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Abstract 

Diabetes mellitus, also known as diabetes has on major effect on its patients. This is the 

effect of impaired wound healing. Patients thus get minor wounds such as small cuts which 

become non-healing and are liable to get infected. Severe cases of such occasions lead to 

amputations. A solution to this problem is tissue regeneration with the help of scaffolds. These 

scaffolds are made of biopolymers and promote cell adhesion, regeneration and minimal 

diffusional constraints.  

Computer Aided Design (CAD) software (SolidWorks), was used to design models of 

scaffolds. Three dimensional (3D) scaffolds were then 3D printed. Scaffolds were also casted 

using PLA and a mixture of PLA and PEG. The models along with its samples undergo tensile, 

stiffness and mass degradation tests to gain insight on whether this model is applicable.  

Computer simulations were used to evaluate the tensile properties under real world 

conditions. Furthermore, a universal testing machine was then used to validate the properties 

obtained from the computer simulations. There was no significant difference in the methods. 

Optical properties were characterised with USB poroscope imaging microscope to show that 

3D printing produces much more uniform distribution of pores. Mass loss experiments were 

also conducted to determine mechanical stability at different pH. It was noticed that the samples 

degrade faster when in an acidic environment. 
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Chapter One 

1.0 Introduction 

1.1 Introduction and Background Studies 

Scaffolds play major roles in tissue engineering, especially in the field of tissue 

regeneration. Organ or tissue loss or failure due to injuries or other means is a major problem 

in the surgical fields of medicine [1,18]. Transplantation of viable organs or tissue has been 

the standard method of treating patients [1,18]. Unfortunately, this method has some 

shortcomings as donors with viable tissue are limited. Moreover, tissue grafting, and 

alloplastic or synthetic material replacement are also commonly known methods of tissue 

repair [1]. However, these approaches also have limitations. For example, tissue grafting 

requires second surgical sites with related injury and is constrained by limited amounts of 

material to be used as synthetic materials. Most often, grafted tissue/organ integrate poorly 

with host tissue and fail over time due to wear and fatigue and can show signs of rejection 

with the patient’s body [1].  

Tissue engineering is an alternative and promising method of treating tissue related 

ailments. This method was developed in the early1990s to address shortcomings of tissue 

grafting and alloplastic tissue repair [1]. This method involves the transplant and culturing 

of bio factors (cells, genes and/or proteins) within a degradable porous structure known as 

a scaffold [1,18]. The culturing of these cells forms the new organ or tissue, and this is 

usually done with the patient’s cells.  

The design and fabrication of these scaffolds can be achieved using various methods. 

Some methods include solvent casting [2], electro spinning [2], phase separation technique 

[2] and solid free form fabrication [2]. Computer aided design (CAD) techniques has been 

used to print scaffolds, layer by layer [3]. This is done by depositing the base material of the 
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scaffolds to form a three-dimensional (3D) structure. Scaffolds need to have specific 

mechanical properties to perform in a way that they are intended to. Properties of the 

scaffold such as porosity and degradation mechanism also affect the performance of the 

scaffolds. 

Functional scaffolds are usually made of biopolymers (with large molecular weight) 

with well- defined pore-microstructures, specific surface area and chemical composition to 

promote cell adhesion, regeneration and minimal diffusional constraints [9]. Moreover, the 

scaffold must also have good mechanical and structural properties, be biocompatible and 

biodegradable and be able to undergo sterilization without loss of properties. [2].  

Scaffold fabrication using 3D printing is a relatively new method of fabrication. 

Scaffolds design and fabrication with 3D printers would be explored for the effect of 

manufacturing processes on the mechanical properties of a scaffold coupled with adequate 

based material properties of scaffolds for the development of soft tissue such as skin. 

1.2 Problem Definition 

Diabetes mellitus, usually referred to as diabetes, is a group of metabolic disorders 

in which there are high blood sugar levels over a prolonged period [4]. One of the major 

effects of this disorder is impaired wound healing. Patients with diabetes may have relatively 

minor wounds such as small cuts after trimming a toenail, but minor wounds of diabetic 

patients often lead to chronic and nonhealing wounds that are liable to get infected. It is 

highly common for the infected wound to ultimately lead to the need for amputation. Thus, 

diabetic patients recorded the highest amputation rate of any type of chronic wound [5]. An 

estimate suggested that admissions for foot infections created 20% of hospitalizations for 

patients with diabetes and that led to 50% of all nontraumatic lower limb amputations [5]. 

Also, 25% of patients with diabetes mellitus are expected to have severe foot problems [5].  
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Causes for altered tissue repair of diabetes mellitus patients consist of cellular, 

metabolic, and biochemical factors [5]. The proposed solution is to use tissue engineering 

approach to repair tissue around regions of minor wound of diabetes patients before the 

development of severe complications that could lead to the amputation of patients. This 

involves cell seeding of scaffolds with appropriate mechanical properties to enable the 

regrowth and replacement of destroyed tissue [6]. 

1.3 Motivation and Justification  

Usually, polymer processing technologies are intended for large scale and high 

quantity production. On the other hand, computer-assisted design and manufacturing can be 

used to tailor individual parts for special applications. This technology allows for the 

construction of individual, patient-specific substances such as scaffolds with ideal internal 

structures [3]. Biomedical scaffolds made from biocompatible and biodegradable polymers 

can promote cell growth and can also serve as transporters for innovative drug release 

systems [3]. 

This technology, as proposed can be used to repair tissue around the wounds of 

diabetic patients to prevent the eventual risk for amputation due to infection. This solution 

could possibly reduce the amount of diabetic patient amputations. The viability of this 

method could also provide an easily way of producing scaffolds. 

 

1.4 Objectives and Expected Outcome  

Biodegradable polymers such as, poly(lactic-acid) (PLA), polyglycolide acid (PGA) 

and or copolymer of polylactic-co-glycolic acid) (PLGA), when incorporated into the 3D 
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printing process would produce ideal biocompatible and biodegradable scaffolds with 

controlled porosities and geometries for optimal tissue regeneration. 

The following specific objectives would be carried out during this project: 

• The use of materials selection techniques for product design would be used to aid the 

selection of competing materials for the fabrication of the scaffolds. Cambridge 

Engineering Selector (CES) would be involved at this stage to trait down competing and 

desired bioengineering materials. 

• Design of biodegradable scaffolds will be done using computer aided designs tools 

(CAD), specifically SolidWorks. The designs will consider different architectural 

designs with different porosities. 

• The CAD information would aid in modelling effective scaffolds and then practically 

use 3D printing techniques to fabricate the scaffolds. 

• Mechanical simulations of the fabricated scaffolds would be investigated with 

SolidWorks. 

• Mechanical characterisation of the samples will be ascertained with universal 

mechanical testing machines. 

• Optical characterization would also be done at regular interval especially during 

degradation process. 

• Biochemical degradation via mass loss over time would be carried out in a phosphate 

buffer saline solution (PBS) at different pH. 

• There is also the potential for scaffolds to serve as carriers for innovative drug release 

systems. This potential comes from the possibility of modelling complex designs using 

CAD techniques. This idea would be explored later in this project. 

• Results would be validated by comparing to existing literature. 
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• The implications of the results would then be discussed for the manufacturing of 3D 

biodegradable scaffolds with optimized mechanical properties, environmental stability, 

and biocompatibility with desired porosities for tissue regeneration. 

1.5 Activities and Timelines  

Below is a chart showing the timeline of the project from the research stage to 

completion of the project. All activities shown were conducted over a period of 7 months, 

from September of 2018 to April of 2019. 

Table 1. 1: Timeline of Project Activities 

 

 

 

 

 

 

Task Sept 

(2018) 

Oct 

(2018) 

Nov 

(2018) 

Jan 

(2019) 

Feb 

(2019) 

March 

(2019) 

April 

(2019) 

Problem Statement and 

Design Criteria. 

       

Material Selection        

SolidWorks Design        

Fabrication        

Mechanical 

Characterization 

       

Report Submission and 

draft of paper for 

publication.  
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Chapter Two 

2.0 Literature Review 

2.1 Statistics on Diabetic Mellitus 

As of 2014, about 382 million people were diagnosed with diabetes, with over 19 million 

of them being Africans [7]. These numbers are projected to increase to 522 million people 

globally, with 41.5 million people been the case in Africa by the year 2030 [7]. Diabetic 

mellitus patients have altered tissue repair, meaning that minor wounds such as small cuts 

can become severe and non-healing [5]. This leaves patients prone to infections due to the 

presence of open wounds. Once a diabetic patient develops a sore or an ulcer, there occurs 

a breach in the continuity of the skin and the underlying tissue [8]. Suitable care should 

therefore be administered to prevent infection and ultimately, amputation. 

Research paper by David Greenhalgh [5], addressed diabetic cases as highlighted below: 

Studies conducted on 194 patients with diabetic foot ulcers were being followed for 1 year 

resulted in 65% healing, 15% requiring amputations, 16% failing to heal, and 4% dying. 

Moreover, with 64 patients diagnosed with 78 ulcers (some with multiple wounds) being 

followed for 6 months resulted in 47% receiving healing, 22% requiring amputations, 22% 

failing to heal and 13% of the patients died. Also, in a third sample, patients from 10 

independent wound healing trials were selected and it was found that in the sixth trials that 

followed patients for 20 weeks, 31% were healed. For the fourth trials, patients were 

followed for 12 weeks and 24% of the control patients were healed [5]. From these numbers 

above, 20% of the sample size of patients either die from their sore or don’t get healed. 

These numbers are meant to reflect the part of developed world. It is a good guess to estimate 

that the percentages of people that don’t get healed of their sores and or die are much greater 

in Africa. Ways to reduce these numbers depends on educating the public on the prevention 
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of diabetes mellitus and engineering skin tissue to grow over and heal open wounds of 

diabetic patients. 

2.2 Possible Diabetics Interventions  

According to the Ghana standard treatment guidelines on large chronic ulcers, either 

pharmacological or non-pharmacological approaches are required to treat sores. For the 

non-pharmacological approach, the sore must be kept clean with saline solution over a 

period depending on the intensity of the wound [8]. For the pharmacological approach, 

antiseptics such as chlorhexidine or cetrimide along with specific antimicrobial treatments 

are used to aid in the treatment of ulcer [8]. As mentioned in section 2.1, there is a possibility 

for diabetic patients to maintain their ulcers throughout their treatment and this makes these 

patients prone to viruses and infections due to open sores. 

Tissue engineering for skin regeneration is an option to treat open wounds on diabetic 

patients. Tissue engineering has the possibility to restore diseased or damaged tissues with 

no need for organ donors. The extreme disproportion between suitable donor organs and 

transplant patients have averagely left more than 100,000 people waiting for organ 

transplants [6]. This has also created an estimated of 19 people dying every day, while 

waiting for an organ transplant [6]. Tissue engineering has the potential to overcome the 

current challenges.  

During tissue engineering for skin regeneration, grafts are made with the necessary 

harvested skin cells and seeded into scaffolds, allowing the tissue to generate over time 

within the scaffold (as the scaffold disintegrates simultaneously) [2,6,18]. This makes 

scaffolds a very important part of skin regeneration. The scaffolds used in tissue engineering 

are designed to have similar if not the same structural, chemical and mechanical properties 

of the bodies’ natural extracellular matrix [6]. For this to be achieved, protein fibers are 
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woven in a network of chains to support tissue mechanically and transfer external 

mechanical stimuli to the cells. Hence, the cells use that information to produce molecular 

signals [6]. Scaffolds must therefore maintain suitable chemistry for cell-scaffold 

interaction, mechanical integrity, biocompatibility, and maintained ideal degradation at a 

rate equivalent to the skin tissue without loss in function [2,6,18]. 

 

2.3 Conventional Methods for Scaffold Fabrication 

2.3.1 Solvent Casting 

This method is usually combined with particulate leaching. Thus, it involves casting with 

water soluble particulates into molds. The particulates are leached away using water or any 

other suitable solvent as pore forming agents in the scaffold [2,9]. 

 

Figure 2.1: General method of solvent casting [9]. 

 

2.3.2 Electro spinning method  

This method involves the formation of functional fibers with various additives through the 

co-spinning of PGA and PLA fibers in combination [2,10]. This is commonly used to control 

the rate of scaffold degradation [2]. These polymers are also combined with other polymers 

to increase the biocompatibility of the scaffold [2]. 
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Figure 2.2: Electrospinning Schematic [10]. 

 

2.3.3 Phase Separation Technique 

This method is dependent on the principle homogeneous multicomponent system whereas 

a polymer-water emulsion develops thermodynamic instability and separates to lower the 

free energy [2]. This phase separation technique which is thermally induced forms a 

polymer-rich and a polymer-lean phase [2]. The formation of the scaffold is by the 

lyophilization or solvent evaporation of the polymer-rich phase [2]. Parameters such as type 

of polymers and their viscosity, type of solvent and its volatility, quenching temperature, 

gelling time, etc. determine the structure of the scaffold [2]. 

 

Figure 2.3: Process of Phase Separation Technique [11]. 

2.3.4 Solid Free-form Fabrication 

This method is known as rapid prototyping. It is relatively newer than the methods above 

[2,9]. In this technique, computer aided design (CAD), computer tomography (CT) and 
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magnetic resonance imaging (MRI) technology is used to form the 3D model digital 

information [2,9]. This information is converted to a machine specific cross-sectional 

format, expressing the model as a series of layers [2]. The file is then implemented on a 

solid freeform fabricate (SFF) on machine, which forms 3D objects by layered 

manufacturing strategy [2,9]. 

 

Figure 2.4: Solid Free-Form Fabrication (SFF) schematic [9]. 

 

As the objectives of this project implied, a method like solid freeform fabrication would be 

explored. Using a 3-dimensional (3D) printer to print out the designed scaffold which would 

be created using CAD techniques, in SolidWorks software. 3-D scaffolds will also be 

fabricated via solvent casting.  

 

2.4 Unresolved Issues 

This section discusses factors that contribute to the difficulty in diabetic wounds healing. 

These factors can be categorized into the following: 

a. Diabetic Patient’s Behavior 

The patient’s adherence to treatment is a major factor that affects the recovery of a patient. 

It has been widely acknowledged by health practitioners that patients with diabetic ulcers 
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are commonly poor adherers to treatment [9]. This is possibly due to the rigorous, yet 

recommended treatment regimen. 

Another behavioral issue is the patient’s mental health. Examples of such mental health 

issues that can affect treatment are depression and stress [9]. Depression and a reduced 

quality of life have been noted to be a come along with diabetic ulcers [9].  

b. Diabetic Patient’s Physicality 

Issues with defective healing in patients, infections, ischemia and deformities affect the 

healing of diabetic ulcers [9]. Defective healing, possibly from impaired immune response 

and/or ischemia can interfere with the physiological processes that take place when a wound 

is healing, thus making ulcers hard to heal [9]. The defects from diabetes also slow the 

healing process, increasing the chance for an infection to occur. Swift identification and 

classifying of infections from minor, involving ‘superficial structures’, moderate to severe 

limb and or life threatening using authorized measures is therefore very important and hard 

to achieve [9]. 

c. The Health System in the region 

Depending on the region the patient is located, the presence of effective resources, 

organizational structure, goals and objectives and politics within health systems to aid in the 

healing of diabetic wounds vary [9]. Health practitioners within the region assigned to 

undergo treatment may also have varying skills, resources and professional culture [9]. 

From the unresolved issues listed above, a simple and effective method is required to reduce 

the difficulties faced by health practitioners. The proposed method is to replace the damaged 

tissue instead of repairing the tissue by treating the wound, which is the common focus. To 

do this, scaffolds are needed to guide the growth of the tissue from healthy cells. From the 

conventional methods of scaffold formation listed above, methods such as solvent casting 
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and phase separation have one major shortcoming. This is that the health practitioner or 

fabricator cannot tailor the scaffold to each patient’s specific need to optimize the 

fabrication. On the other hand, other methods that require CAD can be used to tailor the 

scaffolds. 3D printing techniques is the method of focus for this project. 

3D printing techniques are relatively new technology which can be used to fabricate 

scaffolds for tissue engineering. On the other hand, the mechanical properties of 3D printed 

materials have not been extensively studied to ascertain the properties of the natural 

materials. In effect, this work will investigate the effect of processing techniques on the 

mechanical properties of the scaffolds. 

2.5 Scope of Work 

The first chapter of this project presents background studies, problem statement, motivation 

and specific objects for the execution of the project. The second chapter acknowledged the 

effort of the scientific community for providing the platform to build on. The chapter also 

presented statistics on the disease, possible diabetics’ interventions, conventional methods 

for scaffold fabricates, and unresolved issues. 

The third chapter presents the list of materials and experimental procedures where materials 

selection techniques would be used for product design to select competing materials for the 

fabrication of the scaffolds. Cambridge Engineering Selector (CES) would then be involved 

at this stage to trait down competing and desired bioengineering materials. Biocompatibility 

and mechanical properties of various materials would also be compared to the properties of 

the human skin. This is to enable us to select the most suitable materials for the fabrication 

of the scaffolds to hold the place of missing skin as skin tissue is expected to develop within 

and eventually the scaffold. The design of the biodegradable scaffolds will be done using 

computer aided design tools (CAD), mainly SolidWorks. Various designs are to be 
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developed and these would consider different structural designs with different porosities. 

Using the CAD information 3D printing techniques would be used to fabricate the scaffolds. 

Mechanical simulations of the fabricated scaffolds would be investigated with SolidWorks. 

Mechanical characterization using materials testing machines will be carried out to validate 

the simulated results on their mechanical properties. Biodegradation via biochemical 

process at different pH would be studied. Thus, these tests include biochemical degradation 

via mass loss over time in a phosphate buffer saline solution (PBS) at different pH. Optical 

characterisation would be carried out to determine the pore-density of the fabricated 

scaffolds.  

The fourth chapter presents the results and discussion section while discussing the 

implications of the results for the fabrication of bioengineered scaffold with optimum 

mechanical, chemical, and optical properties to stand the test to be used for wound healing. 

Concluding remarks and recommendations are therefore discussed for future works in the 

fifth chapter. 
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Chapter Three 

3.0 Methodology and Design 

3.1 Design Requirements 

Table 3.1 below shows the accepted requirements for the design of the scaffolds.  

Table 3. 1: Table of Design Requirements [14] 

Requirements Description 

Geometry The scaffold must fill the space of the defect to guide the tissue 

regeneration process to completely replace the damaged tissue.  
Bioactivity and 

Biocompatibility 

To avoid complications when in close contact to human tissue and 

to support cellular activity without affecting the host tissue.  
Biodegradability As it is meant to be a provisional structure, the scaffold must 

degrade over time leaving the tissue formed in its place.  
Porous structure This is to allow for cell penetration and nutrient transport during 

tissue regeneration.  
Mechanical 

capability 

The mechanical performance of the scaffold must be sufficient to 

withstand implantation handling and support the loads and stresses 

applicable.  

Fabrication The scaffold should be tailored to the diseased / injured area. 

Commercialization The scaffold should be produced with an automated and 

reproducible technique. 
 

3.2 Materials Selection 

The main criteria for the selection of materials for the fabrication of the scaffolds 

were as follows: 

• Biocompatibility 

• Yield strength or elastic limit and 

• Young’s Modulus 

For these properties, the human skin was used as the baseline since the application 

of the scaffolds are targeting skin repair. With the use of CES EduPack 2013 material 

selector software (Granta Design, Cambridge, United Kingdom), possible materials for the 
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project were selected. With CES software, plots were obtained for Young’s modulus versus 

yield strength for possible selection of biocompatible polymers for human skin. With the 

selected materials, graphs for comparing each material’s yield strength and Young’s 

modulus were also developed. Polylactide (PLA) and polylactic-glycolic acid (PLGA) were 

the best computing candidate to be considered for the study. From that, Pugh matrix was 

formed. 

Similarly, from Figure 4.3, PLA and PLGA have higher yield strengths than the 

human skin. This means that they can withstand more force before tearing as compared to 

the human skin.  

Table 3.2: Pugh Matrix for PLGA and PLA alternatives. 

 

Criteria 

Baseline Alternatives 

Human Skin PLGA PLA 

Biocompatibility Yes 1 1 

Young’s Modulus  0.001-0.05 1 1 

Yield strength 0.6-1.3 1 1 

Printability - 1 1 

Availability of Filament 

(not expensive) 

 

- 1 0 

Total  5 4 

 

It shows that these materials can serve as replacement for the skin by comparison. 

On the other hand, other properties such as optimum working temperature and degradation 

rate over time could bring out the difference between PLA and PLGA. These two 

alternatives are good enough to be used for the fabrication of the scaffolds. PLA is 
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commonly used for 3D printing and it’s less expensive. It is also good for this application 

as it does not require impact strength or tolerance to heat loads [10]. 

3.3 Design of Scaffold 

 

The effectiveness of the application of scaffolds depends on many features as shown 

in Table 3.2, but this section focusses on the scaffold architecture. The architecture consists 

of both the dimensions and pore size of the scaffold. The design of the scaffold was 

conducted in SolidWorks as shown in Figure 3.1. The overall thickness comprised of 

approximately 1.5 mm, length of 5 cm and breadth of 5 cm. As also shown in Figure 3.1b 

and 3.1c, the design consists of arrays on cylinders in perpendicular directions. Each 

cylinder has a diameter of 0.5 mm and is approximately 0.2 mm away from the next cylinder. 

This arrangement creates a porous body with pore diameter of approximately 0.2 mm. The 

PLA filament was procured from . Ultimaker 2 Extended+ 3D printer ( Serial number: 9206, 

Netherlands, Ultimaker) and a PLA filament of 2.8 mm diameter were used to execute the 

printing of the scaffolds.  

Since this scaffold is intended for human skin regeneration, the dimensions of the 

scaffold would need to mimic that of the human skin. The thickness of human skin can vary 

due to the age and the location on a person’s anatomy. The skin on a person’s palms and the 

feet soles are thickest and the skin on a person’s eyelids is the thinnest [11]. The skin of 

males is also naturally thicker than that of females in all body parts. The skin tissue of a 

person could range from 0.05 mm to 1.5 mm [11]. For this project average skin thickness is 

assumed from this range to be 1.5 mm. The length and breadth of the scaffold could vary 

depending on area of application. For this project, 100 µm macrospore diameter was used. 
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Figure 3. 1: SolidWorks Design of PLA Scaffold, (a) Full View, (b) Side View, and (c) Top 

View. 

One of the design requirements of this scaffold was commercialization or automated 

and easy production. From the model shown in Figure 3.1, the volume of the spaces within 

the structure where the cells can attach, and grow were calculated by [12] : 

𝑉𝑠𝑝𝑎𝑐𝑒 = 𝑉𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 − 𝑉𝑡𝑜𝑡𝑎𝑙       (3.1) 

where Vspace is the volume of space, Vstructure is the overall volume of the structure, and Vtotal 

is the total volume of the cylinders.  

Given that human skin cells are flat and range from 25-40 microns squared [12], the number 

of human skin cells that can fit in above volume is determined from equation (3.2) [12]: 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑒𝑙𝑙𝑠 =
𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑠𝑝𝑎𝑐𝑒

[(𝑎𝑟𝑒𝑎 𝑜𝑓 𝑠𝑘𝑖𝑛 𝑐𝑒𝑙𝑙)(𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 𝑜𝑓 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒)]
   (3.2) 

=
2.19 × 10−6

[(25 × 10−6)(1.5 × 10−3)]
 

= 58.4 𝑐𝑒𝑙𝑙 
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3.4 Experimental Procedures 

Validation of the results obtained from the 3D printed scaffolds was done by 

manually fabricating 3D scaffolds via solvent casting, for comparison. For this experiment, 

two types of scaffolds were casted. One made purely from PLA and the other made of both 

PLA and PEG with a 1:1 ratio. 

During the process, 9 g of polymer samples, PLA and PEG were dissolved with 

dichloromethane and distilled water, respectively. 2 ml of each polymer solutions were 

separately casted into mini-Petri dishes. Fine particles of salts/sugar were then dropped 

gradually into the polymer solutions until saturation. The samples were then allowed to dry 

for 6 h. Samples were then removed carefully and let into large volume of water to leach 

out the salt/sugar particulates. The solution was then replaced until all residue of the 

sugar/salt were removed. This is always observed by samples floating at the top of the water. 

Samples were then characterized to ascertain the effect of processing method and the 

mechanical properties of 3D scaffold to provide solution for the treatment of recurring 

wounds.  

 

Table 3. 3: Table of Materials to be used for Solvent Casting 

Purpose Material to be used 

Polymer 1G of PLA / 5G of PEG 

Porogen Salt / Sugar 

Solvent 1L Dichloromethane 

 

 



19 
 

3.4.1 Tensile and Compressive Test 

Tensile test provides the force the sample can withstand before increasing in 

length or elongating. The compressive test provides the force the sample can withstand 

before decreasing in length. Using a tensile testing machine, as shown in the setup in 

Figure 3.2, the samples were stretched to determine their elastic and plastic properties. 

For this test, 5 samples of the 3D printed scaffolds were placed in the machine to be 

tested. The results collated for each sample were the modulus of elasticity, the peak load, 

the peak stress recorded and the sample strain at its failure or break. Comparison were 

made by similar test with the solvent casted 3D samples. 

 

Figure 3. 2: Tensile Test setup. 

3.4.2 Stiffness test 

This is also known as a flexural strength or a 3point bend test. Flexural strength with 

a 3-point bend test was virtually conducted on SolidWorks with the design samples. The 

results were validated with a universal testing machine. For this test, the flexural modulus, 

the flexural strength and the yield point were evaluated. These were compared to the 

literature.  

The flexural modulus measures the stress/strain of the samples and indicates the 

stiffness of the samples [13]. The flexural strength and yield point measure the maximum 

load the samples can withstand before failing [13].  
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Using a tensile testing machine, as shown in the setup in Figure 3.3, the samples 

were stretched to determine their elastic and plastic properties. For this test, 5 samples of 

the 3D printed scaffolds were placed in the machine to be tested. The results collated for 

each sample were the modulus of elasticity, the peak load, the peak stress recorded and the 

sample strain at its failure or break. Comparison were made by similar test with the solvent 

casted 3D samples. 

 

Figure 3. 3: 3 Point Bend Test Setup 

3.4.2 Mass Loss Degradation test 

Biochemical degradation via mass loss over time would also be carried out in a 

phosphate buffer saline solution (PBS) at different pH levels. This would be done for 

both 3D printed and solvent casted samples. To create the environments where the 

samples would be placed, buffer solutions of pH 4.0 (produced by Reagecon), 7.0 

(produced by Reagecon) and 10.0 (produced by DAEJUNG) along with HCl and NaOH 

were used to adjust and create the optimum temperatures for the test. 

Two samples each were placed in solutions of pH 4.0, 7.0 and 7.4 as shown in 

Figure 3.4. These samples were left over a period of 4 days and observations on the mass 

of the samples before and after being placed in the pH environments were made. Filter 

papers (produced by Xinxin) were used to drain the solution absorbed by the sample 

from them before being weighed using a mass balance (produced by Highland). 
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Figure 3. 4:  Mass loss Degradation Test Setup (a) 3D Printed and (b) 3D Casted 

Scaffolds 

3.4.2 Hardness Test 

For this project, a hardness test would also be undertaken to obtain more 

mechanical properties of the fabricated scaffolds. A shore d durometer (Digital Shore D 

Hardness Durometer, 16HDM002-D100HD-06, Yescom USA, California, USA) would be 

used to conduct the hardness test. Hardness testing is done to determine the resistance a 

material shows to permanent deformation by penetration of another harder material [14]. 

In the process of testing the hardness of the scaffolds, the scaffold is placed down flat on a 

surface and the tester is pressed down on the scaffold, perpendicular to the scaffold. The 

setup is shown in Figure 3.5 below. 

 

Figure 3. 5: Shore D Durometer 
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Chapter Four 

4.2 Results and Discussion 

4.1 Materials Selected with CES Software 

CES result obtained (Fig. 4.1a) from the sorted materials with the criteria of 

biocompatible polymers, yielded polylactide (PLA) and polylactic-glycolic acid (PLGA) as 

optional materials to be selected for the 3D scaffolds fabrication. These materials are both 

biocompatible. Using the CES material selector software, each material’s yield strength and 

Young’s modulus were also presented (Fig. 4.1b). From this graph (Fig. 4.1c), the Young’s 

modulus of PLGA and PLA are higher than that of human skin making these materials stiffer 

than the human skin. Thus, the selected materials are less elastic, when compared to skin. 

Thus, more force is required to change the shape of these materials. However, the tendency 

of the selected materials (PLA, PLGA) to degrade at physiological conditions (pH 7.4 and 

37℃) makes them suitable as they are likely to experience reduction in mechanical 

properties to levels that could matches with the skin. 
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Figure 4. 1: CES Result: (a) Young’s Modulus versus Yield Strength of Human Skin and 

Biocompatible Polymers, (b) Comparing the Young’s Modulus of PLA, PGA and Human 

skin, and (c) Comparing the Yield Strength Comparison of PLA, PGA and Human skin. 
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4.2 Optical Characterization of 3D Printed Scaffolds 

Using a digital microscope (model U200X, made in China) as a poroscope, the 

porosity of the 3D printed, and casted scaffolds were investigated. Below are images of 3D 

printed scaffold from the design matrix (Fig. 4.2). Pores sizes of the scaffolds is important 

for appropriate guidance of cell to cell and cell to scaffold interaction as it influences cell 

adhesion, movement and propagation [15]. Due to this, pore sizes can influence different 

cell processes. Macropores have an important role in cell seeding, distribution, migration 

and further neo-vascularization in living organisms. For skin tissue regeneration to 

effectively be achieved, scaffolds with macropores are needed. Macropore diameters range 

from 100 µm (0.1 mm) to 1 mm [15]. The optical images of the solvent casted scaffolds are 

also presented in Figure 4.2 (c-d). 

 

Figure 4. 2: Optical Images of Scaffolds: (a) Full View of PLA 3D Printed, and (b) 

Microscope view of PLA 3D Printed, (c) Full View of PLA 3D Solvent Casted Scaffold, 

and (d) Microscope View of PLA 3D Solvent Casted Scaffold. 
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Figure 4. 3: Optical Images of Scaffolds: (a) Measured pore sizes for Microscope view of 

PLA 3D Printed, and (b) Measured Pore sizes for Microscope view of Solvent Casted 

Scaffold                                                                                      

The printed sample shown above (Fig. 4.3 a) has dimensions that vary from the 

SolidWorks design. This shows that the errors from the printer used need to be accounted 

for in the design. Figure 4.2 (a-b) shows that the cylinder diameters and spacing’s are on 

average approximately 0.5 mm and 0.2 mm, respectively. 

The CAD software (SolidWorks) used for the design of the scaffolds has a flaw which 

makes it difficult to create large linear patterns at once. Using the “equations” feature, which 

in this case was used to make dimensions such as the spacing between each cylinder and the 

number of cylinders put in the array dependent on the length of each cylinder, the diameter 

of each cylinder and the overall height of the structure. This feature along with the 

automated characteristic of a 3D printer make this fabrication method more commercial than 

others. 

Figure 4.3 shows that there is a distribution of varying pore sizes across both the 3D 

printed scaffold and solvent casted scaffold. Table 4.1 and Figure 4.4 below show the 

distribution across a portion of both scaffolds. 
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Table 4. 1: Pore Diameter sizes on (a) 3D printed Scaffold and (b) Solvent Casted 

Scaffold 

3D Printed Scaffold (a) 

 

Solvent Casted Scaffold (b) 

Pore Diameter Count Pore Diameter Count 

0 – 0.10 1 0 – 0.10 0 

0.11 – 0.20 8 0.11 – 0.20 9 

0.21 – 0.30 4 0.21 – 0.30 3 

0.31 – 0.40 0 0.31 – 0.40 2 

0.41 – 1.0 0 0.41 – 1.0 1 

 

Figure 4. 4:Pore Diameter size distribution on (a) 3D printed Scaffold and (b) Solvent 

Casted Scaffold 

  

4.3 Mechanical Characterization 

 

In this section, stiffness tests along with tensile and compressive tests are undertaken 

on samples of the 3D printed scaffolds. These tests were done to validate the mechanical 

properties of the actual 3D printed samples. Figure 4.5 shows 3D printed and 3D casted 

samples for the mechanical characterization. These samples have the following dimensions:  
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Table 4. 2: Dimensions of Samples 

Scaffold Length (mm) Width (mm) Thickness(mm) 

3D Printed (PLA) 5.00 10.0 1.50 

3D Casted (PLA) 7.00 10.0 3.00 

3D Casted (PLA and 

PEG) 

8.00 10.0 3.00 

 

 

Figure 4. 5: Tensile test and Stiffness test samples: (a) 3D Casted scaffolds (PLA), (b) 3D 

Casted Scaffolds (PLA and PEG) and (c) 3D Printed scaffolds 

4.3.1 Tensile Test 

 

The purpose of this test is to find the modulus of elasticity of the PLA 3D printed 

scaffold by finding the average modulus of the samples. The test was also done to determine 

the average maximum elongation of the scaffold and the average maximum load it can bear. 

These results for the tensile test on the 3D printed samples are shown in Table 4.3 below. 

Table 4. 3: Table of Tensile Test Results for 3D Printed (PLA) Samples 

Sample Modulus of Elasticity (𝑴𝑷𝒂) Peak Load (𝒌𝑵) Maximum Elongation(𝒄𝒎) 

1 239 0.034 0.045 

2 50 0.009 0.105 
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3 86 0.035 0.120 

4 194 0.054 0.105 

5 111 0.031 0.090 

Average 136 0.033 0.093 

 

The results show that the 3D printed scaffold fabricated could withstand an average 

peak load of 0.33 kN and attain an average maximum elongation of 0.093cm. The scaffold 

also has an average elastic modulus to be about 136 MPa. 

One major source of errors comes from the layout of the fabricated samples. There 

are inconsistencies of the sample sizes and spacing’s along with some gaps of empty space 

where PLA should be, as shown in Figure 4.5. This makes some parts of the samples 

stronger than others causing a difference in values shown in Table 4.3. 

Table 4.4 below shows the results from the tensile test for both solvent casted 

samples (PLA only and PLA with PEG). From the results below, both solvent casted 

samples have the same tensile properties. 

Table 4. 4: Table of Tensile Test Results for 3D Casted Samples 

Sample Modulus of Elasticity (𝑴𝑷𝒂) Peak Load (𝒌𝑵) Strain 

PLA 133.3 5.0 0.149 

PLA and PEG 133.3 5.0 0.149 

 

These results show that the addition of PEG to the sample, making it a composite, 

does not change the tensile properties of the scaffold. 
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4.3.2 Stiffness Test 

 

The purpose of this test is to find the flexural modulus, the flexural strength and the 

yield point of the samples. The results for the bend test conducted on the 3D printed samples 

are shown below in Table 4.5. 

Table 4. 5: Table of Bend Test Results for 3D Printed (PLA) Samples 

Sample Flexural Modulus (𝑴𝑷𝒂) Peak Load (𝑵) 

1 0.375 2.75 

2 0.500 3.20 

3 0.300 1.25 

4 0.250 3.25 

5 0.330 4.75 

Average 0.351 3.04 

 

The results show that the samples of 3D printed scaffolds could withstand an average 

load of 3.04 N and had an average flexural modulus of 0.351 MPa. Just as for the Tensile 

test, there were inconsistencies in of the sample sizes and spacing’s along with some gaps 

of empty space where PLA should be. This led to the variations in results obtained in Table 

4.5, shown above. 

Table 4.6 below shows the results from the tensile test for both solvent casted 

samples (PLA only and PLA with PEG). 

Table 4. 6: Table of Bend Test Results for 3D Casted Samples 

Sample Flexural Modulus (𝑴𝑷𝒂) Peak Load (𝑵) 

PLA 0.67 8.0 

PLA and PEG 0.20 7.1 
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The results above show that the addition of PEG to the scaffold composition reduces 

the flexural modulus of the scaffold. This makes the scaffold much more flexible. 

4.3.3 Hardness Test 

The purpose of this test is to determine the resistance the fabricated scaffold 

exhibits to external forces. This test is done on both the 3D printed and casted scaffolds. 

The results of the test are shown in Table 4.7 below. The test was conducted on 5 different 

parts of a sample to find the average hardness of each sample. 

Table 4. 7: Hardness Test Results 

Sample 1 2 3 4 5 Average 

(HD) 

3D Printed (PLA) 16 15 16 17 14 15.6 

3D Casted (PLA)  14 17 16 11 15 14.6 

3D Casted (PLA and PEG) 3 3.5 2 7 4 3.9 

 

The results above show that the relative Hardness of the fabricated scaffolds is low 

(below 20 HD). The addition of PEG further decreases the hardness of the scaffold. This is 

good as the scaffold’s hardness can be tailored to suit the need. 

4.4 Mass Loss Degradation Test 

The purpose of this test was to find the degradation rate of the scaffold samples 

under 3 different pH environments (20ml solutions). The pH values considered for this test 

were 7.4 for the pH of human blood, 7.0 as a neutral environment and 4.0 to observe the 

degradation under acidic conditions. Table 4.7 below shows the results for mass change 

over a period of 4 days for the 3D printed scaffolds. These results also show the mass of 
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both wet and dried samples when removed from the pH solutions. This was done to also 

observe the amount of solution that could be absorbed over the same period. 

Table 4. 8: Mass Change over 4-day period for 3D Printed Scaffolds 

 Mass (g) after 4 days 

Initial Mass (g) pH Wet Dry 

0.84 7.4 1.16 0.84 

0.88 7.4 1.21 0.88 

0.77 4.0 1.15 0.77 

0.83 4.0 1.12 0.82 

0.87 7.0 1.23 0.87 

0.74 7.0 1.19 0.74 

 

From the results above, it is hard to tell if there was any mass change below 0.01 

grams as the mass balance used is restricted to 2 decimal places. On the other hand, it is 

noticed that over the period of 4 days, one of the samples placed in pH 4.0 has lost mass of 

0.01 grams. From this result, if the mass loss occurs linearly with time, it can be estimated 

that it would take 
0.82

0.01
× 4𝑑𝑎𝑦𝑠 = 328 𝑑𝑎𝑦𝑠 for that sample to degrade. 

This test was also conducted on 3D casted samples, one made from purely PLA and 

another of an equal mixture of PLA and PEG. This was done to make deductions on the 

addition of PEG to the scaffold. Table 4.8 shows the results for this experiment. 
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Table 4. 9: Mass Change over 4-day period for 3D Casted Scaffolds 

  Mass (g) after 4 days 

Material Initial Mass (g) pH Wet Dry 

PLA 0.35 7.4 1.23 0.35 

PLA and PEG 0.45 7.4 1.27 0.45 

PLA 0.46 4.0 0.85 0.46 

PLA and PEG 0.50 4.0 0.93 0.49 

PLA 0.49 7.0 0.81 0.49 

PLA and PEG 0.41 7.0 0.78 0.41 

 

Just as seen in Table 4.8, the scaffolds degrade faster under acidic conditions. The 

addition of PEG to the scaffold does not seem to affect the degradation mechanics of the 

samples. 

4.5 SolidWorks Simulation (FEA analysis) 

Using the simulation extension on the SolidWorks software, a test was run on the 

scaffold design to gain insight on whether the structure can withstand the forces acted on it 

in its real-world application. The effects on the structure were also noted. For this test, the 

main force considered is the force exerted by the cluster of skin cells formed within the 

structure on the walls of the structure. This force considered is the total weight of enough 

skin cells to fill the scaffold, pushing on the sides of the scaffold. 

When the scaffold is applied on a patient, this force acts on all non-fixed sides of the 

scaffold. For this test the edges of the structure were fixed and a pressure was applied 

opposite to the fixed edges. For uniform effect across the surfaces the pressure is acting 

upon and the fixed surfaces, rectangular slabs of PLA were added to the edges of the 

structure as shown in the figure below. 
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Figure 4. 6: SolidWorks Model for Simulation. 

The model also has the following properties as shown in Table 4.2. 

Table 4.10: Model Properties. 

Material 

Properties 

3D Printed PLA  

 

Tensile strength 30 MPa 

Elastic Modulus 2000 MPa 

Shear Modulus 

Poisson’s Ratio 

 

Mass Density 

3,189 MPa 

0.394 

1020 𝑘𝑔/𝑚3 

 

4.3 Projections of Cells Seeding 

The calculations on the number of cells to be seeded on the scaffold was about 58 

cells. These cells can fit within the space of the scaffold but when skin cells are formed, the 

scaffold degrades allowing for the more cells to grow. Assuming there is no degradation 

and the cells continue to grow, this simulation checks to see if the scaffold would still hold. 

Given that the mean mass of a cell is 1 nanogram making the mean weight of a cell to be 

9.81 micro-Newtons which is very small. If the cells were to be so many to produce 1 
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Newton force per area of the side walls, the following effects would take place on the 3D 

printed scaffold (Fig. 4.6 a-c). 

 

Figure 4. 7: (a) Von Mises Stress Distribution in model from 1Pa, (b) Strain distribution 

in model from 1Pa load, and (c) Resultant displacement in model from 1Pa load 
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Figure 4.7a show that the force at the upper and lower surfaces of the structure do 

not experience less stress and strain as compared to the inner surfaces of the structure. This 

characteristic of the design is good as it leaves the surfaces exposed to the environment (the 

body of the patient and the air) less affected by the cell formation process and capable of 

taking on more pressure from the environment.  

Figure 4.6c shows that the pressure placed on the structure causes the array of 

cylinders to stretch by 2.22 𝜇𝑚. However, this stress displacement is not enough for the 

structure to fail. 

These results along with those form Table 4.1 match as these results are far from the 

maximum possible values. This shows that the model can withstand the forces that would 

act on it when used on a patient. 
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5.0 Conclusion 

 

5.1 Remarks and Recommendations  

Tissue engineering is an area of exploration to solve the issues of diabetes patient’s 

ulcers. This can be done in the form of skin regeneration to replace the dead tissue on the 

wound.  As functional scaffolds are usually made of biopolymers, this project was focused 

on the design of these scaffolds using CAD software. The fabrication of these scaffolds 

using both 3D printing technology and solvent casting, a more conventional method of 

scaffold formation, was also explored. 

Samples were made from these methods, out of PLA and an equal mixture of PLA 

and PEG. These samples were put under mass degradation tests and mechanical 

characterization tests. Optical characterization was also undertaken to observe pore size and 

distribution.  From the mechanical characterization tests, it was observed that the 3D printed 

scaffolds and the 3D casted scaffolds made of PLA had similar results regarding hardness, 

tensile strength, elastic modulus and flexural modulus. It was also observed that the addition 

of PLA reduced the flexural modulus of the scaffold, making the scaffolds more flexible 

and reduced the hardness of the scaffolds. 

From the optical characterization, it was observed that using 3D printing to fabricate 

the scaffolds produced a uniformly arranged distribution of pores. On the other hand, the 

use of the solvent casting method produced a random distribution of pores and pore sizes 

ranging from 0.1 mm to 1 mm.  

From the results obtained, it can be deduced that 3D printing is the superior 

fabrication method for scaffold formation as it is easier to create an even distribution of 

pores on the scaffolds. On the other hand, a biopolymer composed of PLA and PEG would 

be much more ideal as this would allow for a much more flexible scaffold. 
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5.2 Limitations 

Over the course of this project, there were some limitations that either hindered 

progress or reduced the quality of the results obtained from testing. Some of these 

limitations were as follows: 

1. 3D print mechanics. 

This came from either calibration or in-built settings within the printer of choice. As 

shown in Figure 4.1 compared to Figure 3.4, the printout of the scaffolds had gaps leaving 

spaces where PLA was expected to be as shown in the arrangement of Figure 3.4. 

2. Lack of an analytical weighting balance with at least 4 decimal places. 

Biological degradation of polymers/scaffolds occurs with minimal loss of 

materials from the bulk system. This require a highly sensitive equipment. The lack of 

the required equipment needed to accurately measure the mass loss over time led to 

unmeasurable changes in mass, and hence yielded to inaccurate results for the 

biodegradation test. 

5.3 Future works  

Aside the extensive mechanical characterization on the scaffolds, one major thing to 

do as a way forward is to undergo cell seeding onto the scaffolds. This test would be used 

to determine whether the fabricated scaffolds would produce the optimum environment for 

skin cells to grow and form skin tissue. This process would be undertaken over a 30-day 

period where cell seeded scaffold samples would be monitored to observe cell activity 

(whether growth or decay). 

As mentioned in the earlier chapters of the paper, scaffold design presents the 

opportunity to deliver drugs to patients fitted with them. This opportunity was not explored 

during the period of this project but could be considered in future works to optimize the use 
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of scaffolds for wound healing. Samples of the scaffolds could also be tested on smaller 

animals to ascertain tissue regeneration.  
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Appendix 
 

Appendix A 

Calculations of volume of space within the structure where the cells can attach is 

calculated as: 

𝑉𝑠𝑝𝑎𝑐𝑒 = 𝑉𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 − 𝑉𝑡𝑜𝑡𝑎𝑙       (3.1) 

where Vspace is the volume of space, Vstructure is the overall volume of the structure, and 

Vtotal is the total volume of the cylinders. 

Henced, 

𝑉𝑠𝑝𝑎𝑐𝑒 = [(5 × 10−2)(5 × 10−2)(1.5 × 10−3)]𝑚3 − [2(7.8 × 10−7)]𝑚3 

=  2.19 × 10−6𝑚3 

Determination of the minimum number of cells to be seeded: 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑒𝑙𝑙𝑠 =
𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑠𝑝𝑎𝑐𝑒

[(𝑎𝑟𝑒𝑎 𝑜𝑓 𝑠𝑘𝑖𝑛 𝑐𝑒𝑙𝑙)(𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 𝑜𝑓 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒)]
   (3.2) 

=
2.19 × 10−6

[(25 × 10−6)(1.5 × 10−3)]
 

= 58.4 𝑐𝑒𝑙𝑙 
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Appendix B 

 

Tables of Results for 3D printed Scaffold Tensile Test 

Table A-1: Tensile Test Results for 3D printed Scaffold Sample 1 

Display Name Value Unit Original Value Description 

Modulus 239 MPa 0.239 
The Young's modulus of the 

specimen. 

Peak Load 0.034 kN 0.034  

Peak Stress 2 MPa 2 
The maximum stress 

determined from the data. 

Strain at Break 0.009 mm/mm 0.009  

Test Run End 

Reason 

Break 

Detected 
 Break Detected  

Thickness 2 mm 2 The thickness of the specimen. 

Width 10 mm 10 The width of the specimen. 

 

Table A-2: Tensile Test Results for 3D printed Scaffold Sample 2. 

Display Name Value Unit Original Value Description 

Modulus 50 MPa 0.05 
The Young's modulus of the 

specimen. 

Peak Load 0.009 kN 0.009  

Peak Stress 0.4 MPa 0.4 
The maximum stress 

determined from the data. 

Strain at Break 0.021 mm/mm 0.021  

Test Run End 

Reason 

Test 

Stopped 
 Test Stopped  

Thickness 2 mm 2 The thickness of the specimen. 

Width 10 mm 10 The width of the specimen. 
 

Table A-3: Tensile Test Results for 3D printed Scaffold Sample 3. 

Display Name Value Unit Original Value Description 

Modulus 86 MPa 0.086 
The Young's modulus of the 

specimen. 

Peak Load 0.035 kN 0.035  

Peak Stress 2 MPa 2 
The maximum stress 

determined from the data. 

Strain at Break 0.024 mm/mm 0.024  

Test Run End 

Reason 

Break 

Detected 
 Break Detected  

Thickness 2 mm 2 The thickness of the specimen. 

Width 10 mm 10 The width of the specimen. 
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Table A-4: Tensile Test Results for 3D printed Scaffold Sample 4. 

Display Name Value Unit Original Value Description 

Modulus 194 MPa 0.194 
The Young's modulus of the 

specimen. 

Peak Load 0.054 kN 0.054  

Peak Stress 3 MPa 3 
The maximum stress 

determined from the data. 

Strain at Break 0.021 mm/mm 0.021  

Test Run End 

Reason 

Test 

Stopped 
 Test Stopped  

Thickness 2 mm 2 The thickness of the specimen. 

Width 10 mm 10 The width of the specimen. 
 

Table A-5: Tensile Test Results for 3D printed Scaffold Sample 5. 

Display Name Value Unit Original Value Description 

Modulus 111 MPa 0.111 
The Young's modulus of the 

specimen. 

Peak Load 0.031 kN 0.031  

Peak Stress 2 MPa 2 
The maximum stress 

determined from the data. 

Strain at Break 0.018 mm/mm 0.018  

Test Run End 

Reason 

Break 

Detected 
 Break Detected  

Thickness 2 mm 2 The thickness of the specimen. 

Width 10 mm 10 The width of the specimen. 

 

Stress-Strain Graphs for Tensile Test 3D printed Scaffold Samples 
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Figure A- 1: Tensile Test Stress-Strain Graph for 

3D printed Scaffold Sample 1 

Figure A- 2: Tensile Test Stress-Strain Graph for 

3D printed Scaffold Sample 2 
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Figure A- 5: Tensile Test Stress-Strain Graph for 3D printed Scaffold Sample 5 

 

Tables of Results for 3D Casted Scaffold Tensile Test 

Table A- 6: Tensile Test Results for 3D Casted (PLA) Scaffold Sample 

Display Name Value Unit Original Value Description 

Peak Stress 0.2 kN/mm² 0.2 
The maximum stress 

determined from the data. 

Peak Load 5 kN 5  

Strain at Break 0.149 mm/mm 0.149  

Modulus 133.3 MPa 133.3 
The Young's modulus of the 

specimen. 

Width 10 mm 10 The specimen width. 

Thickness 3 mm 3 The specimen thicknesses. 
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Figure A- 3: Tensile Test Stress-Strain Graph 

for 3D printed Scaffold Sample 3 

Figure A- 4: Tensile Test Stress-Strain Graph 

for 3D printed Scaffold Sample 4 



46 
 

0 5 10 15

0

2

4

6

L
o
a

d
 (

K
N

)

Crosshead (mm)

 Load

 

Figure A- 6: Tensile Test Stress-Strain Graph for 3D Casted (PLA) Scaffold Sample 

 

Table A- 7: Tensile Test Results for 3D Casted (PLA and PEG) Scaffold Sample 

Display Name Value Unit Original Value Description 

Peak Stress 0.2 kN/mm² 0.2 
The maximum stress 

determined from the data. 

Peak Load 5 kN 5  

Strain at Break 0.149 mm/mm 0.149  

Modulus 133.3 MPa 133.3 
The Young's modulus of the 

specimen. 

Width 10 mm 10 The specimen width. 

Thickness 3 mm 3 The specimen’s thickness 
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Figure A- 7: Tensile Test Stress-Strain Graph for 3D Casted (PLA and PEG) Scaffold 

Sample 
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Appendix C 

 

Tables of Results for 3D printed Scaffold Stiffness Test 

Table A- 8: Bend Test Results for 3D printed Scaffold Sample 1. 

Display Name Value Unit Original Value Description 

Peak Load -0.00275 kN -0.00275  

Peak Stress -0.092 MPa -0.1 
The maximum stress 

determined from the data. 

Flexural 

Modulus 
0.375 MPa 0.375  

Width 20 mm 20 The specimen width. 

Thickness 1.5 mm 1.5 The specimen’s thickness. 
 

Table A- 9: Bend Test Results for 3D printed Scaffold Sample 2. 

Display Name Value Unit Original Value Description 

Peak Load -0.0032 kN -0.0032  

Peak Stress -0.107 MPa -0.0667 
The maximum stress 

determined from the data. 

Flexural 

Modulus 
0.5 MPa 0.5  

Width 20 mm 20 The specimen width. 

Thickness 1.5 mm 1.5 The specimen’s thickness. 

 

Table A- 10: Bend Test Results for 3D printed Scaffold Sample 3. 

Display Name Value Unit Original Value Description 

Peak Load -0.00125 kN -0.00125  

Peak Stress -0.0416 MPa -0.0416 
The maximum stress 

determined from the data. 

Flexural 

Modulus 
0.3 MPa 0.3  

Width 20 mm 20 The specimen width. 

Thickness 1.5 mm 1.5 The specimen’s thickness. 
 

Table A- 11: Bend Test Results for 3D printed Scaffold Sample 4. 

Display Name Value Unit Original Value Description 

Peak Load -0.00325 kN -0.00325  

Peak Stress -0.108 kN/mm² -0.108 
The maximum stress 

determined from the data. 

Flexural 

Modulus 
0.25 MPa 0.25  

Width 20 mm 20 The specimen width. 

Thickness 1.5 mm 1.5 The specimen’s thickness. 
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Table A- 12: Bend Test Results for 3D printed Scaffold Sample 5. 

Display Name Value Unit Original Value Description 

Peak Load -0.00475 kN -0.00475  

Peak Stress -0.158 kN/mm² 0.158 
The maximum stress 

determined from the data. 

Flexural 

Modulus 
0.33 MPa 0.33  

Width 20 mm 20 The specimen width. 

Thickness 1.5 mm 1.5 The specimen’s thickness. 
 

Stress-Strain Graphs for Stiffness Test 3D printed Scaffold Samples 
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Figure A- 8: Bend Test Stress-Strain Graph for 3D printed Scaffold Sample 1 
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Figure A- 9: Bend Test Stress-Strain Graph for 3D printed Scaffold Sample 2 
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Figure A- 10: Bend Test Stress-Strain Graph for 3D printed Scaffold Sample 3 
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Figure A- 11: Bend Test Stress-Strain Graph for 3D printed Scaffold Sample 4 
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Figure A- 12: Bend Test Stress-Strain Graph for 3D printed Scaffold Sample 5 
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Tables of Results for 3D Casted Scaffold Stiffness Test 

 

Table A- 13: Bend Test Results for 3D Casted (PLA) Scaffold Sample 

Display Name Value Unit Original Value Description 

Peak Load 0.008 kN 11.082  

Peak Stress 0.267 MPa 0.267 
The maximum stress 

determined from the data. 

Flexural 

Modulus 
0.67 

MPa 
  

Width 10 mm 10 The specimen width. 

Thickness 3 mm 3 The specimen’s thickness. 
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Figure A- 13: Bend Test Stress-Strain Graph for 3D Casted (PLA) Scaffold Sample 

 

  

Table A- 14: Tensile Test Results for 3D Casted (PLA and PEG) Scaffold Sample 

Display Name Value Unit Original Value Description 

Peak Load 0.0071 kN 3.759  

Peak Stress 0.236 MPa 0.236 
The maximum stress 

determined from the data. 

Flexural 

Modulus 
0.2 

MPa 
0.002  

Width 10 mm 10 The specimen width. 

Thickness 3 mm 3 The specimen’s thickness. 
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Figure A- 14: Bend Test Stress-Strain Graph for 3D Casted (PLA and PEG) Scaffold 

Sample 


