

ASHESI UNIVERSITY

LOW-COST SMART TRAFFIC MANAGEMENT
SYSTEM

CAPSTONE PROJECT
B.Sc. Computer Engineering

Jude Asare Donkor

2020

ASHESI UNIVERSITY

LOW-COST SMART TRAFFIC MANAGEMENT

SYSTEM

CAPSTONE PROJECT

Capstone Project submitted to the Department of Engineering, Ashesi University in

partial fulfilment of the requirements for the award of Bachelor of Science degree

in Computer Engineering.

Jude Asare Donkor

2020

 i

Declaration

I hereby declare that this capstone is the result of my own original work and that no part of it has

been presented for another degree in this university or elsewhere.

Candidate’s Signature:

...

Candidate’s Name:

 ..

Date: ...

I hereby declare that preparation and presentation of this capstone were supervised in accordance

with the guidelines on supervision of capstone laid down by Ashesi University.

Supervisor’s Signature:

..

Supervisor’s Name:

 ...

Date: ..

jude donkor
Jude Asare Donkor

jude donkor
29/05/2020

 ii

Acknowledgement

I am grateful to the Almighty God for giving me strength, astuteness and grace throughout this

project. My big thanks to my family for encouraging me always to keep moving and their

prayers.

I would like to express my gratitude to my capstone supervisor, Kofi Adu Labi, for his

encouragement, as well as professional and academic advice which helped me successfully

undertake this project while gaining a lot of new knowledge. I am deeply grateful.

Special thanks to Nana Akua Sereboo, for her constant encouragement, help and guidance.

My sincere gratitude goes to the engineering faculty and staff members who have been ready to

assist throughout the project period.

Finally, I would also like to acknowledge friends, who have continuously encouraged me to be a

better version of myself throughout my four years of study, and especially as I undertook this

project

.

 iii

Abstract

In Ghana and other parts of Africa, most traffic management systems are implemented by

the use of a timer at each phase. This method of traffic management is inefficient because equal

length of green light is assigned to each lane at the intersection; resulting in long wait times for

vehicles behind a traffic light with the red signal on, especially when other lanes are vacant. This

project addresses problems such as the one stated in the previous sentence through designs and

implementation of a low-cost smart traffic management system. The project is carried out by the

use of electrical components that are affordable, easy to maintain and reliable. An inductive loop

is used as the vehicle detection device for each lane. Traffic density acquisition is then done using

an algorithm running on a single board computer, Raspberry Pi, to obtain the number of vehicles

on each lane. After the acquisition of traffic density, the data is processed to obtain the green light

length for a lane. After green light length determination, the traffic density acquired earlier is sent

to a database on a server via Wi-Fi to enable another microcontroller to use the data to execute

traffic coordination between a lane and its preceding lane. In testing the coordinated control

system, the statistical analysis showed that the coordinated traffic control between a lane and its

preceding lane can be improved to gain the optimal performance.

 iv

Table of Contents

DECLARATION .. I

ACKNOWLEDGEMENT ... II

ABSTRACT .. III

TABLE OF CONTENTS .. IV

LIST OF TABLES .. VII

LIST OF FIGURES ... VIII

CHAPTER 1: INTRODUCTION .. 1

 1.1 BACKGROUND: .. 1

 1.2 PROBLEM STATEMENT: ... 1

 1.3 MOTIVATION: .. 2

 1.4 ATTEMPTS TO SOLVE THIS PROBLEM: .. 2

 1.5 SOLUTION: .. 3

CHAPTER 2: LITERATURE REVIEW .. 4

 2.1 IMAGE PROCESSING: ... 4

 2.2 VEHICLE DETECTION (SENSORS): .. 5

CHAPTER 3: DESIGN ... 6

 3.1 DESIGN DECISIONS AND PUGH MATRICES .. 6

 3.1.1VEHICLE DETECTION COMPONENT .. 6

 3.1.2 PUGH CHART FOR PROCESSING UNIT ... 8

 v

 3.2 DESIGN BLOCK DIAGRAM AND CIRCUITRY: ... 8

 3.3 DESIGN ITERATION FOR TRAFFIC MANAGEMENT SYSTEM: 11

 3.4 DESIGN DECISION FOR TRACKING SYSTEM: .. 13

 3.5 SYSTEM ARCHITECTURE: ... 14

 3.6 DESCRIPTION OF COMPONENTS: .. 17

CHAPTER 4: METHODOLOGY ... 19

 4.1 HARDWARE IMPLEMENTATION ... 19

 4.1.1 VEHICLE DETECTION ... 19

 4.1.2 ACQUISITION OF TRAFFIC DENSITY ... 20

 4.1.3 GREEN LIGHT SEQUENCING AND LENGTH DETERMINATION 20

 4.1.4 PEDESTRIANS INTERRUPT .. 20

 4.2 SOFTWARE IMPLEMENTATION. ... 21

CHAPTER 5: TEST AND RESULTS ... 24

 5.1 VEHICLE DETECTION ... 24

 5.2 ACQUISITION OF TRAFFIC DENSITY, GREEN LIGHT SEQUENCING AND
LENGTH DETERMINATION. ... 25

 5.3 WEBAPP .. 29

 5.4 STATISTICAL TEST OF RESPONSE TIME OF COORDINATED TRAFFIC
CONTROL BETWEEN A LANE AND ITS PRECEDING LANE. .. 32

 5.5 TEST AND ANALYSIS OF WAIT TIME OF THE SMART SYSTEM AND OF A
TRADITIONAL TRAFFIC LIGHT ... 33

CHAPTER 6: CONCLUSION, LIMITATIONS AND FUTURE WORK .. 36

 6.1 CONCLUSION .. 36

 vi

 6.2 LIMITATIONS .. 37

 6.3 FUTURE WORK ... 37

REFERENCES .. 38

APPENDIX .. 40

APPENDIX A: RECORDED WAIT TIMES ... 40

APPENDIX B: ALGORITHM FOR ENTIRE SYSTEM ... 41

APPENDIX C: PRIORITY VEHICLE CODE NODE MCU ... 48

 vii

List of Tables
Table 3. 1: Pugh matrix for best vehicle detection technique .. 7

Table 3. 2: Pugh matrix to choose the best processing unit ... 8

Table 3. 3: Component Description ... 17

Table 5. 1: Results from test .. 26

Table 5. 2: Results from Algorithm ... 27

Table 5. 3: Results from the Green Light Length Determination Algorithm 28

 viii

List of Figures
Figure 3. 1: Block diagram for inductive loop system ... 9

Figure 3. 2: Circuit for inductive loop system ... 10

Figure 3. 3: Ultrasonic system block diagram ... 11

Figure 3. 4: Circuit for the ultrasonic system ... 12

Figure 3. 5: Tracking System Block Diagram ... 13

Figure 3. 6: Tracking System Circuit ... 14

Figure 3. 7: System Architecture ... 16

Figure 3. 8: System Architecture of Tracking System ... 17

Figure 4. 1: Positioning of the sensor .. 19

Figure 4. 2: Pedestrian button activated ... 21

Figure 4. 3: Web application interface ... 22

Figure 4. 4: Database Relationship Diagram ... 23

Figure 5. 1: Diagram of lanes being used .. 24

Figure 5. 2: Test Setup ... 24

Figure 5. 3: Vehicle Detection Test ... 25

Figure 5. 4: Traffic Density Acquisition .. 26

Figure 5. 5: Diagram of Lanes being used ... 28

Figure 5. 6: Login Page Interface ... 30

Figure 5. 7: Dashboard Interface .. 31

Figure 5. 8: T test results .. 32

Figure 5. 9: case study area (Okponglo, Legon intersection) .. 33

Figure 5. 10: Diagram of lane (Okponglo Legon intersection) being used. 34

 1

Chapter 1: Introduction

1.1 Background:

 The growing number of vehicles, extensive number of traffic on roads and improper

methods of traffic control has created and accounted for urban traffic congestion. Bad traffic

management and traffic jams interfere with drivers, lead to wastage of time, cost money per

year and also lead to an increase in the consumption of fuel and increase in the emission of

harmful gases to the environment. The existing method used for traffic control in Ghana is the

use of timers for each phase. Although this primitive method has been used many times to

control traffic, it fails to reduce traffic congestion as the number of cars increase. As this

problem spreads, there is a need for an advanced traffic management system to improve the

existing traffic control methods. Therefore, for better traffic management, this work proposes a

system for controlling the traffic light sequence and timing by the use of an inductive loop

vehicle detection system. The use of sensors helps in proper traffic management by detecting

vehicles from interactions with the physical environment.

1.2 Problem statement:

Traffic congestion is a growing problem which has led to the waste of resources such

as time and money, and hassle of transportation. A major contribution to this growing problem

occurs at intersections. Using the Accra airport intersection (liberation road) as an instance, all

the traffic lights located on the intersection lanes have fixed timings where the duration of the

green light is constant through all the traffic lights. This method is inept when there are multiple

cars on several lanes of the intersection; it causes long waiting times when some lanes have few

vehicles or no vehicle moving through them. In such situations, time is wasted since there will

be a long waiting time for a vehicle populated lane’s traffic light to turn green. Additionally,

the emergency response system in Ghana does not have a rapid response as all emergency

 2

systems do in the world. In Ghana, patients who are being transported from homes or from

accident scenes to the hospital spend hours in an ambulance on end up maneuvering their way

through heavily congested traffic on the route to get to the hospital in time for treatment.

1.3 Motivation:

I was motivated to do this project to help travelers and drivers save time by reducing

the time they spend on roads because of traffic congestion and bad traffic management. After

being victimized by this problem, my empathy for other victims of this problem made me

realize the need for an effective traffic control system. An effective traffic control system will

increase productivity and decrease the time and money spent on transportation since their

estimated time of arrival will be the same as the travelers or drivers anticipated after a sprout

of traffic. Also, cars will not have to wait for an unoccupied lane’s traffic light to turn red before

it can move through its lane. In addition, research was conducted to determine the average

response time of an ambulance to the patient and the transportation time of the patient to the

hospital. Per the research, the average time the ambulance spent to travel to the patient was

within the range 16.2-17.6 minutes, whereas the transportation time of the patient was 82

minutes. With this information, I concluded that bad traffic management could be a cause of

the vast difference between the average response time and the average transportation time. Also,

the increase in transportation time puts the patient at a disadvantage since there is minimal time

available for the doctors to treat or save the person’s life [1].

1.4 Attempts to solve this problem:

In Ghana, Motor transport and traffic directorate (MTTD) assigns some of their

personnel to regulate the traffic in the best way possible. However, this is not efficient because,

during unfavorable weather conditions, the MTTD personnel are not able to do the work

efficiently.

 3

In addition, some students around the world have made systems with cameras to detect

cars. With the data acquired after vehicle detection, algorithms were implemented to coordinate

traffic lights correctly. Thus, giving priority to heavily congested traffic lanes. This attempt is

by far better than human intervention, but with this alternative, there is no redundancy. When

a camera develops a fault, and it does not function as it must, the system will fail to perform its

objective [2].

1.5 Solution:

With the aid of an inductive loop traffic management system, traffic congestion could

be monitored and controlled effectively to make transportation calm. This work proposes the

use of inductive loops to detect the presence of a car. With this form of detection, graphs will

be drawn to gain the peak values of the traffic congestion. With the peak values acquired, more

time will be allocated to the congested traffic lane in order of decreasing peak values. Also,

with the aid of real-time tracking, the ambulances' path of travel will have the traffic lights turn

green during travel to reduce time taken to maneuver through cars.

To test this, a miniature road will be constructed with an intersection and mini toy cars

placed on it. Some test cases will be implemented on the miniature road. For instance, there

will be a test case for the cars at one traffic light and no cars at a traffic light. There will be a

test case when all traffic lights have cars in front of them. There will be a test case for the

responsiveness of the coordinated control system.

 4

Chapter 2: Literature Review
Traffic management is an area researched by many engineers. Many concepts such as

the use of inductive loops, image processing, radars and magnetic sensors have been proposed

by several engineers as fitting techniques for managing the current growing urban traffic

levels. In spite of suggestions, inductive loop is one of the most researched methods of traffic

management(e.g. [3], [4], [5]). However, it has not been deployed in many countries since it is

an invasive technique (road drilling is required for installation). Due to this constraint,

Internet of Things and image processing has been the resort many countries have used for the

deployment of their traffic management systems.

2.1 Image Processing:

With regards to intelligent traffic lights, Agrawal Nidhir [6] reported on the

significance of the use of image processing to manage traffic congestion. Per the research in

this paper, image processing was adopted because of the low cost associated with

incorporating it to a traffic system. Image processing is a vehicle detection technique which

implores the use of cameras to acquire images and process the image through ten stages. The

paper suggests image acquisition, image enhancement, image restoration, color detection,

erosion and dilation, segmentation and description as the ten stages of image processing.

When an image is captured, the image is converted into grayscale and later converted

to a binary image. The binary image is enhanced after some effects are applied; the image

goes through a restoration algorithm to undo the defects in the image. The restored image is

passed through a color detector to obtain several color wavelengths and later eroded and

dilated to remove abnormalities and fill broken areas. Next, objects in the output image are

assigned labels such as humans, obstacles and vehicles. Objects labelled as vehicles indicate

vehicle presence.

 5

However, this technique of vehicle detection is not reliable in unfavorable weather

conditions; images taken during heavy rain, fog or snow could wrongly influence the

decisions of the processing unit. Correspondingly, the camera used for capturing images must

be maintained properly. Proper maintenance of the camera involves cleaning of the camera

lens. The camera lens is blurred by dust and other environmental particles, and when blurred,

the image quality would be reduced. Thus, maintenance is not simple. Correspondingly, the

cost of procurement and implementation of this technique is high.

2.2 Vehicle Detection (Sensors):

Varshan [7] designed a traffic management system with the application of Internet of

Things. The aim of this paper was to detect traffic levels at lanes using ultrasonic sensors. In

designing the system, he considered the use of devices such as LCD, LED, ultrasonic sensors

and an ARM7 controller. The system was designed to detect traffic level status at

intersections with the aid of ultrasonic sensors. An array of ultrasonic sensors was mounted at

roadsides and connected to an ARM 7 controller. The controller is connected to WI-FI to

transmit data from sensors to a web server unit. The ultrasonic sensors record vehicle present

by comparing the change in distance to the original distance. After vehicle detention, the data

acquired is then used to interpret traffic levels, stored and displayed on an LCD to enable a

user to see traffic levels. Additionally, Jun et al[8] describe how Japan has adopted the use of

ultrasonic sensors for vehicle detection in traffic management. In Japan, doppler ultrasonic

sensors have been mounted above the road to count and obtain vehicle presence. With this

knowledge, we can deduce that ultrasonic sensors can help improve traffic management

systems. They are also cheap to acquire and implement. However, the ultrasonic sensor

reading is affected by temperature change and extreme turbulence. Also, the pulses sent may

not detect fast-moving vehicles.

 6

Chapter 3: Design
In this chapter, the design of the system is discussed. The design decisions were deduced

by using Pugh matrices to compare and choose the best technology for the project. Also, the

system architecture is elaborated, and several resources which would be used are defined. With

regards to the design of the system, affordability is one paramount factor when making design

decisions.

The system comprises:

- Vehicle detection component

- Traffic lights signal sequence algorithm

- Pedestrian enabled system

- Tracking System

- App for monitoring

3.1 Design Decisions and Pugh Matrices

 For the implementation of the proposed solution, some technologies were decided for
different constituents of the system.

3.1.1Vehicle detection component

 For the aspect of vehicle detection, there are many approaches that could be used. These

approaches are namely; inductive loops, ultrasonic sensors, cameras and microwave radars.

Table 3.1 shows how the best detection decision was made. The prominent metrics for choosing

a vehicle detection method are cost, accuracy, ease of maintenance, ability to detect both

moving and stationary vehicles and speed.

 7

Table 3. 1: Pugh matrix for best vehicle detection technique

In a Pugh matrix, 0 depicts the device is the same as the baseline, +1 depicts the

device is better than the baseline, and -1 depicts the device is worse than the baseline.

From the Pugh matrix, the best method of car detection is the use of inductive loops due to its

low cost, ease of maintenance, fast vehicle detection, and accuracy.

The inductive loop used should have the following features:

- Resistant to mist or dirt

- Performance during bad weather conditions (wind, rain) should be high

With concerns to the best method of car detection evaluated by the Pugh chart, due to

the unavailability of components for the demo aspect, we will resort to the second-best

method of detection. The second best is the use of ultrasonic sensors. This alternative

sensor and inductive loop sensor are analog sensors. One analog sensor can be

represented by another analog sensor since they generate analog outputs. Therefore,

the ultrasonic sensor can be used to depict the inductive loop sensor.

The ultrasonic to be used should have the following features:

 8

- Detect transparent objects

- Resistant to mist or dirt

3.1.2 Pugh chart for processing unit

 For the processing unit of vehicle detection, there are many options such as Arduino,

Raspberry Pi and Atmega. Table 3.2 shows how the best processing unit was chosen. The most

important factors for choosing a processing unit are cost, size, ease of use, performance and

speed.

Table 3. 2: Pugh matrix to choose the best processing unit

 From the Pugh matrix, the best processing unit is the Raspberry Pi, mainly due to its

ease of use, performance and speed.

3.2 Design Block Diagram and Circuitry:

Per these two Pugh charts, the design of the actual system will be as depicted in Figure

3.1.

 9

Figure 3. 1: Block diagram for inductive loop system

 10

With regards to circuitry implementation of inductive loops with the Raspberry Pi, the

circuit will be as depicted in Figure 3.2.

Figure 3. 2: Circuit for inductive loop system

For exposition on Figure 3.2, the inductive loop will give an output which will be read

by the voltage sensor and the voltage sensor will use the analog to digital converter to send

the data to the Raspberry Pi. Also,4 capacitors, 2 inductive coils, Vcc(power grid) and ground

are used to fashion the inductive loop and used to generate the output of the loop. When a car

passes over the coils (loops), the inductance of both loops change. Correspondingly, a change

in inductance of the loops causes a change in the voltage at V2 (across C3) and V1(across

C3) . This change in voltage indicates vehicle presence.

 11

3.3 Design Iteration for Traffic Management System:

For the prototype design, it will be implemented with the second-best option from the

vehicle detection Pugh chart and best option for the microcontroller Pugh chart. The design of

the prototype system will be as shown in Figure 3.3

Figure 3. 3: Ultrasonic system block diagram

For circuitry implementation of the prototype block diagram, a traffic light will have

its system as shown in Figure 3.4

 12

Figure 3. 4: Circuit for the ultrasonic system

With regards to the system requirements, the system must have these features:

1. The system should be able to coordinate traffic from a lane to its preceding lane.

2. The system should be able to detect a vehicle

3. The system should have a web application which interacts with the database to gain

the traffic density on lanes of each intersection and show the traffic density growth per

time.

4. The system should work independently of human interaction.

With regards to user requirements, the system must have these features:

1. The system should take user input

2. The signal lights should be clear to see

3. There should be a timer for pedestrians to know how soon the light will signal red.

 13

4. The system should give priority to emergency vehicles.

With regard to non-functional requirements, the system must have these features:

1. The system must be secure and require administrative credentials to access it.

2. The system must be reliable.

3. The system must be fast

3.4 Design Decision for Tracking System:

For the implementation of the priority vehicles, the system will be as shown in Figure 3.5.

Figure 3. 5: Tracking System Block Diagram

For circuitry implementation of the block diagram, a tracking system is shown in Figure 3.6.

 14

Figure 3. 6: Tracking System Circuit

3.5 System Architecture:

In this traffic management system, several ultrasonic sensors will be placed

perpendicular to the road of each lane on the intersection, and each of these sensors is connected

to a Raspberry Pi. The ultrasonic sensors check for the presence of a vehicle and feed data

(number of cars and the presence of a car) to the Raspberry Pi. The Raspberry Pi then allocates

a maximum average green time for the green signal. US highway administration[9] deduced

that the maximum green time of an average vehicle is 7 seconds. From this, the Raspberry Pi

multiplies the number of cars counted by 7 seconds. However, if the number of cars exceeds a

threshold, the Raspberry Pi will allocate a time which depicts an average of 10-20 cars,

depending on the lane size. When the time for green signal ends the Raspberry Pi then activates

the ultrasonic sensor to count the number of cars and pushes the number to the database. The

Raspberry Pi then activates sensors on the next lane When there is a car present, it goes through

the process stated in the previous sentences above. However, when the ultrasonic sensor does

not sense any car, the Raspberry Pi will allocate a green time of zero and moves to the next

 15

traffic light lane which follows. With the priority vehicles, the ESP module will initialize the

GPS module to gain latitudes and longitudes; these coordinates will be sent to the database. The

Raspberry Pi will then check if the coordinates in the database are similar to the coordinates of

the traffic light location or if it indicates proximity to a traffic light. If the conditions are true,

the Raspberry Pi will quickly turn all light signals red on lanes adjacent to the lane with the

priority vehicle, and the lane with the priority vehicle will have its traffic signal turn green.

 Furthermore, for coordinated control, the Raspberry Pi will extract the data (congestion

rate) of the road ahead from the database and use the retrieved data to make decisions such as

deciding a time for green light. This process is summarized in Figure 3.5.

 16

Figure 3. 7: System Architecture

Figure 3.6 shows the working of the system with regards to giving emergency vehicles

priority. The description of the arrows are as follows:

A- GPS module to transmit acquired latitudes and longitudes to node MCU located in the

car for processing

 17

B- Node MCU to pass data to the database which is on a server.

C- Raspberry pi of the traffic lights extracts the data from the database.

D- Raspberry pi sends an interrupt to halt the sequence of traffic light coordination and

commands traffic light to turn green as vehicle approaches.

Figure 3. 8: System Architecture of Tracking System

3.6 Description of Components:

Table 3. 3: Component Description

Component Description

Raspberry Pi Raspberry Pi is a small single-board computer which is credit card
sized.
There are existing models of Raspberry Pi with Pi zero as the first
generation and Pi 3 as the third generation. Other Raspberry Pi includes
pi 1 model B, pi 1 model B+ and Raspberry Pi2. The Raspberry Pi has
four USB 2.0 ports, built-in Ethernet, a 1.2GHz 64 bit quad-core
ARMv8 CPU, 802.11n Wireless LAN, Bluetooth 4.1 Low Energy
(BLE).[10] Additional characteristics include:

• 2.5 A power adapter
• 40 pin GPIO header- these pins are used for input and output

devices control. In this project, this will be used to take the
pedestrian input and used to command traffic lights.

• HDMI (Display serial interface)- for connecting an LCD to the
Raspberry Pi

• SD slot- for SD card insertion

 18

For numbering conventions, the Raspberry Pi has two types: pin
numbers as known as Board and Broadcom, also known as GPIO
numbers. For the implementation of this project, the Board numbering
system will be used.

Push Button Push Button is a type of switch which consists of a simple electric
mechanism or air switch mechanism to turn something on or off.
[11] In this project, the pushbutton is used as a pedestrian button to
enable pedestrians to cross a busy road.

Ultrasonic

Sensor

Ultrasonic sensors are transducers that convert ultrasound waves to electrical
wave. It operates by emitting sound waves at a high frequency, then waits for
the sound to be reflected back. Its transmitter and receiver are encompassed
into one packaging.[12] With regards to this project, the ultrasonic sensors will
be used to count the number of cars in a lane.

7 Segment

Display

7 segment display is a set of seven segments shaped LED, arranged
to form a squared 8. [13]In this project, the seven-segment display
will be used to display the timer for pedestrians to cross a road.

Neo Gps

module

This is a GPS module which functions as a GPS receiver with a
built-in 25 x 25 x 4mm ceramic antenna for the strong satellite
search capability. It has the ability to save data when the power is
cut. This device will enable the system to give priority to an
emergency vehicle upon arrival to the traffic light.

Node MCU Node MCU is a low-cost open-source firmware developed for
ESP8266 WIFI chip. It is implemented in C. It has 128Kb of RAM
and 4Mb of flash storage. It integrates a 802.11b/g/n HT40 Wi-Fi
transceiver to connect to a WIFI network, internet and set up a
network of its own[14]. This component will be used as the
controller for the tracking system.

LEDs Led is a semiconductor which produces light. [15].This component
will be used as the traffic signal lights.

 19

Chapter 4: Methodology
The implementation of the design in the previous chapter was done at two levels: hardware

implementation and software implementation.

4.1 Hardware Implementation

4.1.1 Vehicle Detection
To ensure drivers and passengers do not wait for long at traffic intersections, an

algorithm was implemented based on ultrasonic sensors to detect vehicle presence in front of a

traffic light. The sensors operate with pulse waveforms and provide vehicle count, presence and

occupancy information. The pulse waveforms measure distances to the road surface and assign

the distance to the road to a variable (distance2road). When a vehicle interrupts the signal from

the sensor to the ground, the current distance measured will be less than the distance to the road

(distance2road). Hence the sensor will interpret that measurement as the presence of a vehicle.

However, when it does not detect vehicle presence, the system’s focus moves to the next lane

per the traffic coordination sequence. For deployment of the prototype the ultrasonic sensors

were placed perpendicular to the road at a distance of 5cm. Figure 4.1 shows how it will be

placed.

Figure 4. 1: Positioning of the sensor

 20

 4.1.2 Acquisition of traffic density

 To acquire traffic density, another algorithm was implemented based on the output from

ultrasonic sensors. When the ultrasonic sensors detect a car, the count of a car of the lane in

focus will increase. With this in place, the Raspberry Pi will sequentially activate each sensor

with a time interval of 50 microseconds. After a delay of 20 microseconds, the results are

recorded, then the Raspberry Pi will process the result and increment the lane’s vehicle count.

The Raspberry Pi sets the vehicle count to zero when the green signal of the lane in focus comes

on.

4.1.3 Green light sequencing and length determination

 For green light sequencing and length determination, the Raspberry Pi uses the obtained

traffic density to give the time length of the green signal. For traffic coordination between a

lane and its preceding lane, the traffic density of the lane ahead is obtained and factored in the

determination of the time length of the green signal alongside traffic density of that particular

lane. As stated initially, the maximum time it takes a vehicle to move when the green signal is

on is 7 seconds. With this insight, 7 seconds was set as the standard green time for one vehicle.

4.1.4 Pedestrians interrupt

 For pedestrian interrupt, this is the implementation of how the system enables the

pedestrians to cross the road. This was implemented by the use of a push-button to take inputs

as requests to be made to the Raspberry Pi. After the button was pressed, the Raspberry Pi halts

traffic coordination sequencing by setting all traffic lights to red and initializes the timer to

make pedestrians know the time duration for crossing a road. Figure 4.2 depicts the mechanism.

 21

Figure 4. 2: Pedestrian button activated

4.2 Software Implementation.

 For a software implementation, an application was created with angular framework in

Ionic 4. This app (Trafmap) was created to pull data from the database to enable traffic

regulatory bodies such as MTTD to know the current and past traffic congestion levels of a

particular area. The application depicts the congestion level in the form of a line chart. Also,

the app will display the number of cars which used each lane and the total number of cars which

moved through the location where the traffic lights are situated. The app is shown in Figure 4.3

 22

Figure 4. 3: Web application interface

 In addition, a database was created to hold GPS coordinates of priority vehicles and

hold the current number of vehicles on each lane, the total number of vehicles which used each

lane, and the time each data was captured. This database was created on a server which can be

accessed by the Raspberry Pi. The database relationship diagram is shown in Figure 4.4.

 23

Figure 4. 4: Database Relationship Diagram

From the relationship diagram, one traffic light maps to many traffic lanes and one

area maps to many traffic lights. To relate this with a real-life scenario, East Legon has many

traffic lights, so this represents one area to many traffic lights relationship. Also, each set of

traffic lights has a certain number of traffic lanes; this represents one set of traffic lights to

many lanes. For the relationship diagram of the GPS, the Gps_latitude, Gps_longitude and

Vehiclename were created in the Gps_data table.

 24

Chapter 5: Test and results
In this chapter, the testing of the various constituents of the system is done, and the

results of the system response for coordinated traffic control between a lane and its preceding

lane is analyzed.

5.1 Vehicle Detection

The vehicle detection was tested using only two lanes. This was because the ultrasonic

sensors needed for the system were inadequate. Likewise, the number of GPIO pins on the

Raspberry Pi was limited in number. Each lane had three pairs of color LEDs (red, yellow and

green) as the traffic signal light. The lanes used are shown in Figure 5.1.

Figure 5. 1: Diagram of lanes being used

With these lanes, vehicle detection was tested. It was tested with the system, as shown

in Figure 5.2.

Figure 5. 2: Test Setup

 25

For vehicle detection, two tests were implemented. The first test was implemented by

placing the car on one lane and leaving the other lane vacant. When this was implemented, the

vehicle was detected on the lane it occupied, and no vehicle was detected on the other lane.

This result is shown in Figure 5.3.

Figure 5. 3: Vehicle Detection Test

In Figure 5.3, the lane which is occupied by the vehicle has its green signal on and the

unoccupied lane has its red signal on. The results show that the vehicle detection system works

effectively.

5.2 Acquisition of traffic density, Green Light Sequencing and Length Determination.

 The acquisition of traffic density was tested by placing several cars in the two lanes

shown in Figure 5.1. The setup diagram used to test this is shown in Figure 5.4. In Figure 5.4

the folded papers are used to represent the cars.

 26

The number of cars used, their corresponding lanes and the car count determined by the system

are shown in Table 5.1

Table 5. 1: Results from test

Number of cars Lanes System car count

10 cars 1 10

5 cars 2 5

As shown in Table 5.1, the number of cars on a lane is the precise number of cars the system

detected and counted.

 For green light sequence and length determination, the algorithm was also tested on the

two lanes, as shown in Figure 5.1. For this test, values of traffic density for each lane was

generated using a for-loop in python. These values were fed into the algorithm to determine the

green time and the sequence of the next green light. The algorithm was structured such that if

Figure 5. 4: Traffic Density
Acquisition

 27

no car is detected on a particular lane, the traffic light will stay on the red signal. However, if

there is a car detected, the number of cars will be accumulated and processed to gain the time

length of the green signal in a time of 0.02 seconds, then the traffic light will turn green. The

results of this test are shown in table 5.2

Table 5. 2: Results from Algorithm

Number of cars Lanes Red light status Green time allocated

0 1 On 0

10 1 Off 67 seconds

20 2 Off 117 seconds

0 2 On 0

5 2 Off 32 seconds

 The test result shown in Table 5.2 were generated by the green light and sequence

algorithm. As stated in the system architecture, the maximum time allocated for an average

vehicle to move when the green signal is turned on is 7 seconds (3.5 seconds of reaction time

and 3.5 seconds of acceleration). With this, the algorithm multiplies the number of cars by 7 to

get the green time, but 4 seconds is taken from the green time since the standard time for the

yellow light is 3-6 seconds. From the table, the algorithm allocated 66 seconds of green time to

10 cars in lane1, but the algorithm allocated 116 seconds of green time to 20 cars. This was

done because the standard green time for a lane is 120 seconds (including the amber light)[9].

Thus, subtracting the 3 seconds for the amber light from 120 seconds will result in 117 seconds

of green time.

 28

 Correspondingly, the green light length of coordinated control was tested. This was

tested with two main lanes which are shown in Figure 5.5.

 The two lanes are main lanes of separate intersections; with two separate Raspberry Pi

boards as the processing units. In order to determine the length of the green light for lane2, the

traffic density of lane1 is factored in the algorithm which determines the green time. The

algorithm pulls the traffic density of lane1 from the database and calculates the number of

vacant spaces for vehicles in lane1 by subtracting the traffic density from the lane capacity

defined in the algorithm. The difference obtained will be used in the green time determination.

For this test, the values of traffic density for each lane was generated using a randomizer in

Python.

Table 5. 3: Results from the Green Light Length Determination Algorithm

Lane1 capacity Lane1 number of
cars

Lane2 number of
cars

Green time allocated

15 cars 5 6 38 seconds

8 cars 5 8 11 seconds

20 cars 10 20 66 seconds

5 cars 0 10 31 seconds

Figure 5. 5: Diagram of Lanes
being used

 29

5.3 Webapp

The result of the home page interface is shown in Figure 4.3 in section 4.2. When the

sign-in button is clicked, a sign in form is opened. This was necessary to ensure only authorized

users can login in. The login form is shown in Figure 5.6. When a user logs in, the dashboard

page opens. As described in the software implementation, the dashboard shows a line chart of

traffic congestion over time. It also shows the number of cars which used each lane and the total

number of cars which went through the area. Figure 5.7 shows the interface of the dashboard

with some sample numbers.

 30

Figure 5. 6: Login Page Interface

 31

Figure 5. 7: Dashboard Interface

 32

5.4 Statistical test of response time of coordinated traffic control between a lane and its

preceding lane.

A t test was conducted to see the responsiveness of the coordinated traffic control by

comparing the execution time of the coordinated traffic control algorithm (coordinated traffic

control of a lane and its preceding lane) with the execution time of the normal traffic control

algorithm (traffic control on just one lane). Figure 5.8 shows the results of this test.

Figure 5. 8: T test results

These test results were generated with a web based t test calculator[16]. For this test the

null hypothesis is that the means of the two samples are the same. But the p value acquired is

0.0394 which is less than 0.05, meaning the null hypothesis will be rejected. This result was

obtained because the normal traffic control algorithm goes through fewer processes than the

coordinated traffic control algorithm. Normal traffic control algorithm checks for traffic density

 33

of a lane and uses the traffic density to determine the green time. But, the coordinated traffic

control checks for traffic density and also accesses traffic density of the preceding lane from

the database to determine the green time.

5.5 Test and analysis of wait time of the smart system and of a traditional traffic light

A test was conducted with a stopwatch to acquire the wait time (time for the signal to

switch from red to green) for one car when the light traffic signal is red. The test was conducted

on a traditional traffic light at the Okponglo, Legon intersection (Figure 5.9)

Figure 5. 9: case study area (Okponglo, Legon intersection)

 This test has a sample size (one sample is the wait time of the first car in a queue on the

fourth lane in front of a traffic light) of 15 and was used to generate graphs in Excel to analyze

how optimal the system is in solving traffic congestion. The lane used is shown in Figure 5.10.

 34

Figure 5. 10: Diagram of lane (Okponglo Legon intersection) being used.

After recording the wait times on the fourth lane of the traditional traffic light, the wait-

times of the smart system was also recorded. To record the wait-times on the fourth lane of the

smart system, the intersection in Figure 5.10 of the Okponglo, Legon junction was adapted. The

wait times are shown in Appendix A. The wait times accumulated were used to obtain average

wait times of each traffic light system. These averages were used to generate a bar graph. Figure

5.11 shows the results of this test.

Figure 5.11: Graph of plotted averages

 35

Key:

• 1 - Smart traffic system

• 2 – Traditional traffic system

From the graphs, the smart system had less waiting times than the traditional traffic light.

Thus, we can conclude that the smart system is optimal enough to manage traffic congestion.

 36

Chapter 6: Conclusion, Limitations and Future Work

6.1 Conclusion

To design and successfully implement a low cost and smart traffic management system,

the vehicle detection system, traffic light sequence and length determination algorithm,

pedestrian enabled system and tracking system must be accurate and precise.

The vehicle detection system with ultrasonic sensors can be improved with doppler

ultrasonic sensors for more accurate results and better working of the system. The doppler

ultrasonic sensors are less susceptible to interference, unlike the ones used in this project. Also,

the vehicle detection system with the inductive loops can be exchanged for vehicle detection

system with doppler sensors because as cars keep passing over the inductive wires, the accuracy

of the results will be reducing. This is because the wires will be subjected to stress from the

moving cars and temperature.

In the green light sequencing and length determination, the traffic density for each lane

is important. This is the data acquired from the acquisition of traffic density process. To ensure

traffic congestion is fairly reduced on each lane, the standard green time for a car is introduced.

Also, to ensure the gap in between two intersections is not blocked by cars entering a lane, the

lane capacity is introduced. With all these, the wait time of vehicles behind traffic lights at

intersections is reduced. Due to the reduction the system proposed has lesser average wait time

than a traditional traffic light wait time.

For the tracking system, the Node MCU must have a strong internet connection to

ensure the coordinates acquired from the GPS module is sent to the database and retrieved by

the Raspberry Pi to provide a quick response.

 37

6.2 Limitations

 The system is likely to produce inaccurate results in very windy areas. This is because

the sound waves that are sent and received by the trigger and echo components are not

optimized to generate accurate results. If doppler ultrasonic sensors are adopted, the sound

waves could be optimized to reduce any interference by wind and generate more accurate

results.

 For the coordination control, the response time of the system can be optimized through

Pi to Pi interaction instead of the communication through the use of a database.

6.3 Future Work

 In situations where sensors are faulty or destroyed, algorithms can be used to process

the data accumulated over a period of time to predict how the traffic density will be, to

coordinate and control traffic.

 Also, when most vehicles break down in a lane, traffic congestion increases since cars

will have to use road diversions to travel. This can be solved with cameras and the aid of

machine learning. These tools can be used to determine how long a particular car has been

stationary. When results are acquired and the situation is affirmed (for example the breakdown

of a vehicle), the system can alert officials of towing enterprises to remove the vehicle.

 Finally, a backup power source can be activated when there is a power cut. During

power cuts, traffic congestion levels increase since the traffic management system will be

deactivated. To ensure this does not occur; a backup power source will be needed to ensure the

traffic system still runs when power is cut. Also, in situations where the backup power fails, the

system must be able to send an alert to the MTTD to ensure one of their personnel moves to the

area to regulate traffic.

 38

References
[1] M.-N. Mahama, E. Kenu, D. A. Bandoh, and A. N. Zakariah, “Emergency response time

and pre-hospital trauma survival rate of the national ambulance service, Greater Accra
(January – December 2014),” BMC Emerg Med, vol. 18, no. 1, p. 33, Oct. 2018, doi:
10.1186/s12873-018-0184-3.

[2] P. Choudekar, “Implementation of image processing in real time traffic light control -
IEEE Conference Publication.”
https://ieeexplore.ieee.org/document/5941662?arnumber=5941662 (accessed Oct. 13,
2019).

[3] L. Bhaskar, A. Sahai, D. Sinha, G. Varshney, and T. Jain, “Intelligent traffic light
controller using inductive loops for vehicle detection,” in 2015 1st International
Conference on Next Generation Computing Technologies (NGCT), Sep. 2015, pp. 518–
522, doi: 10.1109/NGCT.2015.7375173.

[4] S. S. Mohammed Ali, B. George, and L. Vanajakshi, “Multiple inductive loop detectors
for intelligent transportation systems applications: Ramp metering, vehicle re-
identification and lane change monitoring systems,” in 2013 IEEE Symposium on
Computers Informatics (ISCI), Apr. 2013, pp. 176–180, doi: 10.1109/ISCI.2013.6612398.

[5] S. Sheik Mohammed Ali, B. George, L. Vanajakshi, and J. Venkatraman, “A Multiple
Inductive Loop Vehicle Detection System for Heterogeneous and Lane-Less Traffic,”
IEEE Transactions on Instrumentation and Measurement, vol. 61, no. 5, pp. 1353–1360,
May 2012, doi: 10.1109/TIM.2011.2175037.

[6] A. Nidhi and S. Amit, “Intelligent Real Time Traffic Controller Using Image Processing –
A Survey,” vol. 4, no. 4, Apr. 2015.

[7] N. Varsha and sushilku Rajbhoj, “An Intelligent Framework for Vehicle Traffic
Monitoring System using IoT,” 2017.

[8] J. Liu, J. Han, H. Lv, and B. Li, “An Ultrasonic Sensor System Based on a Two-
Dimensional State Method for Highway Vehicle Violation Detection Applications,”
Sensors, vol. 15, no. 4, pp. 9000–9021, Apr. 2015, doi: 10.3390/s150409000.

[9] “Traffic Signal Timing Manual: Chapter 5 - Office of Operations.”
https://ops.fhwa.dot.gov/publications/fhwahop08024/chapter5.htm (accessed Apr. 19,
2020).

[10] C. Chng, “Introduction to IoT Using the Raspberry Pi.”
https://www.codemag.com/Article/1607071/Introduction-to-IoT-Using-the-Raspberry-Pi
(accessed Feb. 24, 2020).

[11] Herga, “What is a push button switch?,” Nov. 19, 2018.
https://www.herga.com/pressrelease/detail.php?aid=100&did=What-is-a-push-button-
switch? (accessed Feb. 24, 2020).

[12] “All About Ultrasonic Sensors & How They Work with Arduino | Arrow.com,” Apr.
04, 2018. https://www.arrow.com/en/research-and-events/articles/ultrasonic-sensors-how-
they-work-and-how-to-use-them-with-arduino (accessed Feb. 24, 2020).

[13] M. Rousse, “What is seven-segment display? - Definition from WhatIs.com,”
WhatIs.com, Jan. 04, 2012. https://whatis.techtarget.com/definition/seven-segment-
display (accessed Feb. 24, 2020).

[14] “Insight Into ESP8266 NodeMCU Features & Using It With Arduino IDE (Easy
Steps),” Last Minute Engineers, Aug. 20, 2018. https://lastminuteengineers.com/esp8266-
nodemcu-arduino-tutorial/ (accessed Apr. 19, 2020).

 39

[15] “What is an LED: Some Basic Information (Revised 2019) | MyLEDLightingGuide |
MyLEDLightingGuide.” https://www.myledlightingguide.com/blog-what-is-an-led
(accessed Apr. 19, 2020).

[16] “GraphPad QuickCalcs: t test calculator.”
https://www.graphpad.com/quickcalcs/ttest1.cfm (accessed May 10, 2020).

 40

Appendix

Appendix A: Recorded wait times

 41

Appendix B: Algorithm for entire system

#Traffic Light system
#@author: Jude Asare Donkor
#Department of Computer Engineering
#Ashesi University
#Final Capstone Project

#!/usr/bin/python
import RPi.GPIO as GPIO
#from threading import Thread
import mysql.connector
import time
import signal
import sys
#import threading
import multiprocessing
GPIO.setmode(GPIO.BOARD)
GPIO.setwarnings(False)
#Global variables
red1 = 11
yellow1 = 12
green1 = 13
red2 = 15
yellow2 =16
green2 = 18
red3 = 19
yellow3 = 21
green3 = 22
b = 0
k = 0
lanes = 0
lanes1 = 0
intial_distance = 0
intial_distance2 = 0
final_distance = 0
final_distance2 = 0
total_cars_lane1 = 0
total_cars_lane2 = 0
total_cars_lane3 = 0
total_cars = 0
intime = 0
green_time = 0
TRIG1 = 23
ECHO1 = 24
TRIG2 = 8
ECHO2 = 10
TRIG3 = 26
ECHO3 = 19
TRIG4 = 22
ECHO4 = 21

#Setup for traffic light
GPIO.setup(red1,GPIO.OUT)
GPIO.setup(yellow1,GPIO.OUT)
GPIO.setup(green1,GPIO.OUT)
GPIO.setup(red2,GPIO.OUT)
GPIO.setup(yellow2,GPIO.OUT)
GPIO.setup(green2,GPIO.OUT)

#7 segment display

 42

GPIO.setup(29,GPIO.IN)#ppush button1 pin
GPIO.setup(26,GPIO.IN)#push button2 pin
GPIO.setup(31,GPIO.OUT)
GPIO.setup(32,GPIO.OUT)
GPIO.setup(33,GPIO.OUT)
GPIO.setup(35,GPIO.OUT)
GPIO.setup(36,GPIO.OUT)
GPIO.setup(37,GPIO.OUT)
GPIO.setup(38,GPIO.OUT)
GPIO.setup(40,GPIO.OUT)
button_state = 0 #GPIO.input(29)

sending to database function
def sendtodb():
 mydb = mysql.connector.connect(
 host="192.168.8.114",
 user="raspi",
 passwd="raspi",
 database="traffic"
)
 mycursor = mydb.cursor()
 lane1 = lane1_checkcars()
 lane2 = lane2_checkcars()
 TT_Lane1 = total_cars_lane1
 TT_Lane2 = total_cars_lane2
 sql_query = "INSERT INTO trafficLanes (Lane1, Lane2, TT_Lane1, TT_Lane2)
VALUES(%s,%s,%s,%s)"
 val =(lane1,lane2,TT_Lane1,TT_Lane2)
 mycursor.execute(sql_query,val)
 mydb.commit()
 # print(mycursor.rowcount, "record inserted.")

function to check pushbutton
def buttonstate():
 button_state = GPIO.input(29)
 if button_state == 1:
 button_state = 1
 return button_state

#ultrasonic sensor functions
def ultrasonic1():
 GPIO.setup(TRIG1,GPIO.OUT)
 GPIO.setup(ECHO1,GPIO.IN)
 # GPIO.output(TRIG1, False)
 # time.sleep(0.00002)
 GPIO.output(TRIG1, True)
 time.sleep(0.02)
 GPIO.output(TRIG1, False)
 while GPIO.input(ECHO1)==0:
 pulse_start1 = time.time()
 while GPIO.input(ECHO1)==1:
 pulse_end1 = time.time()
 pulse_duration1 = pulse_end1 - pulse_start1
 distance1 = pulse_duration1 * 17150
 distance1 = round(distance1, 2)
 time.sleep(0.02)
 return distance1
def ultrasonic2():
 # GPIO.output(TRIG2, False)
 # time.sleep(0.00002)
 GPIO.setup(TRIG2,GPIO.OUT)
 GPIO.setup(ECHO2,GPIO.IN)
 global pulse_end2
 GPIO.output(TRIG2, True)

 43

 time.sleep(0.02)
 GPIO.output(TRIG2, False)
 while GPIO.input(ECHO2)==0:
 pulse_start2 = time.time()
 while GPIO.input(ECHO2)==1:
 pulse_end2 = time.time()
 pulse_duration2 = pulse_end2 - pulse_start2
 distance2 = pulse_duration2 * 17150
 distance2 = round(distance2, 2)
 time.sleep(0.02)
 return distance2
def ultrasonic3():
 # GPIO.output(TRIG3, False)
 # time.sleep(0.00002)
 GPIO.setup(TRIG3,GPIO.OUT)
 GPIO.setup(ECHO3,GPIO.IN)
 GPIO.output(TRIG3, True)
 time.sleep(0.02)
 GPIO.output(TRIG3, False)
 while GPIO.input(ECHO3)==0:
 pulse_start3 = time.time()
 while GPIO.input(ECHO3)==1:
 pulse_end3 = time.time()
 pulse_duration3 = pulse_end3 - pulse_start3
 distance3 = pulse_duration3 * 17150
 distance3 = round(distance3, 2)
 time.sleep(0.02)
 return distance3
def ultrasonic4():
 # GPIO.output(TRIG4, True)
 # time.sleep(0.00002)
 GPIO.setup(TRIG4,GPIO.OUT)
 GPIO.setup(ECHO4,GPIO.IN)
 GPIO.output(TRIG4, True)
 time.sleep(0.02)
 GPIO.output(TRIG4, False)
 while GPIO.input(ECHO4)==0:
 pulse_start4 = time.time()
 while GPIO.input(ECHO4)==1:
 pulse_end4 = time.time()
 pulse_duration4 = pulse_end4 - pulse_start4
 distance4 = pulse_duration4 * 17150
 distance4 = round(distance4, 2)
 time.sleep(0.02)
 return distance4

function to check vehicle presence and acquisition of number of vehicles
def lane1_checkcars():
 global total_cars_lane1
 lane1_cars = 0
 intial_distance = ultrasonic1()
 intial_distance2 = ultrasonic2()
 if intial_distance < 5 or intial_distance2 < 5:
 lane1_cars += 1
 total_cars_lane1 = total_cars_lane1 + lane1_cars
 return lane1_cars

def lane2_checkcars():
 global total_cars_lane2
 lane2_cars = 0
 intial_distance = ultrasonic3()
 intial_distance2 = ultrasonic4()
 if intial_distance < 5 or intial_distance2 < 5:
 lane2_cars += 1
 total_cars_lane2 += lane2_cars

 44

 return lane2_cars

function to allocate time for green signal

def lane1_time():
 intime = lane1_checkcars()
 if (intime <= 10):
 intime = intime * 7
 green_time = intime
 else:
 green_time = 7*10
 return green_time

def lane2_time():
 intime = lane2_checkcars()
 if (intime <= 10):
 intime = intime * 7
 green_time = intime
 else:
 green_time = 7*10
 return green_time

#function to deactivate red light
def lanecheck_time(lane):
 pw = 0
 if lane == 0:
 pw = 0
 else:
 pw = 1.5
 return pw

#function to intialise green light
def checkcar(lane1): #for green and yellow light
 y = True
 if lane1 == 0:
 y = False
 return y
def checkcarf(lane2):
 ty = False
 if lane2 == 0:
 ty = True
 return ty

#function to intiliase pedestrian timer
def pushbutton():
 GPIO.output(red1,True)
 GPIO.output(red2,True)
 timer()

def timer():
 time.sleep(1)
 for x in range(0,1):
 GPIO.output(33,1)#9
 GPIO.output(31,1)
 GPIO.output(38,1)
 GPIO.output(36,1)
 GPIO.output(37,1)
 GPIO.output(35,1)
 time.sleep(0.5)
 GPIO.output(33,0)#9
 GPIO.output(31,0)
 GPIO.output(38,0)
 GPIO.output(36,0)
 GPIO.output(37,0)
 GPIO.output(35,0)

 45

 time.sleep(0.5)
 GPIO.output(33,1)#8
 GPIO.output(31,1)
 GPIO.output(38,1)
 GPIO.output(36,1)
 GPIO.output(37,1)
 GPIO.output(32,1)
 GPIO.output(35,1)
 time.sleep(0.5)
 GPIO.output(33,0)#8
 GPIO.output(31,0)
 GPIO.output(38,0)
 GPIO.output(36,0)
 GPIO.output(37,0)
 GPIO.output(32,0)
 GPIO.output(35,0)
 time.sleep(0.5)
 GPIO.output(33,1)#7
 GPIO.output(31,1)
 GPIO.output(38,1)
 time.sleep(0.5)
 GPIO.output(33,0)#7
 GPIO.output(31,0)
 GPIO.output(38,0)
 time.sleep(0.5)
 GPIO.output(33,1)#6
 GPIO.output(37,1)
 GPIO.output(38,1)
 GPIO.output(36,1)
 GPIO.output(32,1)
 GPIO.output(35,1)
 time.sleep(0.5)
 GPIO.output(33,0)#6
 GPIO.output(37,0)
 GPIO.output(38,0)
 GPIO.output(36,0)
 GPIO.output(32,0)
 GPIO.output(35,0)
 time.sleep(0.5)
 GPIO.output(33,1)#5
 GPIO.output(37,1)
 GPIO.output(38,1)
 GPIO.output(36,1)
 GPIO.output(35,1)
 time.sleep(0.5)
 GPIO.output(33,0)#5
 GPIO.output(37,0)
 GPIO.output(38,0)
 GPIO.output(36,0)
 GPIO.output(35,0)
 time.sleep(0.5)
 GPIO.output(31,1)#4
 GPIO.output(38,1)
 GPIO.output(37,1)
 GPIO.output(35,1)
 time.sleep(0.5)
 GPIO.output(31,0)#4
 GPIO.output(38,0)
 GPIO.output(37,0)
 GPIO.output(35,0)
 time.sleep(0.5)
 GPIO.output(33,1)#3
 GPIO.output(31,1)
 GPIO.output(38,1)
 GPIO.output(36,1)

 46

 GPIO.output(37,1)
 time.sleep(0.5)
 GPIO.output(33,0)#3
 GPIO.output(31,0)
 GPIO.output(38,0)
 GPIO.output(36,0)
 GPIO.output(37,0)
 time.sleep(0.5)
 GPIO.output(33,1)#2
 GPIO.output(31,1)
 GPIO.output(37,1)
 GPIO.output(36,1)
 GPIO.output(32,1)
 time.sleep(0.5)
 GPIO.output(33,0)#2
 GPIO.output(31,0)
 GPIO.output(37,0)
 GPIO.output(36,0)
 GPIO.output(32,0)
 time.sleep(0.5)
 GPIO.output(31,1)#1
 GPIO.output(38,1)
 time.sleep(0.5)
 GPIO.output(31,0)#1
 GPIO.output(38,0)
 time.sleep(0.5)
 GPIO.output(33,1)#0
 GPIO.output(31,1)
 GPIO.output(38,1)
 GPIO.output(36,1)
 GPIO.output(32,1)
 GPIO.output(35,1)
 time.sleep(0.5)
 GPIO.output(33,0)#0
 GPIO.output(31,0)
 GPIO.output(38,0)
 GPIO.output(36,0)
 GPIO.output(32,0)
 GPIO.output(35,0)
 time.sleep(0.5)
 GPIO.output(40,1)
 time.sleep(0.5)
 GPIO.output(40,0)

#function for traffic coordination
def trafficcoordination():
 #red1,yellow1,green1
 b = buttonstate()
 GPIO.output(red1,checkcarf(lane1_time))
 GPIO.output(green1,checkcar(lane1_time()))
 time.sleep(lane1_time())
 # buttoncheck()
 b = buttonstate()
 GPIO.output(green1,False)
 GPIO.output(yellow1,checkcar(lane1_time()))
 time.sleep(lanecheck_time(lane1_time()))
 # buttoncheck()
 b = buttonstate()
 GPIO.output(yellow1,False)
 GPIO.output(red1,True)
 sendtodb()
 GPIO.output(red2,checkcarf(lane2_time()))
 GPIO.output(green2,checkcar(lane2_time()))
 time.sleep(lane2_time())
 # buttoncheck()

 47

 b = buttonstate()
 GPIO.output(green2,False)
 GPIO.output(yellow2,checkcar(lane2_time()))
 time.sleep(lanecheck_time(lane1_time()))
 b = buttonstate()
 GPIO.output(yellow2,False)
 GPIO.output(red2,True)
 sendtodb()
 b = buttonstate()
 time.sleep(1)
 if b == 1:
 pushbutton()

#main
if __name__ =='__main__':

 while True:
 GPIO.output(red2,True)
 GPIO.output(red1,True)
 buttonstate()
 trafficcoordination()
 #sendtodb()

 48

Appendix C: Priority vehicle code Node MCU

//Priority Vehicle code
//@author: Jude Asare Donkor
//Department of Computer Engineering
//Ashesi University
//Final Capstone Project
#include <ESP8266WiFi.h>
#include <ESP8266WiFiMulti.h>
#include <ESP8266HTTPClient.h>
#include <WiFiClient.h>
ESP8266WiFiMulti WiFiMulti;
#include <SoftwareSerial.h>
#include <TinyGPS++.h>
SoftwareSerial gpsSerial(4,5); //txpin- pin8 rxpin - pin9
TinyGPSPlus gps;
float lattitude,longitude;

void setup() {
 //Serial.begin(115200);
 gpsSerial.begin(9600);
 Serial.begin(9600);
 Serial.println();
 Serial.println();
 Serial.println();
 for (uint8_t t = 4; t > 0; t--) {
 Serial.printf("[SETUP] WAIT %d...\n", t);
 Serial.flush();
 delay(1000);
 }
 WiFi.mode(WIFI_STA);
 WiFiMulti.addAP("Jd", "Peakab00");//wifi and wifi password
}
void loop() {
while (gpsSerial.available())
 {
 int data = gpsSerial.read();
 if (gps.encode(data))
 {
 lattitude = (gps.location.lat());
 longitude = (gps.location.lng());
 if ((WiFiMulti.run() == WL_CONNECTED)) {
 WiFiClient client;
 HTTPClient http;
 Serial.print("[HTTP] begin...\n");
 //url to send data
 if (http.begin(client,
"http://192.168.8.114/Gps/insert.php?insert&Gps_lattitude="+String(lattitude)+"&Gps
_longitude="+String(longitude)+"&Vehiclename=Ambulance""")) { // HTTP
//"http://localhost/Gps/insert.php?insert&Gps_lattitude="+String(latitude)+"&Gps_lo
ngitude="+String(longitude)+"&Vehiclename=Ambulance""")
 Serial.print("[HTTP] GET...\n");
 // start connection and send HTTP header
 int httpCode = http.GET();
 // httpCode will be negative on error
 if (httpCode > 0) {
 // HTTP header has been send and Server response header has been handled
 Serial.printf("[HTTP] GET... code: %d\n", httpCode);

 49

 // file found at server
 if (httpCode == HTTP_CODE_OK || httpCode == HTTP_CODE_MOVED_PERMANENTLY)
{
 String payload = http.getString();
 Serial.println(payload);
 }
 } else {
 Serial.printf("[HTTP] GET... failed, error: %s\n",
http.errorToString(httpCode).c_str());
 }
 http.end();
 } else {
 Serial.printf("[HTTP} Unable to connect\n");
 }
 }
 Serial.print ("lattitude: ");
 Serial.println (lattitude);
 Serial.print ("longitude: ");
 Serial.println (longitude);
 }
 }
//delay(10000);
}

