

ASHESI UNIVERSITY COLLEGE

VEHICLE CONDITION MONITORING

FOR FLEET MANAGEMENT

CAPSTONE PROJECT

B.Sc. Computer Engineering

Terry Selassie Tettey

2021

ASHESI UNIVERSITY COLLEGE

VEHICLE CONDITION MONITORING

FOR FLEET MANAGEMENT

CAPSTONE PROJECT

Capstone Project submitted to the Department of Engineering, Ashesi

University College in partial fulfilment of the requirements for the award of

Bachelor of Science degree in Computer Engineering.

Terry Selassie Tettey

2021

i

DECLARATION

I hereby declare that this capstone is the result of my own original work and that no part of

it has been presented for another degree in this university or elsewhere.

Terry Tettey

Date:

27/04/2021

I hereby declare that preparation and presentation of this capstone were supervised in

accordance with the guidelines on supervision of capstone laid down by Ashesi University

College.

Date:

ii

Acknowledgments

To my supervisor, Dr. Nathan Amanquah whose insight, guidance and encouragement

aided me throughout this project.

iii

Abstract

With the many advances in technology, the field of fleet management is becoming

more relevant in everyday activities. The ability to keep track of service vehicles while they

are on the move is very useful to as it helps businesses who operate such services to cut cost

and monitor employees who are on the move. Currently, there are many variations of fleet

management systems which depend solely on locational data from a GPS enabled device

like a mobile device. There are also much more costly fleet management systems which can

track the location of vehicles and do so much more. This project aims to provide a less costly

-board network for commercial use and for vehicle diagnosis.

iv

Table of Contents

DECLARATION..i

Acknowledgments ...ii

Abstract .. iii

Table of Contents ...iv

Chapter 1 - Introduction ..6

Background..6

Problem Definition ..7

Objectives ..8

Requirements ...8

Proposed Solution..8

Scope ...9

Chapter 2 - Literature Review...9

What is CAN?..9

Reference Review..11

Chapter 3 - Requirement Specification...13

Introduction ...13

Scope ...13

Overall Description ...14

3.3.1 Product Perspective ..14

3.3.2 Component Functions...15

v

3.3.3 User Classes and Characteristics ..16

3.3.4 Operating Environment ..17

3.3.5 Design and Implementation Constraints...17

3.3.6 Assumptions and Dependencies ...18

Specific Requirements...18

Non-Functional Requirements...21

Chapter 4 - Design...22

Introduction ...22

Hardware Component Selection..23

Circuit Design..25

Software Solution Design..26

Chapter 5 - Implementation...28

Testing Modules ..28

Prototype Creation...34

Chapter 6 - Conclusion ...37

References ..38

6

Chapter 1 - Introduction

Background

New technologies are being created, tested, and implemented every day at a pace that

is more rapid than before. Looking at the current state of industry-grade machines and

solutions, mobile phones, gadgets; it is very clear to see that technology is progressing quite

quickly and is waiting for no man. This holds for the state of vehicle technologies as well.

With all these new technological innovations being released in newer vehicle models,

vehicular diagnostic methods of old which relied on taking apart a vehicle to determine a

problematic or faulty area are quickly being thrown to the side and more convenient

diagnosis methods and protocols are being instated in their place. These new vehicular

diagnostic methods do not require taking apart some

Instead, a peripheral device is plugged into the vehicle a

and logged. This approach greatly speeds up the diagnosis process and makes the work of

automobile mechanics exponentially easier.

The technology that allows vehicles to diagnose themselves has been around for

several years now. This is termed On-board Diagnostics (OBD). This has been implemented

in most American and European automobiles since the early 1980s. Further revisions have

been made since then and they have allowed for peripherals with data logging and analytical

features to access the vehicle's data which consists of fault codes and sensor readings through

a standardized port (usually found under the steering wheel of the vehicle). The newest

revision of Onboard Diagnostics, OBD-II, has proved to be the industry standard for car

diagnosis to date. Since 1996, all cars that were sold in the US were required to have an

OBD-II port on their vehicle for diagnosis purposes.

7

OBD-II Scanners and Loggers can be quite costly but recent developments have

brought about cheaper options to choose from. One of such options is thanks to the emerging

field of Internet of Things (IoT); a dongle that plugs into a -II port and

transmits data to a smartphone over Bluetooth or Wi-Fi. While these access technologies may

be ideal for many smart car enthusiasts, most of these dongles have been commercialized in

such a way that the data cannot be manipulated any further than the smartphone / smart

device used, and often a particular application or software is required to use them. If such

devices were designed with the idea of user customizability in mind, they would be a very

ideal and less costly alternative for vehicular fleet nodes in a fleet management system.

The field of vehicular fleet management is also slowly growing in Ghana; tools are

being produced to help track vehicles and manage their resources to keep operating costs low.

Although the adoption rate for such solutions in the general market is quite low, for people

looking to start a business such as a delivery service or a taxi service, a fleet management

system would benefit them greatly. For this project, such a system would be designed using

low cost and easily accessible components.

Problem Definition

Given the points raised in the Background section, the problem definition for this

capstone project is that Delivery / Taxi Service Providers need a cheaper and more functional

alternative to their proprietary fleet management system to manage vehicles on the move

much more effectively.

A local car dealer may also be able to benefit from such a system especially in the

context of predictive maintenance. In such a case, a vehicle dealer would need an affordable

and e ance and

predict the next time one of their vehicles should be brought back for maintenance.

8

Incorporating the aspect of predictive maintenance in this project would help cut costs

incurred from routine maintenance.

Objectives

Below are the objectives of this project.

Design and implement a device that can take diagnostic data from a vehicle and send that

data over an internet connection to a dashboard on a smart device or computer.

Create the dashboard application to view and analyze the data coming from the device.

Add GPS functionality to the device so that the location of the vehicle it is attached to can

be tracked and logged on the dashboard application.

Requirements

Listed below are the requirements that this solution should meet.

The device should successfully read data from a vehicle and present that information

in a dashboard.

The dashboard application must be able to show the location of the vehicle the device

is attached to.

The solution should be able to work with any vehicle the device can be attached to.

The device should allow the user to identify the data coming from the vehicle.

Proposed Solution

The proposed solution is to create a peripheral device that can connect to an

-Board Diagnostics Port to retrieve vehicle sensor data and diagnostic

information. The device should feature GPS functionality and must then be able to send data

to another device via an IoT access technology for analysis and fault checking.

9

Scope

The scope of this project assumes that the device would be powered by the vehicle it

is connected to. Implementation of security measures for safe networking between the device

and the dashboard application would not be covered.

Chapter 2 - Literature Review

What is CAN?

One of the communication solutions which you can often find under most OBD-II

specifications is the CAN Bus. Most of the sensors and actuators in a vehicle are categorized

into Engine Control Units (ECUs). These ECUs can send data/information to each other

through the CAN Bus. In the CAN Bus, signals/messages from one ECU are sent to all ECUs

in the CAN Bus network. In the vehicle, data on the CAN Bus is transmitted through a

differential voltage solution; There are two lines, CAN-H and CAN-L, carrying similar

signals but opposite in polarity. This helps protect the signal traveling on the CAN Bus from

significant sources of noise. To easily receive or transmit data on the CAN bus, a CAN

Transceiver is needed. This changes the CAN-H and CAN-L differential voltage signals into

CAN Serial data and vice-versa. A CAN controller can then be used as an interface in

conjunction with a CAN transceiver to send frames/data packets over the bus.

The CAN Bus protocol dictates the structure of the CAN Frames / Data Packets being

sent. The general format of a CAN Frame is as follows:

The Start of Frame bit: - This bit indicates the beginning of a message on the CAN

Bus.

The Identifier bits: -

messages. The lower this identifier bit is, the more priority the message has.

10

 The Remote Transmission Request bit: - This bit is used to distinguish between a data

frame and a remote frame. While data frames are the typical messages used to

communicate over the CAN Bus, remote frames are used specifically to request data

from other ECUs on the CAN Bus.

 The Identifier Extension: - This bit determines whether the message is in standard or

extended format. The standard CAN message format can take up to 8 bytes of data

whereas the extended CAN message format can take up to 64 bytes of data.

 The Data Length Code Bits: - These 4 bits give the number of bytes of the message

being transmitted.

 The Data: - This is where the actual message data is being held. Standard CAN format

allows up to 8 bytes to be transmitted in this part of the frame whereas Extended CAN

format allows up to 64 bytes to be transmitted.

 The Cyclic Redundancy Check bits: - These 15 bits are used to detect any errors in the

transmission of the message. The transmitting ECU calculates a checksum from the

bits being transmitted and puts that checksum in this field of the CAN frame.

 The Acknowledgment bit: - This bit is altered by receiving ECUs/nodes when they

successfully receive the message. If a receiving node detects an error in the received

message, the message is discarded, and the sending node tries to send the message

again. This bit has another bit that acts as a delimiter.

 The End of Frame bits: - These 7 bits show the end of the frame.

 The Interframe Space Bits: - These bits determine the minimum allowed space

between CAN frames. It acts as a sort of intermission between CAN Frames where no

node can transmit data.

11

Out of all these parts of a CAN Frame, the parts which are of interest to this project

are:

The Identifier Helps identify which node / ECU the message is coming from or is

specifically addressed to.

The Data Length Code Helps us know the amount of data coming in.

The Data The important bytes to be analyzed.

Figure 2.1: Standard CAN Frame

Because of the nature of CAN Frames and how their sizes may differ, a CAN

Controller is usually needed to manage the Serial CAN data and provide the data through an

interface that is available on most microcontrollers like Serial Peripheral Interface (SPI) or

UART.Figure 2.1

Reference Review

While OBD ports are essential, it has been reported that OBD-II dongles often open

the vehicle up to auto-attacks via mobile applications [1]. Tests on a somewhat small scale

have shown that 50% of OBD-II dongles have poor security measures that make them easy to

hack. Some other flaws in some vehicle security systems which are the responsibility of some

car manufacturers and some car dealers are also covered. While the literary depth of this

article may not be the best, it seems to be a good place to start looking for systems that need

12

improvement in the field of automotive mobile connectivity and the

The scope of this project does not deal with security measures as it may incur additional

costs.

-II port requires a transceiver

integrated circuit that converts the differential CAN-High and CAN-Low signals into digital

CAN signals which can then be handled by most microcontrollers. Some ICs manage to do

this and more, the most popular example being the ELM327. This is a PIC18F2480

microcontroller programmed to communicate with several protocols coming from the OBD-II

port coming from a vehicle [2]. The ELM327 is a standalone solution that can translate most

of the data coming through the CAN bus and send it over a wireless transmission solution

like Wi-Fi or Bluetooth.

 development of a vehicle monitoring and positioning system that uses values

obtained from the vehicle through the OBD-II port as well as a GPS module has been

reported in [3]. Such a setup would prove very beneficial for a fleet management system.

This paper is very insightful because it highlights some of the prominent challenges that one

would face if they tried to implement such a system or any IoT application using a vehicle's

OBD-II port. Here instead of using ELM327 for interfacing, it seems that a solution similar in

architecture to the AGV4000 Diagnostic tool was used. The paper did not go into much detail

in this regard.

An onboard automotive diagnostic system that

network-level physical layer is shown in [4]. The paper manages to give a brief review of the

Controller Area Network (CAN) bus architecture used in most vehicles and highlights some

of its shortcomings. The article may be dated but it shows some problems that may be

experienced when working with older car models.

13

In this paper [5], the authors show their efforts towards building a PC-Based Vehicle

Diagnosis System which is based on On-Board Diagnostics standards. The authors, in their

efforts to generalize the different physical and link layers of the various protocols used in

automobile diagnosis, created a Vehicle Communication Interface as well as some software

that would help with protocol conversion. They also compare and analyze some of the

protocols used in the On-Board Diagnostics system of most vehicles. They conclude that their

solution runs faster and is much more informative than most hand-held automobile diagnostic

tools. This paper is very insightful in the design process of such a system.

Although the GPS Module used in this project was quite straightforward to use, this

website [6] gave some insights into the limitations of the module. The website also provided

some libraries like TinyGPS++ which help parse the data the GPS module gives out. One

noteworthy point about the GPS module is the antenna does not have enough of a range to be

used indoors in most cases.

Chapter 3 - Requirement Specification

Introduction

This chapter shows the requirements that this project needs to meet for interested parties

or customers to be satisfied with the product/solution. This is to serve as a guideline and

checklist for criteria that need to be met.

Scope

The parts/components that make up this project are shown and explained below.

14

1. Software that runs on a mobile device and/or personal computer. The purpose of this

software is to present the data acquired from the automobile in different analytical

representations like tables and graphs. This would help inform the user of abnormalities in

systems during diagnosis. The software may also send requests to a

vehicle for data through the embedded system discussed below.

2. An embedded system that connects the Controller Area Network (CAN) in an automobile

to a device running the designed software through a wireless communication solution. This

system is mainly concerned with handling communication between the device running the

ork. The system

communicates with the device running the software through a wireless connection medium

such as Wi-Fi, Cellular Network, or Bluetooth. This is because with a wireless connection,

embedded system devices can be easily connected to several vehicles and all their data

would be sent to the dashboard application.

Overall Description

3.3.1 Product Perspective

While there are already many different variations of tools that can be used in a similar

way to this and fleet management, an area where

most of these variations fall short is in user customizability. The automobile diagnosis tools

15

and software usually comes as a package and often, the data is not presented in a form that a

user can easily use for further processes.

The way this project aims to overcome such an issue is to allow users to have access to

the information coming straight from the embedded system so that they can use it with their

own projects iew the data coming from

the embedded system. The following block diagram shows the major components that would

be worked on within the scope of this project.

Figure 3.1: Block Diagram showing the relation between the major components in the

project

3.3.2 Component Functions

The maj

 Transfer CAN Frames between Automobile and Mobile Device / Personal Computer. The

Controller Area Network (CAN) in the automobile has messages sent in frames. These

frames can be picked up through the CAN Bus outlets on the OBD2 ports of most

16

automobiles. The major function of the microcontroller is to receive these CAN Frames

from the automobile and send them to the mobile device / personal computer and vice versa.

 Present CAN Frame data in different forms for analysis. The main role of the mobile device

/ personal computer software is to interpret the CAN Frames and represent them in a

graphical format that would help with further analysis / diagnosis. Graphical formats may

include Cartesian Graphs, Pie Charts, Tables and more.

3.3.3 User Classes and Characteristics

Some user classes who are likely to use this solution are listed below along with their

expected characteristics.

 Delivery / Taxi Service

o They have experience dealing with Fleet Management Systems.

o They know how to get data they want from the CAN Bus of a car.

o They have web development experience for integrating the solution into their

service.

 Automobile Mechanical Engineers

o They have experience dealing with many automobile problems.

o They have attained secondary or higher education in mechanical and / or

electrical engineering.

o -

them.

o They must be able to refer to a user-manual when a problem arises, and they do

not know how to solve it.

o They must know how the Controller Area Network Bus works in a car.

17

 IoT Hobbyists

o They must have intermediate programming experience. They must have an

understanding of the blocks of code running on the microcontroller and how to

debug them. This is because they would be filtering the CAN Frames for the

ones they want directly on the microcontroller and send it exactly where they

want without needing to use the software.

o A background in electrical and / or computer engineering is not needed but is

recommended.

o Knowledge of the structure of CAN Frames as well as an idea of the data

being sent in each CAN Frame must be understood.

3.3.4 Operating Environment

The product(s) would most likely be used in delivery service headquarters / automobile

repair shops / garages. The microcontroller would be connected to the automobile and a web

application would be used to interact with the data on a computer or an Android Device.

3.3.5 Design and Implementation Constraints

 Hardware Limitations: The processing power of the microcontroller may limit how much

data can be sent between the automobile and the mobile device / personal computer per unit

time.

 Language Requirements: The products as well as their documentation would be written in

English so users would need to be able to understand English.

 Database Management: Because of possible data overflow, the CAN Frame data may need

to be filtered before it is sent to a database either directly from the microcontroller or from

the mobile device / personal computer running the web application.

18

3.3.6 Assumptions and Dependencies

It is assumed that any user who adopts this solution has an understanding of the data being

r Area Network and understand that different automobile

manufacturers may use different parameter IDs for different data.

Specific Requirements

Microcontroller System Features

1. Requirement: The microcontroller would need to be able to work at a clock rate higher

than the frequency of transmission to prevent aliasing.

Input: Highs and Lows from CAN Bus.

Output: CAN Frame Data

Sampling / Translation of Physical Layer data from CAN Bus to CAN Frame Data.

Priority: High

The microcontroller would be able sample the data coming in from the CAN bus High

and Low lines and translate this to CAN Frame Data.

2. Requirement: The microcontroller should be able to send data to and receive

requests/instructions from the analysis device.

Input: CAN Frames from microcontroller and instructions / requests from Analysis

Device.

Output: Data received on opposite end.

Establish Connection between Microcontroller and Analysis Device

Priority: High

The microcontroller should be able to connect with the Analysis Device through a

wireless communication protocol like Wi-Fi / Bluetooth / Cellular.

19

3. Requirement: The microcontroller should either have GPS Functionality or interface

reliably with a GPS module.

Input: GPS data from microcontroller or GPS module.

Output: GPS data received and shown on the web application. Provide GPS Data

Priority: High

The microcontroller should be able to send GPS data over the chosen communication

protocol.

Software Features

1. Requirement: Graphical Representation of CAN Frames with known IDs.

Input: Button Tap or Press on Known ID / Description, Choosing Graphical Representation

from a list box.

Output: Chosen Graphical Representation is shown.

Priority: High

The CAN IDs would be shown in a list box. A few graphical representations would be

available for CAN Frame Data that have known IDs. Some of these Graphical

Representations are Cartesian Graphs against Time and / or against other ID values and

Tabulation.

2. Requirement 1: The range of IDs shown during the capturing process should be

customizable.

Requirement 2: Values that change during the sniffing process should change the color of

their highlighting.

Input: Button Taps or Clicks

20

Output: List of Frames Show, List of Frames Saved (Captured), Changed values

Highlighted.

Sniffing Mode Option

Priority: High

This mode would be used to figure out the CAN IDs of data that changes. This helps

identify what a particular CAN ID is used for as different manufacturers may have different

uses for different IDs. This would be an optional mode accessible by the click or tap of a

button. A button would then be pressed to capture the data. A customizable range of IDs

would be shown on the screen and anytime their value changes, the changed byte would be

highlighted in a different color. If the value should revert to what it was when it was

captured, the value would be unhighlighted.

User Interfaces

 The User Interface for the Software would be presented graphically instead of in a

complexity.

 The User Interface would be presented in English Language.

 The User Interface would have very conspicuous text for better ease of access.

 CAN Frames would be presented in a List box when sniffing.

 The User Interface would be created as a web application.

 The User Interface would allow logged data to be saved locally on the device.

Hardware Interfaces

 The microcontroller should have a wireless communication interface to communicate with

the analysis device and / or other IoT devices.

 The microcontroller should have a 5V Power supply.

21

The microcontroller should have a higher s

Communications Interfaces

The wireless communication protocol used to send data from the microcontroller to the

analysis device and vice versa should allow for a range of about 50m.

The wireless communication protocol used should have decent data transfer rates (around

5 MB/s).

Non-Functional Requirements

Performance Requirements

The device / solution should be energy efficient. The embedded system connected to the

car and the software interface should not use too much power.

Safety Requirements

The embedded system node should be insulated to prevent liquid spills from short circuiting

the board.

Very high frequencies should be avoided since over exposure to them could lead to some

health risks.

There should be no loose wire connections.

Security Requirements

The connection protocol used should prevent unauthorized parties from accessing the

Encryption may be used to obfuscate the data being transferred.

22

Chapter 4 - Design

Introduction

ion is in two parts: The Hardware Section and the Software

the criteria by which decisions were made as to which hardware components would be the

best choice are discussed. A circuit design using the chosen components is also shown below.

The use case diagram for the software as well as the whole system would also be shown.

Figure 4.1: Diagram showing the components of the solution.

23

Hardware Component Selection

Figure 4.2: Diagram showing the components of the hardware system.

For the hardware, the most important components are:

The microcontroller: - This would be the unit that would be accumulating the data coming

from the other hardware modules connected to it and sending it to the communication

module.

The communication module: - This is the unit that would be used to connect the hardware

solution to the software solution.

The CAN module: - This is the unit that would communicat .

The GPS module: - This module sends the data about the embedded system s location to

the microcontroller.

A Pugh Chart was used to choose the microcontroller / development board to be used

in this project. An ATMega328p, a NXP KL25Z Development Board and a DOIT ESP32

Devkit board. The boards were compared in the following categories: Cost, Accessibility, Ease

of Code Modification, Processing Ability and Peripheral Interfaces. The ATMega328p is the

24

best selection according to the criteria. It is relatively low in cost and easily accessible as they

can usually be found as the choice microcontroller for the Arduino Uno development board. It

is very easy to modify the code on it thanks to the Arduino IDE and although it has lower

processing power than the other choices, it is enough for the purposes outline in this project. It

does have one UART interface, however, using the SoftwareSerial library included with the

Arduino IDE package,

Another Pugh Chart was used to select a communication module that would be used to

connect the microcontroller to the web application. A SIM800 GSM/GPRS module, a HC-05

Bluetooth Module and an ESP8266 Wi-Fi Module were compared against the following

criteria: Cost, Ease of Use, Transmission speed and Communication Range.

 The SIM800L is the best selection according to the criteria. Its very distinguishing

feature is its wider range compared to the other the communication modules as it uses a cellular

data solution. A wider range is desired as it would make it easier to for the system to be used

while on the move. If the range is too small, there may be no need for the GPS module at all.

The SIM800L may be lacking in transmission speed compared to the other modules as it is

only capable of 2G cellular network interfacing, but a higher range is much more valuable for

a fleet management system. The ESP8266 supported with a Wi-Fi Hotspot from a Cellular

Device that supports 3G or 4G would be an excellent alternative to the SIM800L module

however, this depends on the mobile device that it hotspots from.

For the CAN module selection process, it seemed that the most popular and easily

accessible CAN Controller of choice was the MCP2515 CAN Controller. A CAN Transceiver

is needed to bridge the connection between the vehicle and the CAN Controller. The CAN

controller and transceiver can usually be found packaged together in an all-in-one module.

25

There is hardly any difference between the functionality of the TJA1050 and the

MCP2551 CAN Transceiver modules other than the fact that it is easier to find the TJA1050

modules than it is to find the MCP2551 modules.

Not much of a selection process was done for the GPS Module. The UBlox Neo-6m

GPS module was chosen because it was the easiest to find and there was enough documentation

and guides online to help get it working correctly.

From the decisions made in the Pugh Charts, the selected components are:

ATMega328p Microcontroller

SIM800L GSM/GPRS Module

MCP2515 + TJA1050 CAN Module

UBlox Neo-6M GPS Module

Circuit Design

Figure 4.3: Circuit Schematic of Hardware Solution

26

A voltage regulator in the form of an LM7805 (located bottom-right) has also been

added to the schematic to ensure voltage levels are at an acceptable level of 5V. The

ATMega328P (top-left) connects to the MCP2515+TJA1050 CAN Module (bottom-left)

through its SPI interface. The ATMega328P connects to the SIM800L module through its

UART interface. Because a maximum of 4.4V and a minimum of 3.4V can be applied to the

SIM800L, potential divider circuits have been implemented to cut down its operating voltage

and the voltage going through its RXD pin to acceptable levels. The GPS Module (located in

the middle) is connected to the ATMega328P through pins PD2 and PD3. They have been

configured as SoftwareSerial pins with a baud rate of 9600. This is sufficient for the GPS

Module to send data effectively. The DOIT ESP32 Devkit board (located at extreme right)

can be used as a substitute if the SIM800L module does not work properly. It is connected to

the ATMega328p with the same UART interface that the SIM800L module uses, however,

the SIM800L and the DOIT ESP 32 Devkit board would never be connected at the same time

as program conflicts may occur.

Software Solution Design

A web application has been settled on for the software application as it would be very

easy to deploy on either a mobile device or a dedicated / personal computer. The web

application would be created using tools in the MERN stack of web application development

tools. For database management, MongoDB would be use. For server routing and the

implementation of a simple RESTful API, Express.js would be used in conjunction with

Node.js. The front end of the web application would be written with React. To receive data

from the hardware / embedded system, an MQTT broker service would be needed. This is

where the embedded system publishes its data initially. The web application server subscribes

27

to this MQTT broker and saves any data that happens to be published in its database. The

data is then shown on the web application user interface.

A use case diagram showing how a user would interact with the web application and

the system is shown below.

Figure 4.4: Use case diagram showing how a user would interact with the Fleet

Management System.

Below is a simple flow chart showing the different components of the project and how

they would work together.

28

The Web application gets all its data from the MongoDB server database. The server

database receives this data when the ATMega328P module sends an MQTT packet to the

MQTT Broker with the help of the SIM800L module. The CAN Module is constantly

P to send.

The GPS module also sends its latitudinal and longitudinal data to ATMega328P to parse and

send to the server database.

Chapter 5 - Implementation

Testing Modules

A prototype was built to test each of the modules in isolation and together. The

breadboard prototype is shown below.

Figure 4.5 Flowchart of the Fleet Management System

Solution

29

Figure 5.1: Hardware Prototype

The code for the individual modules was implemented in different cases of a switch

statement to ensure that they are tested in isolation. Below are the findings for each of the

modules.

GPS Module

30

Figure 5.2: UBlox Neo-6m GPS Module (top-left), data at startup (top-right), data

after startup (bottom).

 The GPS Module takes a while to find the nearest satellites and finish its triangulation

process but when it is done, it works fine.

CAN Module

31

Figure 5.3: Two CAN modules sending data between each other (left), dummy CAN

data being received (right).

 The CAN Module worked fine when it was connected to another CAN module which

sent dummy data to it. It successfully received the dummy data.

 Tests were also carried out in a car. The car sent data for a few seconds and stopped

right after. This occurred on many attempts. An error flag that is not being monitored

may have been raised on the module.

32

GSM/GPRS Module

Figure 5.4: SIM800L Module before changing the capacitor (left) and after changing

the capacitor (right)

 The SIM800L Module has a faulty problem of resetting every few seconds. Solutions

found online have alluded to the fact that the problem occurs because the onboard

capacitor that aids the antenna has too low of a capacitance needed for proper operation.

 Upon changing the 100uf capacitor on-board into a 1000uf capacitor, the problem does

not seem to have been solved, however, the resets are less frequent. The image below

shows AT commands that were being sent to try and test that it was working fine.

33

Figure 13: AT Commands being sent to SIM800L Module. Every backwards question

mark symbol shows when the module resets itself.

34

Prototype Creation

Figure 5.5: Image of prototype

The prototype design is shown above. A fix could not be found for all the SIM800L

modules tested so the communication module was switched to a Wi-Fi module. The ESP8266

would have been a fine candidate for the prototype but the process of flashing it to make it

operate properly was not successful. Because of that, A DOIT ESP32 Devkit board was used

as the Wi-Fi module as they both share similar functionality. With this change, it became

easier to send the GPS and CAN Data over to the MQTT Broker. The Wi-Fi module could

not be implemented as a substitute communication solution because the ATMega328P does

not have enough UART interfaces to efficiently support this. Changing another set of pins

with the SoftwareSerial library to emulate the UART functionality tends to shift all the

SoftwareSerial pins out of sync.

35

The prototype runs for a few seconds when connected to a vehicle s CAN bus and

stops abruptly. The reason for this is still unknown. Most of the CAN data obtained from the

vehicle were in extended CAN format which is out of this project s scope.

Figure 5.6: Reading CAN Values from Vehicle (top-left), OBD-2 Connector

connected to Vehicle BD-2 Port (top-right), CAN being received (bottom).

Because of this, dependence on an Arduino board simulating a car s CAN Bus has been used

to test the data flow. The figure below shows the substitute CAN bus data being received on

the CloudMQTT broker user interface.

36

Figure 5.7: Showing Substitute Data being received on CloudMQTT

The picture below shows the demo web application user interface. The GPS data from

the MQTT broker updates the position of the marker on the map shown in the image. The

CAN data is shown listed on the web application interface as well.

Figure 5.8: Web application showing the CAN data in a listbox and the GPS location

on a map.

37

Chapter 6 - Conclusion

The prototype is unfinished. It does not meet some of the requirements defined in the

requirements chapter. The embedded system hardware can connect to vehicles however, it

freezes after collecting a few values. It is suspected that this is due to some miscalculation in

the configuration process of the CAN module. The web application cannot freeze the CAN

data which would help identify what particular IDs are responsible for. In retrospect, most of

the time in this project was spent debugging the communication module (SIM800L) as it was

not working as expected. Time would have been better spent if limits were placed on time

sinks like the debugging process. If that were the case, other requirements for this project

could have been met.

Despite these hindrances to the project, the transfer of simulated data from the

embedded system to the web application was successful. If the car successfully connects to

the embedded system and the web application is fully developed, this would prove to be a

very cost-effective fleet management solution.

38

References

[1] -year survey on security challenges in the automotive threat
landsca 2015 International Conference on Connected Vehicles and Expo
(ICCVE), Shenzhen, China, 2015.

[2] M. E. Marin, M. Maricaru, F. Constantinescu and A. G. Gh
2017 Electric

Vehicles International Conference (EV), 2017.

[3] Embedded system for
Proceedings of the 36th International Spring

Seminar on Electronics Technology, 2013.

[4] J. Suwatthikul, R. McMurran,
International Symposium on Industrial Embedded Systems, pp. 1-4,

2006.

[5] J. Hu, F. Yan, J. Tian, P. Wang, -based automobile
2010 Asia-Pacific Power and

Energy Engineering Conference, 2010.

[6] -Depth: Interface ublox NEO- st Minute
Engineers, 2021. [Online]. Available: https://lastminuteengineers.com/neo6m-
gps-arduino-tutorial/. [Accessed 20 April 2021].

