,

17

SphinxSE, IBMDB21 and Cassandra. Aria is an upgraded version of

MyISAM. XtraDB is MariaDB’s InnoDB and it is the most fully featured

MariaDB’s storage engine. It is transactional and ACID compliant.

FEDERATEDX is a version of MySQL’s FEDERATED storage engine and

Cassandra is similar to MySQL’s NDB Cluster storage engine except that it

functions with Cassandra Cluster from MariaDB.

The Open Query GRAPH computation engine (OQGRAPH) “allows you to

handle hierarchies (tree structures) and complex graphs (nodes having

many connections in several directions)” (MariaDB Developers, 2010).

SphinxSE is built as a dynamically loadable .so plug-in. IBMDB21 is the

same storage engine that was introduced in MySQL 5.1.33 and later

removed in MySQL 5.1.54. “IBMDB21 storage engine is designed as a fully

featured transaction-capable storage engine that enables MySQL to store

its data in DB2 tables running on IBM i” (Oracle, 2013). It has similar

functionalities as InnoDB. Among these functionalities are support for

foreign key constraints, ACID-compliant, transactional, full crash recovery,

radix-tree-based indexes, and the unique ability to enable DB2 for IBM i

applications to see and update table data in instantaneously.

2.2.4: Percona Server

Percona Server and MariaDB have similar objectives. These are to provide

a more efficient and a drop-in replacement for MySQL database. The

default storage engine in Percona Server is XtraDB. This has similar

properties and functionalities as the XtraDB used in MariaDB Server

18

(Percona Company, 2011). Both of these storage engines are enhanced

versions of MySQL’s InnoDB.

In general, Percona Server has extra features for developers, extra

diagnostic features, and durability and reliability enhancements. It also

has extra performance and scalability enhancements and extra features

for database administrator (Percona Company, n.d.).

2.2.5: OurDelta Server

OurDelta Server is no longer maintained. It was built with patches from

MySQL Server, MariaDB Server and Percona Server. It came with MySQL’s

Sphinx search engine, MariaDB’s XtraDB, OQGRAPH, PBXT, FEDERATEDX

storage engines (OurDelta, 2008). A version of Sphinx search engine

called SphinxSE has been included in MariaDB. The features and

functionalities of all of these engines have been discussed above.

2.3: Chapter Conclusions
The MySQL storage engine that has been improved and adapted in most

MySQL projects discussed above is InnoDB. It is transactional, supports

row-level locking and ACID compliant. Although the various engines has

been developed for a specific use cases, the architectural design, features

and functionalities of InnoDB storage seems to be desirable for users and

developers.

19

Chapter Three

3.1: Implementing a Custom MySQL Engine

With the inclusion of the source code for the EXAMPLE storage engine, it is

much easier to start developing a custom engine. The EXAMPLE engine

has three files. These are the header file, the method implement file and a

cmake text files. These can be found in the storage/engine directory of

the MySQL 5.5 source tree.

The first step is to obtain a name for the engine. The name of the custom

engine to be developed in the case is “macTXT”. From the terminal, sed

utility was used to copy and rename the three EXAMPLE storage engine

files and also replace all instances of “EXAMPLE” and “example” in those

files with the name of the new custom engine which in this case

“macTXT”. This process created the initial source files of macTXT. The

procedure is shown below.

Figure 3.1: Creating Custom Engine Files

This produced a new custom engine which I compiled and plugged into the

running server without any issues. The figure below shows macTXT

successful added to the list of supported engines.

20

Figure 3.2: Plugging in Custom Storage Engine

At this point, macTXT has the same functionalities as the EXAMPLE

storage engine. It can create tables but cannot store it. Before macTXT

can do anything meaningful, Oracle recommends that the following

methods defined in the EXAMPLE engine source code which are also now

in macTXT engine source code are implemented:

 store_lock()

 enternal_lock()

 rnd_init()

 info(uinf flag)

 extra()

 rnd_next()

 an open method

 a close method

21

After the implementation of these methods above, support for the

following methods must also be implemented:

 INSERT

 UPDATE

 DELETE

 Non-Sequential Reads

 Indexing

 Transactions

The ability of the engines depends on the number of operations it

supports. For instance, as discussed in chapter two, the ARCHIVE storage

engine does not support UPDATE and DELETE operations or any form of

indexing because those methods have not been implemented.

To understand how these methods are implemented, the source code for

the CSV was examined. The reason is because this engine is less

complicated than InnoDB, MyISAM or MEMORY engines.

The following method calls during a five-row table scan of the CSV

engines will be used to explain some functions of the methods listed

above. It assumes that the table is opened.

• @code
• ha_EXAMPLE::store_lock

• ha_EXAMPLE::external_lock
• ha_EXAMPLE::info

• ha_EXAMPLE::rnd_init
• ha_EXAMPLE::extra
• ENUM HA_EXTRA_CACHE Cache record in HA_rrnd()

• ha_EXAMPLE::rnd_next
• ha_EXAMPLE::rnd_next

22

• ha_EXAMPLE::rnd_next
• ha_EXAMPLE::rnd_next

• ha_EXAMPLE::rnd_next
• ha_EXAMPLE::extra

• ENUM HA_EXTRA_NO_CACHE End caching of records (def)
• ha_EXAMPLE::external_lock
• ha_EXAMPLE::extra

• ENUM HA_EXTRA_RESET Reset database to after open
• @endcode

Store_lock() is called before any reading from the table or writing into the

table is done. Its mean function is to modify the table lock level. Examples

are to change blocking write lock to non-blocking, ignore the lock (if we

do not want to use MySQL table locks at all) or add locks for many tables.

external_lock() is called at the start of a statement or when a LOCK

TABLES statement is issued.

The rnd_init() method is used to prepare a table for scanning. Its mean

function is to reset counters and pointers to the start of the table.

The info(uinf flag) defines the type of operations supported by the storage

engine. These include support for AUTO_INCREMENT, INDEXING and the

ability of the engine to be transactional.

The functions of the extra() method is to provide extra hints to the

storage engine on how to perform certain operations. For example, if a

user mistakenly runs a delete operation without using the WHERE

keyword, the engines must assume the user made a mistake although is a

legal operation. Such operations should be treated accordingly. The

23

extra() method therefore adds some level of intelligence to the functioning

of the engine.

The first four methods in the table scan example above are called to

initialize the table. The rnd_next() is called after the table initialization

once for every row to be scanned until the server’s search condition is

satisfied or the end of the file has been reached.

The methods discussed above all will be called even if only one row is to

be read. This shows how the methods depend on each other for every

successful operation. There is no method in the source code runs alone. If

the developer wants the engines to support UPDATE operations, then all

methods related to this operation must be implemented.

24

Chapter Four

4.1: Tests and Results

This chapter shows the results obtained from performing INSERT, UPDATE

and DELETE operations on InnoDB, MyISAM, ARCHIVE, MEMORY, CSV and

BLACKHOLE storage engines.

Different python scripts each with a function that inserts ten thousand

(10,000) rows into a table were used to test the performance of the

various engines for INSERT operations. The function in each python script

is called four times to make forty thousand insertions when a script is

executed once from the terminal. To obtain the average insertion time,

the time taken by each ten thousand insertion are added and the result is

divided by four. Appendix A has the screen shots of this activity.

The time taken by UPDATE and DELETE operations are obtained by

executing queries from the terminal. The same query is executed four

times and the average time is obtained from the different execution times.

The tables and figures below show the results obtained. Appendix A has

the screen shots of these activities.

4.2: Time Taken to Make 10000 Insertions by the Storage Engines

Table 4.2: Average Time taken to make 10000 Insertions by some storage engines.

Average Insertion Times
(sec)

InnoDB 3.222495019

MyISAM 3.502286792

CSV 2.95816505

ARCHIVE 2.461804032

MEMORY 2.436110735

BLACKHOLE 2.197271168

25

Figure 4.2: Graph of Average Insertion Times of Some Storage Engines

From the table and graph above, it can be observed that BLACKHOLE

storage engine has the smallest insertion times and MyISAM has the

highest insertion time. The outcomes of these tests show the effects that

the functionalities of the engines discussed in chapter two have on their

performance. Among the engines, it is only BLACKHOLE storage engine

that accepts the data and does not save it. It is expected to run faster

than the other engines.

MEMORY storage engine accepts and saves the data to the MEMORY of the

computer but not to the physical disc. It is therefore expected to be fast

as BLACKHOLE. Table 2.1.8 shows that unlike InnoDB and MyISAM,

ARCHIVE engine does little to its data before it stores it. InnoDB and

MyISAM have to prepare their data for indexing and other operation that

0

0.5

1

1.5

2

2.5

3

3.5

4

InnoDB MyISAM CSV Archive Memory Blackhole

Time Taken to make 10000
Insertions

26

ARCHIVE does not support. And because InnoDB is transactional it is able

to insert faster than MyISAM.

4.3: Time Taken to Make 8000 updates by the Storage Engines
Table 4.3: Average update times of some storage engines

average update times

innodb 0.35

myisam 0.4075

MEMORY 0.0275

CSV 0.45

Figure 4.3: Graph of update times of some storage engine

The Graph above shows that MEMORY storage engine again make faster

updates that the other engines. This is due to the same reasons for which

it makes faster insertions. InnoDB makes faster updates than MyISAM

because whereas InnoDB supports row-level locking, MyISAM supports

table-level locking. CSV must do a complete table scan before it

completes all of its updates. Besides, CSV does not support indexes. This

explains why it is the slowest among the engines above. ARCHIVE storage

engine did not show up because it does not support update operations.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

innodb myisam memory csv

average times of 8000 update
operations

Series1

27

4.4: Time Taken to Make 8000 Deletions by the Storage Engines

Table 4.4: Average Time taken to make 8000 deletions by some storage engines

average deletion times
(sec)

innodb 0.155

myisam 0.2825

MEMORY 0.03

CSV 0.165

Figure 4.4.1: Graph of average time taken to make 8000 deletion by some storage engines

From the graph above, MEMORY has the fastest deletion times followed by

InnoDB, CSV and MyISAM. MEMORY is the fastest for the same reason

from which it make faster insertions as explained above. InnoDB’s row-

level locking, indexing and transactional properties, explains why it makes

faster update and delete operations than MyISAM and CSV engines. CSV

runs faster than MyISAM in this operation because its data items are not

encrypted. It takes less time to compare the values in a query statement

to the data items stored by the tables.

0

0.05

0.1

0.15

0.2

0.25

0.3

innodb myisam memory csv

average times of 8000 delete
operations

Series1

28

The graph below compares the execution times of the various operations.

It shows that insert operations take much time to be completed than all

other operations. This is followed by update operations and then deletions

operations. The high inserting time for all engines is because much work

is done to the data before storage. For instance, some engines must index

the stored data in order to make retrieval operations easy to handle.

Figure 4.4.2: assessment of insert, update and delete operations execution times.

Chapter Five

5.1: Conclusions and Recommendations
This is an exciting applied project. It however requires knowledge, skills

and interest in database management. Knowing how to write MySQL

queries will be helpful but it is important to understand how database

management system works. Because MySQL is written in C and C++, it is

also important that one should have the ability to write codes in this

programming language. Skills in python or PHP will also be needed.

0

0.5

1

1.5

2

2.5

3

3.5

4

InnoDB MyISAM CSV Archive Memory Blackhole

Insertion

update

delete

29

Also, anyone interested in continuing this project or doing a similar project

should be able to work in a Linux environment without much difficulties.

That individual must know the file structure of the Linux operating system

being used and since the terminal will be a good place to work from,

knowing the basic and the most useful terminal commands will help.

Finally, it will be good if two people do a project like this, especially when

it comes to writing a custom engine. The amount of detail involved in

writing a custom engine cannot be handed by one person.

Bibliography
Bartholomew, D., 2012. Monty Program: Whitepaper - MariaDB vs MySQL. [Online]

Available at: http://montyprogram.com/whitepapers/mariadb-vs-mysql/download/

[Accessed 30 March 2013].

Bell, C., 2010. Oreilly Answers: What Is MySQL Cluster?. [Online]

Available at: http://answers.oreilly.com/topic/1862-what-is-mysql-cluster/

[Accessed 26 March 2013].

CrunchBase, 2009. People: CrunchBase. [Online]

Available at: http://www.crunchbase.com/person/michael-widenius

[Accessed 8 April 2013].

30

Drizzle Developers, 2008. Overview: A Lightweight SQL Database for Cloud Infrastructure and

Web Applications. [Online]

Available at: https://launchpad.net/drizzle

[Accessed 28 March 2013].

Drizzle Developers, 2010. Drizzle 2010.10 Documentation: Notable MySQL Differences.

[Online]

Available at: http://docs.drizzle.org/mysql_differences.html

[Accessed 28 March 2013].

Drizzle Developers, 2010. Drizzle 2010.10 Documentation: What is Drizzle?. [Online]

Available at: http://docs.drizzle.org/what_is_drizzle.html

[Accessed 28 March 2013].

MariaDB Developers, 2010. AskMonty Knowledgebase: About OQGRAPH. [Online]

Available at: https://kb.askmonty.org/en/about-oqgraph/

[Accessed 30 March 2013].

Oracle, 2013. MySQL 5.1 Reference Manual :: Storage Engines :: The IBMDB2I Storage

Engine. [Online]

Available at: http://dev.mysql.com/doc/refman/5.1/en/se-db2.html

[Accessed 30 March 2013].

Oracle, 2013. MySQL 5.5 Reference Manual:: Storage Engines:: The Archive Storage Engine.

[Online]

Available at: http://dev.mysql.com/doc/refman/5.5/en/archive-storage-engine.html

[Accessed 21 March 2013].

Oracle, 2013. MySQL 5.5 Reference Manual:: Storage Engines:: The Blackhole Storage

Engine. [Online]

Available at: http://dev.mysql.com/doc/refman/5.5/en/blackhole-storage-engine.html

[Accessed 22 March 2013].

Oracle, 2013. MySQL 5.5 Reference Manual:: Storage Engines:: The CSV Storage Engine.

[Online]

Available at: http://dev.mysql.com/doc/refman/5.5/en/csv-storage-engine.html

[Accessed 21 March 2013].

Oracle, 2013. MySQL 5.5 Reference Manual:: Storage Engines:: The InnoDB Storage Engine.

[Online]

Available at: http://dev.mysql.com/doc/refman/5.5/en/innodb-storage-engine.html

[Accessed 20 March 2013].

Oracle, 2013. MySQL 5.5 Reference Manual:: Storage Engines:: The MEMORY Storage

Engine. [Online]

Available at: http://dev.mysql.com/doc/refman/5.5/en/memory-storage-engine.html

[Accessed 20 March 2013].

31

Oracle, 2013. MySQL 5.5 Reference Manual:: Storage Engines:: The MyISAM Storage Engine.

[Online]

Available at: http://dev.mysql.com/doc/refman/5.5/en/myisam-storage-engine.html

[Accessed 20 March 2013].

Oracle, January 2011. MySQL 5.5: Storage Engine Performance Benchmark for MyISAM and

InnoDB: A MySQL Technical White Paper, s.l.: Oracle.

Otto, A., 2010. Rackspace Blog: Rackspace and Drizzle: It's Time To Rethink Everything.

[Online]

Available at: http://www.rackspace.com/blog/rackspace-and-drizzle-its-time-to-rethink-

everything/

[Accessed 28 March 2013].

OurDelta, 2008. Patches/Sources. [Online]

Available at: http://ourdelta.org/patches

[Accessed 1 April 2013].

Percona Company, 2011. History: The Percona XtraDB Storage Engine. [Online]

Available at: http://www.percona.com/docs/wiki/percona-xtradb:start

[Accessed 31 March 2013].

Percona Company, n.d. Percona Server Feature Comparison. [Online]

Available at: http://www.percona.com/software/percona-server/feature-comparison

[Accessed 31 March 2013].

Refulz, 2011. Refulz Web Developer's Blog: Storage Engines in MySQL. [Online]

Available at: http://php.refulz.com/storage-engines-in-mysql/

[Accessed 21 March 2013].

Schneller, D., 2006. Daniel Schneller's Blog: MySQL Replication Using Blackhole Engine.

[Online]

Available at:

http://www.jroller.com/dschneller/entry/mysql_replication_using_blackhole_engine

[Accessed 22 March 2013].

Schumacher, R., 2008. National ChungHsing University: A Look at the MySQL CSV Storage

Engine. [Online]

Available at: http://ftp.nchu.edu.tw/MySQL/tech-resources/articles/csv-storage-engine.html

[Accessed 21 March 2013].

Yang, Y., 2009. Kavoir: MySQL Engines: InnoDB vs. MyISAM – A Comparison of Pros and Cons.

[Online]

Available at: http://www.kavoir.com/2009/09/mysql-engines-innodb-vs-myisam-a-

32

comparison-of-pros-and-cons.html

[Accessed 26 March 2013].

33

Appendix A

A.1: Screen Shots of Tests Performed on InnoDB Storage Engine

A.1.1: Update Operations

A.1.2: Delete Operations

34

A.2: Screen Shots of Tests Performed on MyISAM Storage Engine

A.2.1: Update Operations

A.2.2: Delete Operations

35

A.3: Screen Shots of Tests Performed on ARCHIVE Storage Engine

A.3.1: Plugging in ARCHIVE Engine to the Running Server

A.3.2: Prove of ARCHIVE Storage Engine Enabled.

A.3.3: Update and Delete Operations

36

A.4: Screen Shots of Tests Performed on MEMORY Storage Engine

A.4.1: Update Operations

A.4.1: Delete Operations

37

A.5: Screen Shots of Tests Performed on CSV Storage Engine

A.5.1: Update Operations

A.5.2: Delete Operations

38

A.6: Screen Shots of Tests Performed on BLACKHOLE Storage Engine

A.6.1: Plugging in ARCHIVE engine to the Running Server

A.6.2: Select, Update and Delete Operations

39

Appendix B
This appendix shows the tools, commands, and resources needed to

obtain the MySQL source code. It also includes the process of building and

installing the MySQL server.

B.1: How to Get MySQL Source Files
There a number of ways of getting the source code of MySQL. It can

actually be obtained from someone if that is all right. However, if you

would like to get the latest version of the source code, it will have to be

obtained with a software management system. For this project bazaar was

used. With a few commands, bazaar allows you to get the latest version of

MYSQL source from launchpad. Launchpad has various teams working on

a variety of open source software projects.

MySQL was developed and is being maintained on a Linux system. For

some reasons that will be stated shortly, it is safer and appropriate to also

modify and build the source code on a Linux system. The chosen Linux

system must have the necessary configuration and should support the

libraries needed for the build process. CentOS was used for this project,.

To get the source, open the terminal and execute the following

commands:

shell> bzr init-repo <name_of_folder>/mysql-server

shell> cd <name_of_folder>/mysql-server

shell> bzr branch lp:mysql-server/5.5 mysql-5.5

40

B.2: Installing the Libraries Needed to Build MySQL Source Files
After getting the source code, the first thing to do is to compile and link

the files. However, a number of libraries are needed to enable a successful

build process. Without any of these libraries, the build process will pose to

be very difficult than it should be.

The first tool needed is a good make program. “Although some platforms

come with their own make implementations, it is highly recommended

that you use GNU make 3.75 or newer.” To install the most up-to-date

version of a tool, connect to the internet and install from the terminal.

Cmake was used in this project and the command to install it is yum

install cmake. In addition to a good make program the most recent

versions of autoconf, automake, libtool, m4 and bison must be installed. A

c++ compiler must also be installed.

B.3: The Build Process

The first step is to configure the build process. To do so, get into the top-

level source directory and run the cmake command.

cmake .

Configuration parameters can be added to this command. For EXAMPLE,

cmake . -DWITH_ARCHIVE_STORAGE_ENGINE=1

This adds ARCHIVE to the list of statically compiled storage engines. The

image below shows the terminal output after executing cmake.

41

To the build and link the files, run the make command whiles in the top-

level source directory. That is:

make

or

make VERBOSE=1

This shows how compiler is invoked.

The terminal below shows an ongoing build process.

The next step is to install the files. The make install command does this.

make install DESTDIR="/some/absolute/path"

42

If no destination is specified, the default path in the CmakeCache.txt file

will be used. The path is usually /usr/local/mysql. The image below show

the end of a make install process and the begin of another.

B.4: How to Start the Server
The first step is to initialize the grant tables. They are set up by the

mysql_install_db program. To be able to create these tables, the user

must be root linux user. Navigate to the scripts folder in the mysql

installation folder (i.e. /usr/local/mysql) and execute the mysql_install_db

program.

43

mysql_install_db --user=mysql

An option can be added to create a new database data directory in the

install folder (i.e. /usr/local/mysql) as shown below.

mysql_install_db --user=mysql --datadir=/usr/local/mysql/new_datadir

To start the server, switch to mysql linux user. Create mysql linux user

account if there is none. The figure shows the process of adding a new

adding account from the terminal.

44

Navigate to the bin folder in the installation folder and execute mysqld

program. That is:

/usr/local/mysql/bin/mysqld

The data directory to be used and the port number can be specified when

starting the server. That is:

/usr/local/mysql/bin/mysqld --datadir=/usr/local/mysql/new_datadir --

port=3306

The image below shows the process of starting the server and the output

from the terminal.

45

B.5: How to Start the MySQL Client
From the current terminal click on File and then click on Open Terminal To

launch another terminal. The present working directory is the directory

from which the server was started from. That is /usr/local/mysql/bin.

Execute mysql program to start the client. The image below shows this

process and the output from the terminal.

