

ASHESI UNIVERSITY

CATTLE TRACKING WITH LORA AND MACHINE LEARNING

CAPSTONE PROJECT

B.Sc. Computer Engineering

Sula Thembumenzi Mabuza

2021

ASHESI UNIVERSITY

CATTLE TRACKING WITH LORA AND MACHINE LEARNING

CAPSTONE PROJECT

Capstone Project submitted to the Department of Engineering, Ashesi

University in partial fulfilment of the requirements for the award of Bachelor

of Science degree in Computer Engineering.

Sula Mabuza

2021

i

DECLARATION

I hereby declare that this capstone is the result of my own original work and that no part of

it has been presented for another degree in this university or elsewhere.

Candidate's Signature: S.Mabuza

Candidate's Name: Sula Mabuza

Date: 27/04/2021

I hereby declare that preparation and presentation of this capstone were supervised in

accordance with the guidelines on supervision of capstone laid down by Ashesi University

College.

Supervisor's Signature:

Supervisor's Name:

Date:

ii

Acknowledgments

To my supervisor, Dr. Nathan Amanquah, whose encouragement and academic advice

helped me undertake this project.

iii

Abstract

To curb the increase in livestock theft in Sub-saharan countries, this project looked

at machine learning applications like cattle tracking on a farm. Received signal strength

indicators from home available WiFis were utilized to fingerprint locations on the farm.

Where WiFis were not available, ESP866 Node MCUs were used to deploy access points.

These ESP8266 Node MCUs were also given SSIDs that could easily be used for

classification using the SSIDs as labels in the program. Two classifiers were explored, the

support vector machine (SVM) and the Decision Tree. A linear kernel with a very low

gamma value of 0.001 was used for the SVM classifier. The decision tree classifier

yielded an average accuracy of 0.89683659, while the support vector machine yielded an

average accuracy of 0.915699. The SVM classifier emerged as a suitable classifier to use

to achieve reliable accuracy in cattle tracking. Lora proved to be an essential tool in

wireless communication of the prediction results from the pendant/transmitter designed to

the receiver, hence enhancing mobility in tracking. Future works include incorporating

distance calculation to make the tracking process more straightforward and efficient.

Sensor nodes that will further provide the machine learning algorithm designed with

unique data values will also be incorporated to compensate for longer farms that might

need the deployment of more Node MCU access points. This is an effort to maintain low

costs in tracking using the solution provided by this project. Therefore, the solution

presented by this project proved to be feasible.

iv

Table of Content

Acknowledgments ... ii

Abstract .. iii

Chapter 1: Introduction ... 1

1.1 Background ... 2

1.2 Summary ... 4

Chapter 2: Literature Review .. 5

2.1 Location Tracking ... 5

2.1.1 Using GPS .. 6

2.1.2 Using Lora .. 7

2.1.3 Using TDoA and RSSI ... 8

2.2 Characteristics of Lora, GPS, and WiFi .. 11

Chapter 3: Design Requirements .. 12

3.1 Solution and User Requirements ... 12

3.1.1 Use Cases ... 12

3.1.1 User requirements ... 13

3.1.2 Solution requirements ... 13

3.2 Project Design Objective ... 13

3.3 Hardware Design Decisions .. 15

3.3.1 Pendant/Transmitter .. 16

3.3.2 Receiver ... 17

3.4 Software design decisions ... 19

3.4.1 Software tools for machine learning... 19

3.4.1.1 Anaconda ... 19

3.4.1.2 Machine Learning algorithms ... 19

3.4.1.3 Embedded systems software ... 20

Chapter 4: Implementation ... 21

4.1 Hardware Implementation ... 21

4.1.1 Pendant Hardware .. 21

v

4.1.1 Pendant Hardware .. 22

4.2 Software Implementation .. 23

4.2.1 Code Preparation .. 23

4.2.2 Classifier Preparation ... 25

4.3 Setting up Access Points ... 27

Chapter 5: Testing & Results .. 29

5.1 Accuracy testing using decision tree ... 29

5.2 Accuracy testing using SVM ... 33

5.3 Control experiment .. 35

Chapter 6: Conclusion .. 37

6.1 Discussion ... 37

6.2 Limitations ... 40

6.3 Future Work .. 41

References .. 43

Appendix A .. 44

Appendix B .. 48

1

Chapter 1: Introduction

Ever since the establishment of the Nguni people, livestock in cattle has played a

pivotal role in African countries, especially Southern Africa. The use of cattle in Southern

Africa ranges from meat products and milk products to paying a bride price to acquire land

through chiefdom negotiations referred to as Kukhonta in Siswati. Cattle are also used for

traditional activities like offerings to ancestors as well as cleansing. As the importance of

cattle increases in Africa, with the rise in poverty and lack of food parcels, cattle theft

increases during the COVID-19 pandemic. In the year 2020 alone, at least 218000 farm

animals, including cows, sheep, and goats, were stolen in South Africa [9]. This drastic

increase from the 180000 livestock reported missing in the past five years [9]. The total

monetary value lost due to livestock theft in 2020 is estimated to be about nine-hundred

million rand which is about sixty million dollars; this economic value loss remained

constant in the past two years. It is projected that by the end of 2021, the number of

livestock stolen will increase as the pandemic continues to make earning a living lawfully

tricky [9].

Undoubtedly livestock theft is a serious problem not just in South Africa but in all

Sub-Saharan countries. There remains a need for a robust and improved way of ensuring

the security of cattle in Africa. Some of the current tools that farmers use to track and

monitor their cattle include using closed-circuit television to monitor farms, using drones

to surveil farmers, and using GPS tagging to track livestock as they graze. These are

high-cost means of curbing the increase of cattle theft, hence leaving low-income earning

cattle farmers are at risk as they cannot afford such means [9].

Therefore, one of the pressing problems that this project is solving is the high cost

of cattle tracking systems. The approach introduced by this project ensures the successful

2

tracking of cows at 10 km at a meager price. This project is in the case of South Africa but

can be spread to other communities. The target is low-income farm earners whose main

aim is to grow a business in commercial livestock farming and subsistence livestock

farming, producing mainly for family-related activities. The project introduces a pendant

that can be tagged on cattle for remote tracking using received signal strength indicators

and machine learning.

1.1 Background

Tracking was introduced alongside the Global Positioning System (GPS)

introduction in the 1960s [11]. GPS Tracking Technology was initially designed for

military and intelligence applications, with its main inspiration coming from the Soviet

spacecraft Sputnik in 1957 [11]. The global positioning system consists of satellites

orbiting the earth at fixed points above the planet and transmit signals to anyone on earth

with a GPS tracking device. The first movement tracking was introduced in 1978 with a

vehicle tracking system when the first GPS Satellite called Block I was launched into

space [11]. Rockwell International designed this first satellite. In 1985, over 10 Block I

satellites were launched into space [11]. Since then, tracking has increased with its

application extending to our daily life activities.

In 1997, another means of wireless communication that this project will use for

localization named Wireless Fidelity (WiFi) was introduced [12]. A committee created

WiFi called 802.11 [12]. It permitted wireless transmission of data between devices. This

led to the creation of IEEE802.11, which refers to a set of standards that define

communication for wireless local area networks (WLAN). It further sparked development

in prototype equipment like routers to comply with IEEE802.11, and in 1999, WiFi was

introduced for home use [12]. WiFi uses electromagnetic waves to communicate data that

runs at two main frequencies: 2.4Ghz and 5Ghz. WiFi networks have a limited range,

3

mainly influenced by the frequency, transmission power, antenna type, location, and

environment. A typical wireless router has a range of between 50 meters to 100 meters.

In 2009, Lora was introduced by Nicolas Sornin and Olivier Seller [10]. The main

aim of developing Lora was to create a long-range and low-power modulation technology.

Lora was then taken under Cycleo before being acquired by Semtech in May 2012 [10].

They further improved the technology and finalized the chips required for the end devices

to use Lora to transmit data. Semtech currently has outsourced necessary tools that permit

the use of Lora to determine location. One of the services Semtech provides is the Lora

Cloud Geolocation [10].

To curb the high prices associated with location tracking and minimize power

consumption, this project uses the off the shelf WiFi and Lora to determine location. Lora

permits wireless communication of data using a radio modulation technique generated by

the Lora transceiver chips used in this project. This modulation allows long-range sending

of small amount of data, high immunity to interference while minimizing power

consumption. Therefore, it will enable long-distance communication with low power

requirements. Hence, Lora is used for sending the location results from the WiFi module

used in this project to the cattle farmer's computer, where the cattle's location will be

monitored.

WiFi can make known the received signal strength indication. The received signal

strength indication is the measurement of the power present in a received radio signal.

Signal strength can vary greatly and affect wireless networking functionality. IEEE 802.11

devices make these measurements available to users. The variance in the signal strength is

vital to this project. It allows for mapping where the signal strengths were collected to

where a packet was sent from, possible. It provides for the classification of locations

4

according to their signal strengths. Machine Learning will then be used to classify and

predict location using received signal strength indications.

Machine Learning (ML) uses algorithms and neural network models to assist

computer systems in predicting and progressively improving their performance. Machine

Learning algorithms automatically build a mathematical model using sample data referred

to as training data to make decisions without being specifically programmed to make

those decisions. Machine Learning was first introduced in the 1950s through a computer

program for playing checkers by Arthur Samuel of IBM [13]. It was first referred to as

Machine Learning in 1952 [13]. Machine Learning can be used in various ways, such as

learning to play games, speech recognition, and facial recognition.

1.2 Summary

The pressing problem that this project seeks to solve is cattle theft in Sub-saharan

countries. To do that, the project uses off-the-shelf resources like WiFi, Lora, and Machine

Learning. The main aim is to produce a cattle tracking solution that is cheap, accurate, and

reliable.

5

Chapter 2: Literature Review

This literature review covers some of the projects that have been carried out

before, what was discovered on each location tracking approach, and how the lessons

learned from them can shape the outcomes of this project.

2.1 Location Tracking

 A device's position is usually estimated by monitoring a location-dependent

parameter (LDP). Such as received signal strength indicator, time of arrival of sent data

packets, time difference of arrival of sent data packets, etc., from another device whose

location is known. Localization is done by applying estimation techniques on the location-

dependent parameters to find the transmitting device's position [5]. The localization

accuracy is mainly a factor of the location-dependent parameters' measurement nature and

precision, the wireless standard, and the estimation technique.

 The main estimation techniques are multilateration, trilateration, and

fingerprinting. In multilateration in a 2D coordinate system, the distance r from a point p

specifies a circle of possible positions.

Figure 1: Point P in a circle of radius R

 When three or more approximate distances (radius) are known, an area of

confidence can be determined if the boundaries overlap, as shown in figure 1 [8].

6

 Fingerprint algorithm-based positioning consists of two phases: the offline and

online phase. In the offline phase, signals' characteristics to predict the position are

collected and stored in a database for sample points in the service area. A site visit is

mandatory to collect the necessary data/signal to identify that location. An end-device

location is estimated and provided through a database search [2].

2.1.1 Using GPS

A readily available technique of determining location is using GPS chips, which

are available almost at any tech market. These GPS chips can provide real-time location.

Global Positioning Systems and Global Navigation Satellite Systems (GNSS) have

offered, up to now, localization and navigation services. GPS and GNSS can only perform

localization if the GPS receiver is visible with at least four satellites. In indoor and dense

environments, this condition is usually not guaranteed [5].

Global positioning system chips have a relatively high cost and power

consumption, making them unsuitable for long-range positioning determination and use in

low-power Internet of Things (IoT) devices [2].

Figure 2: Demonstration of Real-time GPS tracking

7

2.1.2 Using Lora

Semtech designed and created Lora gateways and Lora transmitters, which,

together with the Lora cloud geolocator, can determine location. Cattle farmers can easily

use such a concept to track and monitor their cattle.

 In Semtech's design, A Lora gateway consisting of a Lora transmitter module is

used as the object to be tracked or located. The transmitter sends data packets to nearby

gateways. The Lora gateways are each fixed with effective timers, and they are in a

designated and known location. It is easier to find nearby gateways with an available

gateway to connect to when using Semtech's The Things Network (TTN), which offers

location calculation tools to help track a cow's location. Whenever a transmitted data

packet is received, information about it is stored in a server in TTN; the information

includes the received signal strength, time of arrival, and signal to noise ratio. From this

server, information about the data packet is retrieved by Semtech's Lora cloud geolocator

algorithm. The Lora cloud geolocation algorithm uses a geometric approach to determine

the transmitting object's exact location the Lora transmitter.

Figure 3: Semtech's approach for tracking

Semtech's design requires three or more Lora gateways depending on the location

estimation approach being used and the accuracy. The method also requires about three

8

GPS modules to locate the three Lora gateways used. The registration of a new gateway

on TTN leaves a possibility of it being used by another person for their tracking purposes,

especially if the gateway is the only one nearby. All location determining calculations

performed in this design is done in the cloud; hence there is a need for an HTTP protocol

and internet connectivity.

2.1.3 Using TDoA and RSSI

In a project to track a robot car's location, Choi set up a hybrid localization project

that used the time difference of arrival (TDoA) and received signal strength indication

(RSSI) to track a robot car's location [5]. Two test boards were used in setting up for the

RSSI, one transmitting a radio frequency (R.F.) signal on two alternating frequencies. The

other board was receiving and taking measurements based on the alternating frequencies

received. The receiving board was left stationary while an interval of five centimeters

incremented the transmitting board's distance. For the arrival time difference, an

omnidirectional microphone, a piezo buzzer, and an eZ430-RF2500 board with tones

generated via an onboard pulse with modulator were used. Audio signals were sent as data

packets, and their received signal strength indication was extracted to determine the

position of the robot car.

 A sound-reflecting cone was incorporated above the buzzer, projecting the audio

pulse omnidirectionally about the robot's workspace. To digitize and process the audio

signal to detect when the robot arrived with the R.F. packet, an MSP430 was used. The

MSP430 had an internal 10-bit analog-to-digital converter (ADC10) and could transfer at

most 255 continuous samples directly into memory without CPU intervention or

interruptions. The ADC10 was programmed with a sampling rate of 80kilosamples/sec,

providing a range of 1.09 m. To increase the distance, two options were applied; the first

one was to slow their clock rate at the cost of distance resolution or delay the onset of

9

sample acquisition to shift the sampled range away from the microphone. For distance

calibration using the arrival time difference, one board was set to listen for the arrival

broadcast's time difference. Another with a buzzer was set to broadcast the time difference

of arrival signals. Measurement resolution was taken to be the distance equivalent to one

standard deviation of measurement error. This experiment showed that received signal

strength indication and time difference of arrival could be used for distance sensing [5].

Machine learning techniques could potentially make use of more complex patterns

in the measurement data, allowing for increased accuracy in location tracking [5].

The two methods by Semtech and Choi introduce important concepts that were

used in this project. The first one is setting up the project, using two boards, one

transmitting data packet and the other receiving these data packets dispatched using radio

frequency signals. Even though Choi had a problem with the range of transmission,

Semtech's Lora can solve this problem as it can achieve 10 km of data transmission

without a repeater requirement. Repeaters are network devices that amplify or regenerate

an incoming signal before retransmitting. The only thing that could be a problem with

Choi's approach is audio as the data packets being transmitted, like the cowbell, if applied

in cattle tracking, would alert everyone in the community that nearby cattle could yield

negative results.

This project did not fully apply Semtech's set up as it required at least three Lora

gateways to determine location. Even though this setup perfectly covers long distances,

the cost to set it up was high. The cost of each Lora module was 157 GHS. Four Lora

modules were required in total, which would have escalated the setup costs to 628 GHS.

Semtech's setup also requires that each Lora gateway be constructed with a Raspberry Pi

to register it on The Things Network properly. The Things Network is an open-source web

10

application by Semtech that provides access to a Lora Wide Area Network, which can be

used for various IoT applications, including location tracking. Each Raspberry Pi for each

Lora gateway would have cost about 201.25 GHS, adding to the setup costs. While high-

income-earning cattle farmers could easily afford this, this project had to explore a much

cheaper alternative to accommodate all. Hence, the project used two Lora gateways for

long-range sending of scan results to allow remote tracking and a Node MCU to enable

received signal strength indication scans of nearby WiFi access points.

A Node MCU is a low-cost open-source Internet of Things platform. The name

Node MCU combines node and Micro-controller Unit. It is a firmware for which

prototyping board designs are available. This micro-controller unit can be easily interfaced

with Arduino Integrated Development Environment to be easily programmed and

connected with WiFi. Arduino Integrated Development Environment (IDE) contains a text

editor for writing code. Figure 4 below shows an example of a Node MCU.

Figure 4: ESP8266 Node MCU

11

2.2 Characteristics of Lora, GPS, and WiFi

The table below presents the advantages and disadvantages of incorporating Lora,

GPS, and WiFi in a location tracking device.

Technology Advantage Disadvantages

GPS Increase accuracy High power consumption

Ranged unlimited Requires a clear sky

WiFi Good in areas with WiFi

routers

Requires good WiFi

coverage

Free to use Requires Google database

Lora Very low power Requires at least three

gateways

Good building penetration Requires good timing and

location records

Good distance performance

12

Chapter 3: Design Requirements

In this chapter, design considerations are presented, including hardware

specifications and software specifications. The proposed solution will be introduced,

including how farmers can make use of it.

The primary aim of this project is to develop a cheaper solution to cattle tracking on a

farm. It is meant to be used by subsistence and commercial farmers looking for a cheap

and easy way to monitor their cattle.

3.1 Solution and User Requirements

The primary use for this solution is a low-income-earning cattle farmer. The

system would be accessible via computer software that will permit monitoring on the

screen, i.e., Arduino IDE's Serial Monitor.

3.1.1 Use Cases

Scenario:

Tebogo Zuma is a cattle farmer who has been in the cattle farming business for a

year. Unfortunately, Tebogo is among the cattle farmers whose livestock had been stolen,

as reported by the Economist [9]. This has put a burden on Tebogo's family as they rely

primarily on her cattle farming business to make ends meet as compared to her sewing

business. Tebogo cannot physically go to the farms and look after her cattle for the whole

day as she has to keep her sewing business running. Luckily for Tebogo, she is presented

with this solution; upon accessing it, she can track her cattle from her room where she is

sewing. She can see when the cattle are moving closest to the farm fence; hence can

always go outside to stop them from going into the nearby forests where they are prone to

be stolen. This puts security in her yet-to-boom cattle farming business.

13

3.1.1 User requirements

The user should be able to:

 Track cattle offline

 Accurately track cattle at low costs

 Track remotely over a distance of 10 km

 Access the scan results via computer software that permits tracking offline

3.1.2 Solution requirements

The solution should be able to:

 Track at lower costs compared to already existing solutions

 Be able to track offline using already available resources

 Permit mobility, such that the user can follow along while tracking

 Localize regardless of the weather conditions and the thickness of foliage it is put

under.

3.2 Project Design Objective

The project's main objective is to use machine learning and received signal

strength indications from nearby WiFi access points to create a cheaper and accurate

version of a cattle tracker. The main parameters driving the development of this project are

costs, accuracy, and mobility. The design should provide an easily implementable solution

regardless of the availability of WiFi routers. Figure 5 below shows a high-level

architecture of the design, demonstrating how it works.

14

Figure 5: High-Level Architecture Design

In this project, a Node MCU ESP8266 is used to scan for nearby access points and

determine their signal strength. The acquired information on access points available and

their signal strength is then structured in a vector form in a string using the embedded

software running on the Node MCU. The obtained information containing the Service Set

Identifiers (SSIDs) and the received signal strength indications are then fed to a machine

learning algorithm that then uses supervised learning to determine the animal's location. A

service set identifier is a 32-character sequence that uniquely identifies a wireless local

area network (WLAN). SSIDs are simply the names of the wireless networks scanned. The

prediction results are then sent via Lora to the receiver for monitoring.

Figure 6: Scan being done on nearby WiFi access points

15

Figure 6 demonstrates how a scan will be done when implementing the machine

learning algorithm's classifier. To create a classifier, the first thing that will be done is

moving around the area and collecting SSIDs and RSSIs from nearby routers, as shown in

figure 3. This information will be stored either in a CSV format or in a vector format. This

information will then be used to train the algorithm and use as a reference when new scans

from the pendant that the cow will have in the farm determine its location.

Machine Learning offers three types of learning, supervised learning, unsupervised

learning, and reinforcement learning. Supervised learning (S.L.) is the machine learning

process that maps an input to an output based on example input-output pairs. It infers a

function from labeled training data consisting of a set of the training example. The data set

is appropriately labeled so that the algorithm can know what the data represents.

Unsupervised learning (U.L.) is a type of algorithm that learns patterns from unlabelled

data. The hope is that through imitation, the machine is forced to build a compact internal

representation of its world.

This project uses supervised learning. Therefore, the proper hardware must be set

to collect and label the data accordingly to improve the algorithm's learning and better

location predictions.

3.3 Hardware Design Decisions

This section presents the hardware behind the pendant that will be pinned to the

cow that will be tracked and the hardware behind the receiver. It also elaborates on how

the necessary data will be retrieved from the cows and determine location remotely. The

transmitter side represents all the hardware that will be on the pendant. The receiver side

represents the hardware used to receive the data and allows interaction between the

software and the hardware components.

16

3.3.1 Pendant/Transmitter

The components used in this circuit design that represents the transmitter or

pendant pinned on the cow consist of a Lora transceiver module, a breadboard power

supply, and a Node MCU ESP8266. A transceiver is a device that can both transmit and

receive communications, in particular a combined radio transmitter and receiver. The Lora

transceiver module allows for the transmission of scan results of nearby wireless networks

(WiFi) from the receiver's pendant. The machine learning algorithm will use the data to

predict the location. The breadboard power supply supplies the necessary voltage to the

components that make up the pendant. The Node MCU is used for scanning.

Figure 7: Pendant/Transmitter circuit design

The Lora transceiver has six pins, GND, RSV, TXD, RXD, NRST, and VDD. The

operating voltage for the Lora transceiver is 3.3V. A 4.7K ohms resistor is connected from

the RXD pin of the Lora transceiver to the TX of the ESP8266 Node MCU. Such a

connection sets this transceiver as the transmitter. The resistor's use reduces the amount of

power going to the Lora transceiver through the RXD pin from the Node MCU. This

ensures that the module is not damaged. The Lora transceiver's NRST pin is connected to

17

the VDD of the Lora module using a 10K ohms resistor to enable the negative reset

options of the Lora transceiver. The R.X. pin is also connected to the GND of the Lora

module using a 10K ohms resistor; this creates a voltage divider that steps down the

current going through the R.X. pin while completing the circuit. It prevents the module

from being spoilt.

3.3.2 Receiver

The components in this circuit design representing the receiver used to receive and

load the acquired data into the computer for use by the machine learning algorithm include

an Atmega 328 p, a Lora transceiver module, and a breadboard power supply. The Atemga

serially sends the acquired data packets from the Lora transceiver (configured as a receiver

on the receiving end) to the computer using a USB to serial converter. The Lora

transceiver is configured as a receiver and used to receive the sent data packets, and the

breadboard power supply supplies the right power for all the components.

Figure 8: Receiver circuit

18

Figure 8 above shows how the connections were made using an Atmega 328p chip.

The output voltage of the power supply was 5V. The reset pin of the Atmega 328p was

connected to positive for the normal running of the chip; to reset it, the pin is connected to

the ground. The inbuilt clock of the Atmega chip is 8 MHz, the connected 16 MHz crystal

permits it to operate at 16 MHz, similar to Arduino. To configure the transceiver as a

receiver, the TXD pin is connected to the RXD of the Atmega 328p. Lora uses 3.3V.

Therefore the 4.7K 10K voltage divider steps down the voltage to the right amount to

not damage the module. A PCB can be created from the above circuit in figure 8. The data

was acquired from the Atmega chip serially using an FTDI (USB to serial converter).

Figure 7 below demonstrates the connections made to permit that.

Figure 9: Serially acquire data from the atmega

Figure 9 below demonstrates how the stated components will communicate with

each other to enable successful cattle tracking. Pendants will be attached to the cattle's

necks, and they will use ESP8266 Node MCU to scan for nearby access points, as

demonstrated in figure 10. Every time a scan is done, the machine learning algorithm

uploaded on the ESP8266 Node MCU predicts the location. The results are sent to the

receiving Lora on the receiver.

19

Figure 10: Cattle tracking on a farm

3.4 Software design decisions

This software design presents specific software tools to enable successful

communication between this project's hardware components and the machine learning

algorithm. The software design's primary purpose is to ensure affordability, reliability,

accuracy, and security in cattle tracking.

3.4.1 Software tools for machine learning

3.4.1.1 Anaconda

Anaconda is a python distribution platform. In this project, Anaconda is used to

enable offline access of Jupyter notebooks to write python scripts for the machine learning

classification method used in this project. A Jupyter notebook is an open-web application

that allows a person to create documents that contain live code, equations, visualizations,

and narrative text. It is a platform that is mainly used for machine learning and data

science.

3.4.1.2 Machine Learning algorithms

Supervised learning will be used, and Python will write the code that enables the

classifiers under supervised learning. One of those classifiers is decision tree learning. In

20

decision tree learning, data is continuously split according to a specific parameter. Figure

11 below shows an example of how a decision tree classifier works.

Figure 11: Example of a decision tree

3.4.1.3 Embedded systems software

The Arduino Integrated Development Environment permits the programming of

the ESP8266 Node MCU used in this project. The script to control how the data acquired

through the ESP8266 Node MCU will be used is written in C/C++. Through Arduino IDE,

the project can acquire RSSIs and SSIDs, which can then be used to classify locations

according to the RSS and SSIDs' variance as they differ from place to place. Their

variation is an important feature that enables proper tracking as the machine learning

algorithm will predict the specific location that the cow is.

21

Chapter 4: Implementation

To achieve the set goals, there needs to be a sufficient amount of data containing

RSSIs alongside SSIDs to train the machine learning algorithm, which will predict the

location of cattle. Therefore, this chapter presents the hardware and software used to

gather the necessary data and perform the predictions.

4.1 Hardware Implementation

 The hardware implementation for this project is in two parts. The first one is the

hardware representing the pendant on the cow. The second one is the hardware

representing the receiving end, whereby monitoring will be done on a computer screen.

4.1.1 Pendant Hardware

Figure 12: Pendant hardware connection

The pendant hardware in figure 12 consists of an ESP8266 Node Microcontroller

Unit (Node MCU) and a Reyax RYLR896 Lora transceiver. The Node MCU acts as a

scanner of nearby WiFi access points. The microcontroller unit also consists of the

machine learning program that is used to predict the location. The Lora transceiver

transmits the results wireless to the receiver where the cattle farmer will be monitoring.

22

It is set up using AT commands to permit the transmission of data. Appendix B goes into

detail on the specific AT commands and demonstrates the sending of data. The power

bank represents a power supply that powers the Node MCU. From the Node MCU, 3.3V is

tapped to power up the Lora transceiver.

4.1.1 Pendant Hardware

Figure 13: Receiver hardware connection

The hardware connection shown in figure 13 is the receiver at the monitoring side,

where the farmer will receive the cattle being tracked. An Atmega 328P U was connected

to the Reyax RYLR896 transceiver using the R.X. and TX pins. The Atmega chip contains

the code that permits the receiving of the sent location predictions from the pendant. When

the location predictions are received, the Lora transceiver adds the received signal strength

indicators. These RSSIs can better the location prediction and calculate the distance to

know how far the cow is. These results are printing on the Serial Monitor, where the

farmer will be monitoring the location.

23

 4.2 Software Implementation

An ESP8266 Node MCU was to be used as a scanner of nearby WiFi access points

to enable the proper data collection. To enable such functionality of the ESP8266 Node

MCU, appropriate code had to be written in Arduino IDE.

4.2.1 Code Preparation

Specific libraries had to be installed to enable the Arduino IDE to interface with

the ESP8266 Node MCU. The libraries installed included the ESP8266 WiFi.h library. For

successful programming of the ESP8266 Node MCU, the right board had to be installed.

Therefore, before coding, ESP8266 Boards (2.7.4) was installed via Board Manager on

Tools in Arduino IDE.

To enable scanning without connection to WiFi, the ESP8266 Node MCU had to

be disconnected from any WiFi access point it had previously connected to. The upload

speed for the ESP8266 Node MCU is 115200, and it was essential to specify the correct

upload speed.

Figure 14: Disconnecting from previously connect WiFis

The code collecting data, which is attached as an appendix, was prepared to work

in the following steps:

24

Figure 15: Steps for fingerprinting locations

1. Set the location name to where the data is being collected. The name of the

location can be a prominent and specific feature in the farm. A good example

would be a boulder or a tree name. To set the location name, the program listens

for the command "Scan," followed by the location name inserted on the serial

monitor.

>> Print "Enter' scan location' to start scanning"

>> Scan New Jacaranda Tree by White Boulder.

The location's name automatically becomes New Jacaranda Tree by White

Boulder; all the RSSIs and SSIDs collected on that location will be classified using

the location name. After the command "Scan" with the location name has been

executed, the scan begins.

2. Scan the location and store the data with the right SSIDs assigned to their RSSIs

before printing them to the Serial monitor.

Print {

For(int i = 0; i < numberofNetworks; i++){

Print

Print SSID

Print

25

Print RSSI

Print (i == numberofNetworks \n }

The above pseudocode prints the results as like, {"__location": New

Jacaranda by White Boulder, Network One Name: RSSI for

Network One, Network Two Name: RSSI for Network Two}.

The acquired information printed on the Serial monitor was then copied and

inserted in the machine learning classifier.

The above procedure was redone at different locations that cattle can go. Each

acquired information being put in the machine learning classifier.

4.2.2 Classifier Preparation

Identifying the appropriate classifier to use to achieve high accuracy was the main

objective. Machine Learning offers many classifiers, including perceptron, naïve Bayes,

decision tree, logistic regression, K-Nearest neighbor, artificial neural networks/deep

learning, and support vector machine. Since labeled data is fed to the machine learning

program during training, the type of learning used is supervised learning. Under

supervised learning, the options are decision tree, regression, naïve Bayes, random forest,

and support vector machines (SVM). This project used a decision tree as it is the most

straightforward and lightweight classifier. The project also experimented on the support

vector machine.

Python was used to prepare the decision tree classifier. The appropriate library was

installed to enable the classifier's interfacing and acquiring Arduino program written

earlier. Micromlgen was the best library to use. Micromlgen, often called MicroML, is a

library by Eloquent Arduino that enables machine learning algorithms to be used in

microcontrollers. The microcontroller used in this project is an ESP8266 Node MCU. The

26

functionality that MicroML made available was the port_wifi_indoor_positioning. This

functionality allows for converting the collected data samples into a C code that can be

used to compare future acquired data with default data.

Figure 16 below shows the conversion of location fingerprinting data samples into

a C code embedded in the Node MCU. The generated C code contains conditional

statements that describe the locations according to their SSIDs and their RSSIs.

Figure 16: MicroML's port_wifi_indoor_positioning functionality in Python

The classier preparation's important and last step was specifying what kind of

classifier the project would use. The code from figure 16 was maintained, and the only

lines added to it to complete the classifier preparation stage was as follows:

clf = DecisionTreeClassifier ()

clf.fit(X,y)

These two lines above create the classifier object and then use it to fit or find the

relationship between the input X and the output y. X would be the new scans, and y would

be the already stored, earlier acquired data. Micromlgen also offers the support vector

machine as a classifier; hence the classifier was the main classifier explored by this

project, and its accuracy was discussed. To use the SVM classifier, the libraries imported

in addition to those in figure 16 were the scikit-learn and micromlgen. The line of code

added to figure 16's option of a classifier was as follows:

27

clf = SVC

Setting the kernel to be linear meant that the mathematical function used was linear

 meaning that a straight line referred to as a hyperplane was used to separate and classify

data (RSSIs and SSIDs) points. Refer to figure 17. Nonlinear functions are also available

in the support vector machine. For a linear kernel, the equation for prediction for a new

input between the input (x) and each support vector (xi) is calculated as follows:

f(x) = B(0) + sum (ai * (x,xi))

It involves calculating the inner products of a new input vector (matrix formulated

through a scan made) with the support vectors in the training data. The training data were

the SSIDs and RSSIs that were used to train the algorithm. The coefficients B0 and ai for

each input are estimated from the training data by the algorithm.

The gamma parameter defines how far the influence of a single training example

reaches. A low gamma means that points far away from the separation lines are considered

in calculating the separation line and the classification. This makes the support vector

machine classifier more accurate hence the choice of a very low gamma value.

Figure 17: Linear hyperplane with a low gamma

4.3 Setting up Access Points

To help set up access points in farms that do not have nearby WiFi access points,

this project also introduced an approach of using Node MCU as access points. Arduino

28

IDE was used to program an ESP8266 Node MCU, converting it from a regular WiFi

device to an access point.

A call is made to the method WiFi to set up an ESP8266 Node MCU as a WiFi

access point.softAP("SSID", "password"), passing in the appropriate parameter for AP

SSID password as strings. These Node MCU Access Points can be deployed in the field,

as demonstrated in figure 18.

Figure 18: Deployment of Access Points

29

Chapter 5: Testing & Results

This chapter presents the type of tests done to evaluate the feasibility and the

reliability of the solution proposed by this project.

5.1 Accuracy testing using decision tree

Six locations in total were used to test the machine learning algorithm's accuracy

for this project. The locations were named Potatoes Field, Sorghum Field, Gum Tree,

Cattle Kraal, Cassava Field, and Sweet Potatoes Field. These are typical examples of

positions that a cattle farmer can use as physical features to identify a cow's position on

the farm. At most, testing was repeated three times in one location. Every time a test was

done, the data was doubled to monitor how the algorithm behaves and how best to

increase accuracy. Figure 19 below shows a step-by-step layout of how testing was done.

Figure 19: Step by step process of how testing was done

Testing was done on campus at Ashesi University. The receiver was set stationed

at Lab 221. Lab 221 was given the name (fingerprinted as) Potatoes Field. Five other

locations were selected: the Dean of Students Office, Lecture Hall 216, E.E. 201-W3,

Design Lab, and Hakuna Matata. These locations were then fingerprinted as Sweet

Potatoes Field, Cassava Field, Cattle Kraal, Gum Tree, and Sorghum Field, respectively.

30

Places adjacent to each other were not picked; this was to avoid an overlap in WiFi

signals. An overlap in WiFi signals would make the classification difficult as the received

SSIDs and RSSIs served as the collected data would be almost identical. During

fingerprinting, the Node MCU embedded with a program that printed all the SSIDs and

RSSIs available at a location was moved from one place to another. Every time a scan was

done, the information was stored in a vector format inside the classifier code. The stored

data was then used to train the algorithm before making predictions.

During testing, the receiver was kept stationary while the transmitter was moved

from one location to another. This was to simulate tracking as the project is focusing on

the tracking of cattle. Upon completing a prediction at a location, the transmitter sent the

results to the receiver using Lora. The predictions were then printed in the Serial Monitor

in Arduino IDE.

To calculate accuracy, the following formula was used:

Accuracy =

Correct predictions meant areas that the machine learning algorithm was able to

identify correctly during the testing stage. For instance, if the area was fingerprinted as

Cassava Field, the machine learning program can identify the same area as Cassava Field

during tracking or testing, making it a correct prediction. This is referred to as true

positives in machine learning.

Table 1: Test 1

Location No. of Samples No. of

Predictions

No. of correct

predictions

Accuracy

Potatoes Field 15 42 37 0.88

Gum Tree 15 51 44 0.862745

Sweet Potatoes 15 74 71 0.959459

31

Field

Cattle Kraal 15 100 64 0.64

Sorghum Field 15 77 69 0.8961039

Cassava Field 15 163 121 0.742331

During test 1, demonstrated in Table 1, the number of data samples used to train

the algorithm was kept constant 15 samples were used for all locations. Samples were

the number of rows of data taken from one place and fed to the program. The accuracy of

machine learning was observed for all six areas. The test was on how much data should be

supplied to the algorithm to ensure improved accuracy in tracking. It mainly was to

monitor the correlation between the number of data samples and the algorithm's accuracy.

Figure 20 shows an example of samples provided to the machine learning program from

Sorghum Field.

Figure 20: 15 samples from Sorghum Field

For test 2, shown below in table 2, the number of samples was double of those

used in test 1. Thirty samples were used for test 2, and accuracy was calculated, and the

results were recorded in Table 2 for all six locations.

Table 2: Test 2

Location No. of

Samples

No. of

Predictions

No. of correct

predictions

Accuracy

Potatoes Field 30 92 88 0.956522

Gum Tree 30 48 45 0.953333

32

Sweet

Potatoes Field

30 91 91 1

Cattle Kraal 30 85 84 0.988235

Sorghum

Field

30 195 195 1

Cassava Field 30 196 173 0.882653

Test 1 and Test 2 hinted that to increase the program's accuracy, a unique access

point had to be installed in the location. This access point acted as the unique identifier of

the area. This led to a third test being conducted, with a unique access point being made

available. Therefore, Potatoes Field was put to the third test with 60 samples being

supplied to the program and a new access point introduced using ESP8266 NodeMCU.

Forty-four predictions were made, with all of them being correct, an accuracy of 1 was

achieved.

A graph of the outcomes showed the correlation between the number of data

samples supplied to the program and the program's accuracy. Potatoes Field data and

prediction outcomes were used to visualize the correlation. Refer to Figure 21 below.

Figure 21: Accuracy vs. No. of samples

33

5.2 Accuracy testing using SVM

Micromlgen provides other machine learning classifiers, one of which is the

supervised vector machine (SVM). SVM, like the decision tree, is another supervised

learning model which can be used. This test aimed to compare the decision tree model

with the SVM model to see best which classifier can provide higher accuracy. The area

named Cassava Field was used for testing this is Lecture Hall 216 in Ashesi. The

receiver was stationed at Lab 221. A scan was performed, and a total number of two

hundred predictions were done using the decision tree. Every time a scan was done, a

prediction was made. The results were then sent using Lora to the receiver in Lab 221. The

same procedure was repeated except that now the support vector machine was used to

make predictions, and the results were sent to Lab 221 using Lora. Accuracy was then

calculated using the formula:

 Accuracy =

The support vector machine yielded an accuracy of 0.877193, while the decision

tree yielded an accuracy of 0.81372. The support vector machine takes longer to predict,

while the decision tree took less time. The code to both classifiers is presented on the

appendix page.

The support vector machine algorithm was then tested for consistency with

accuracy. In testing for consistency, the receiver was positioned at Lab 221, labeled as

Potatoes Field. The transmitter was then moved to three places: Hakuna Matata, Lecture

Hall 216, Dean of Students' Office labeled as Sorghum Field, Cassava Field, and Sweet

Potatoes Field, respectively. A scan was done one place at a time. The algorithm was

designed so that a prediction using a support vector machine classifier is made every time

34

a scan is done. The prediction results were sent to the receiver and then printed on the

Serial Monitor of the Arduino IDE of the personal computer stationed in Lab 221. The

number of predictions was doubled every after a set of predictions. A total of four

prediction sets were done for every location. For example, in figure 22, the first set of

Esibayeni predictions were 83; they then got double to 166 predictions, then 249

predictions, eventually 334 predictions. This was done to monitor how the algorithm

performed when the number of predictions was increased. The accuracy was calculated

and documented with every increase in predictions.

Cattle Kraal

Number of Total

Predictions

Number of Correct

Predictions

Accuracy

83 39 0.963855

166 77 0.975904

249 116 0.97992

334 158 0.97005988

Sorghum Field

Number of Total

Predictions

Number of Correct

Predictions

Accuracy

40 39 0.975

80 77 0.9625

120 116 0.966667

162 158 0.9753009

 Cassava Field

Number of Total

Predictions

Number of Correct

Predictions

Accuracy

70 60 0.857143

140 113 0.807143

210 165 0.785714

281 233 0.829181

Figure 22: Testing for consistency using SVM

Visualization of the performance of the support vector machine was made simpler

using a plot of the number of predictions versus the accuracy. Figure 23 shows the

35

consistency of the support vector machine over an increase in the number of predictions.

The flat-top demonstrates consistency.

Figure 23: Consistency of SVM

5.3 Control experiment

This control experiment explores the use of a GPS module. GPS coordinates were

sent to the receiver using Lora; they were saved in a MySQL database using a PHP script.

Python was used to retrieve the coordinates and plot them on an ipyleaflet map. These

coordinates were retrieved from Ashesi University, and the movement tracked from the

Dean of Students' office to lecture hall 218 and back, as shown in figure 24.

Figure 24: Tracking using GPS

36

The use of GPS required a steady internet connection for real-time location

predictions. Even though the database used to store the GPS coordinates was a local one,

some of the libraries used for this approach required internet access. These libraries were

mainly the ipyleaflet and the geocoders. The intended use of ipyleaflet, which allowed

offline tracking per user requirements, proved to be impossible. This meant that using an

ipyleaflet map was almost the same as using a Google Map in terms of internet access.

The GPS module used showed less response inside buildings. It could not locate and

connect to satellites that would permit tracking. This was observed as it was moved to the

far end of the Dean of Students' office, closer to the ODIP's office. This was a location

with no clear line of sight. Unlike Google Maps, ipyleaflet maps did not give a detailed

view of the path taken. Google maps could identify the precise locations with their names;

for instance, the Cornfield and Archer Courtyard could be located on Google Maps.

37

Chapter 6: Conclusion

This chapter discusses the results obtained during testing and what can be learned

from the tests conducted. Limitations encountered in this project will be addressed, the

adjustments that can be made in future work, and the future plans of this project.

6.1 Discussion

The constant demand for a more objective approach to tracking and localization

means that each method proposed needs to be thoroughly examined and its application

justified. This project looked at the application of machine learning in IoT projects like

cattle tracking on a farm. It seeks to reduce cattle theft. Received signal strength indicators

from home-available WiFis were utilized to fingerprint locations on the farm. The location

meant proximity to a combination of access points. If WiFis were not available, ESP866

Node MCUs were used to deploy access points whose received signal strength indicator

could be mapped to the location where it was deployed. These ESP8266 Node MCUs were

also given SSIDs that could easily be used for classification using the SSIDs as labels in

the program.

Two classifiers were explored, the support vector machine (SVM) and the

Decision Tree. The decision tree used the varying RSSIs and SSIDs from nearby access

points to create conditional statements that were mapped to the location at which the scan

was done. By giving the site a name, the area became fingerprinted or labeled as the name

given, allowing the decision tree classifier to recognize the place using the SSIDs and

RSSIs in that area. The support vector machine classifier used the varying RSSIs, and

SSIDs scanned at a location to create a matrix representation of the data called support

vectors using kernels. Kernels are mathematical functions that take data as an input and

transform it into a model (required form) to predict the area in the future. Below is an

38

example of a linear kernel mathematical function that shows the relationship between the

input (x) and each support vector (xi):

f(x) = B(0) + sum (ai * (x,xi))

The coefficients B(0) and ai for each input are estimated from the training data by

the algorithm

The kernel used in this SVM to create the support vectors was linear. This means

that linear hyper-planes were used to separate data during the classification. Figure 25

shows a visual representation of how classification is done using a linear kernel in an

SVM classifier.

Figure 25: Linear hyperplanes used to separate and classify data

 The support vector machine uses a mathematical and numerical approach to map

areas to RSSIs and SSIDs instead of conditional statements. Hence the SVM classifier

tends to be more precise in its predictions. Three tests were done using the Decision Tree.

On average, at least three access points were detected in one place. The first test

demonstrated in Table 1 under the results section showed a mean accuracy of 0.83010648.

This was a fair but unsatisfactory result. Hence there was a need for a second test.

During the first test, it was discovered that noise played a pivotal role in the results

39

acquired. The noise came in the form of multiple access points, which were constantly

changing. These made them not to be trustable identifiers of the location at which the tests

were being made. Access points that amounted to the nose were WiFi hotspots from

nearby mobile devices. Therefore, there was a need for constant and unique access points

to be deployed. ESP8266 Node MCUs served as unique and permanent identifiers of the

locations at which the data was acquired. Even though this was a problem in a busy place,

such a setup on a farm could yield better results than those obtained in test 2. The second

test with unique and permanent access points yielded a mean accuracy of 0.9635667. This

was a very satisfactory result, and it proved the high accuracy that the program could

achieve at low costs. Considering the average of the two accuracies achieved from Test 1

and Test 2, the average accuracy of the decision tree classifier was 0.896883659.

There was a need for both accuracy and reliability. Hence, the project further

explored the use of a support vector machine algorithm. Testing on a new location with

multiple noise sources was done to see how best SVM would work compared to the

already then existing approach. The SVM classifier obtained a starting accuracy of

0.877193, while the Decision Tree obtained an accuracy of 0.81372, implying that the

SVM classifier could be trusted. Reliability comes with a method that can maintain high

accuracy throughout predictions. The SVM classifier was then tested for consistency. The

test was done at three locations, and the number of predictions done increased at a fixed

interval. The mean accuracy obtained from the three locations was 0.915699. This implied

that every time this classifier was used for cattle location prediction, there is a confidence

interval of more than 90%. Hence this a reliable solution.

Since prediction results were sent via Lora to the receiver, an observation was

made on how Lora performed during the accuracy tests. Whenever a prediction was

received, the Lora module attached an RSSI of its own to the result string, separating the

40

prediction and the received signal strength with a comma. Refer to Appendix B. A

fluctuation in the RSSIs was observed. Hence a reliable and unique Lora RSSI for which

the predictions were being sent could not be determined. This prevented a precise and

linear calculation of the distance from where data packets were being sent to where the

receiver was from being made. Instead, a range was used to create a conclusion of where

the predictions were coming from. This left room for improvement in future works to

incorporate distance calculations to improve cattle prediction further as then a farmer

would be able to know how far the cattle are.

The control experiment revealed that the GPS module relied on a clear line of sight

to make an accurate prediction. Under dense foliage, the module fails to connect to a GPS

satellite, yielding no results. Hence, this limits GPS tracking for cattle tracking as cattle go

under trees, forests, and shelters that might make GPS tracking challenging.

6.2 Limitations

This subsection presents the two main challenges that were faced when conducting this

project. They are as follows:

 The Lora module used showed a fluctuating, inconsistent addition of RSSIs to the

predictions sent. Hence it made it challenging to rely on that data to introduce

calculations for distance to enhance tracking. The disturbance and fluctuation in

the added Lora RSSIs are suspected of having been caused by the multiple

numbers of buildings and the topography of the testing environment. It was not as

flat as cattle farms are. This should not be a problem in farms but should be kept

into consideration in future work.

 The solution provided through this project currently uses received signal strength

indicators. A massive farm without nearby WiFi access points would require more

41

ESP8266, gradually increasing the costs. Therefore, there stands a challenge with

the range that needs to be resolved through future work.

6.3 Future Work

To compensate for places where there is a need for more deployment of ESP8266

Node MCUs due to the lack of nearby WiFis, future developments would incorporate

sensor nodes. These sensor nodes would provide the algorithm with data unique to that

location, which can then train the algorithm. When conditions like the ones recorded are

supplied to the algorithm, it will successfully predict the site. This sensor data can be sent

using the same Lora technique used in this project, as Lora permits a distance over 10km.

The project was limited to tracking the location of cattle, but in the future could be

used to alert drivers on cattle near a road. To enable such, the pendants that use this

method for localization will be made to appear as hotspots. Hence, allowing their presence

to be monitored over the phone through WiFi connections available nearby. This will help

decrease accidents caused by cattle on the road. The primary concern with such

functionality is security. Therefore, to better improve this solution without giving

information on the whereabouts of the cattle to thieves, such an improvement will have to

be carefully considered.

A more consistent Lora module would have to be selected in the future to make

sure that the attached Lora RSSIs on the predictions sent as data packets are constant for a

fixed location. This will then permit the solution to be enhanced with distance calculations

which will make tracking more efficient. The Lora RSSIs would be used to calibrate

measurements with an RSSI in dBm being mapped to actual distance measurement units

(cm) to allow distance calculations.

42

Considering the need for such a solution in the real-life, the next step would be to

create commercial prototypes of this technology and supplying it to cattle farmers to

ensure that the intended impact of reducing cattle theft is achieved.

43

References

[1]Aziz, M. I., Owens, T., Khaleeq-uz-Zaman, U., & Akbar, M. B. "RSSI based localization of
Bluetooth devices for visually impaired," Journal of Signal and Information Processing, vol. 10,
no. 2, pp 37-57, 2019. doi:10.4236/jsip.2019.102004

[2] Choi, W., Chang, Y., Jung, Y & Song, J. "Low-Power LoRa Signal-Based Outdoor Positioning
Using Fingerprint Algorithm," International Journal of Geo-Information, 2018. Accessed on: Dec.
16, 2020. [Online]. Available: https://www.mdpi.com/2220-9964/7/11/440

[3] Danebjer, J., Halldorsson, V. "GPS-free geolocation for low-cost IoT devices," LUP Student
Papers, 2018. Accessed on: Dec. 16, 2020. [Online]. Available:https://lup.lub.lu.se/student-
papers/search/publication/8962876

[4] Fargas, B., C. & Petersen, M., N. "GPS free Geolocation Using LoRa in Low-Power WANs,"
Proceedings of 2017 Global Internet of Things Summit, 2017. Accessed on: Dec. 16, 2020.
[Online]. Available: https://orbit.dtu.dk/files/130478296/paper_final_2.pdf

[5]Laaraiedh, M., Avrillon, S., Amiot, N., & Uguen, B. "A semidefinite programming approach to
Hybrid localization using RSSI and TOA," 2011 8th Workshop on Positioning, Navigation and
Communication, 2011. Accessed on: Dec. 16, 2020. [Online]. Available:
doi:10.1109/wpnc.2011.5961024

[6]Perkins, C., Lei, L., Kuhlman, M., Lee, T. H., Gateau, G., Bergbreiter, S., & Abshire,P.
"Distance sensing for mini-robots: Rssi Vs. TDOA," 2011 IEEE International Symposium of
Circuits and Systems (ISCAS), 2011. Accessed on: Dec. 16, 2020. [Online]. Available:
doi:10.1109/iscas.2011.5937980

[7] Podevijn, N., Plets, D., Trogh J., Martens, L., Suanet P., Hendrikse, K., Wout, J. "TDoA-Based
Outdoor Positioning with Tracking Algorithm in Public LoRa Network," Hindawi, 2018. Accessed
on: Dec. 16, 2020. [Online]. Available: hindawi.com/journals/wcmc/2018/1864209

"LoRa communication and
geolocation system for sensors network," MATEC Web Of Conferences, 2019. Accessed on: Dec.
16, 2020. [Online]. Available:https://www.matec-
conferences.org/articles/matecconf/pdf/2020/01/matecconf_sesam20_00043.pdf

[9] Livestock theft is becoming more common in South Africa. Accessed on: Apr. 01, 2021.
[Online]. Available: https://www.economist.com/middle-east-and-africa/2020/11/19/livestock-
theft-is-becoming-more-common-in-south-africa

[10] Wikipedia contributors. Long-range Wi-Fi Wikipedia, 2021. Accessed on: Apr. 22, 2021.
[Online]. Available: https://en.wikipedia.org/wiki/Long-range_Wi-
Fi#:%7E:text=Wi%2DFi%20networks%20have%20a,(160%20ft)%20or%20less.

[11] Security, R. "GPS Tracking Devices: A Brief History," Rewire Security, 2019. Accessed on:
Apr. 22, 2021. [Online]. Available: https://www.rewiresecurity.co.uk/blog/gps-tracking-satellite-
history

[12] Wikipedia contributors. "WiFi," Wikipedia, 2021. Access on: Apr. 22, 2021. [Online].
Available: https://en.wikipedia.org/wiki/Wi-Fi

[13]Foote, K. D. "A Brief History of Machine Learning," DATAVERSITY, 2019.
Accessed on: Apr. 22, 2021. [Online]. https://www.dataversity.net/a-brief-history-of-
machine-learning/

44

Appendix A

The code down below is the python implementation of the support vector machine

classifier. The code uses the Micromlgen library from Eloquent Arduino to convert the

classifier into a C code. The C code is then saved as a header file that can be imported on

Arduino IDE. The C code is saved as a model.h file.

from micromlgen import port_wifi_indoor_positioning

from sklearn.svm import SVC

from micromlgen import port

if __name__ == '__main__':

 samples = '''

{"__location": "Lab 221", "ASHESI-GUEST": -59, "AshesiAir": -58, "ASHESI-GUEST": -77,

"AshesiAir": -76, "ASHESI-GUEST": -70, "AshesiAir": -69, "ASHESI-GUEST": -83, "AshesiAir":

-86}

{"__location": "Lab 221", "ASHESI-GUEST": -59, "AshesiAir": -59, "ASHESI-GUEST": -77,

"AshesiAir": -77, "ASHESI-GUEST": -69, "AshesiAir": -68, "AshesiAir": -86, "AshesiAir": -

87}

{"__location": "Lab 221", "ASHESI-GUEST": -61, "AshesiAir": -59, "ASHESI-GUEST": -77,

"AshesiAir": -74, "AshesiAir": -91, "ASHESI-GUEST": -86, "AshesiAir": -68}

{"__location": "Lab 221", "ASHESI-GUEST": -60, "AshesiAir": -60, "AshesiAir": -77, "ASHESI-

GUEST": -69, "AshesiAir": -66, "ASHESI-GUEST": -85}

{"__location": "Esibayeni", "AshesiAir": -83, "ASHESI-GUEST": -85, "Morakane": -31,

"ASHESI-GUEST": -91, "AshesiAir": -87}

{"__location": "Esibayeni", "ASHESI-GUEST": -87, "AshesiAir": -80, "Morakane": -30,

"ASHESI-GUEST": -87, "AshesiAir": -87}

{"__location": "Esibayeni", "ASHESI-GUEST": -82, "AshesiAir": -82, "Morakane": -32,

"ASHESI-GUEST": -87, "AshesiAir": -92}

: -18, "ASHESI-GUEST": -68, "AshesiAir": -

67}

45

-20, "ASHESI-GUEST": -68, "AshesiAir": -

69}

-20, "ASHESI-GUEST": -66, "AshesiAir": -

67}

{"__location": "Sweet Potatoes Field", "Menzi": -30, "AshesiAir": -83, "ASHESI-GUEST": -82}

{"__location": "Sweet Potatoes Field", "PurpleAir-cb44": -88, "ASHESI-GUEST": -83, "Menzi":

-29, "AshesiAir": -83, "Amen": -87}

{"__location": "Sweet Potatoes Field", "PurpleAir-cb44": -84, "ASHESI-GUEST": -84,

"AshesiAir": -85}

{"__location": "Cassava Field", "PurpleAir-cb44": -67, "ASHESI-GUEST": -73, "AshesiAir": -

74, "AshesiAir": -74, "ASHESI-GUEST": -74}

{"__location": "Cassava Field", "PurpleAir-cb44": -69, "ASHESI-GUEST": -71, "AshesiAir": -

76, "Support Center": -88, "AshesiAir": - -91, "ASHESI-GUEST": -75,

"AshesiAir": -74}

{"__location": "Cassava Field", "PurpleAir-cb44": -70, "ASHESI-GUEST": -72, "AshesiAir": -

73, "ASHESI-GUEST": -74, "AshesiAir": -72}

{"__location": "Drinking Water Dam", "PurpleAir-cb44": -78, "LAPTOP-VPF503PB 3048": -90,

"ASHESI-GUEST": -86, "AshesiAir": -86, "Support Center": -84, "ASHESI-GUEST": -87, "ASHESI-

GUEST": -90, "ASHESI-GUEST": -90}

{"__location": "Drinking Water Dam", "LAPTOP-VPF503PB 3048": -87, "ASHESI-GUEST": -86,

"ASHESI-GUEST": -81, "AshesiAir": -83, "AshesiAir": -87, "Support Center": -85, "ASHESI-

GUEST": -87, "AshesiAir": -90, "PurpleAir-cb44": -78}

{"__location": "Drinking Water Dam", "PurpleAir-cb44": -76, "LAPTOP-VPF503PB 3048": -87,

"ASHESI-GUEST": -80, "AshesiAir": -83, "Support Center": -90, "AshesiAir": -85, "ASHESI-

GUEST": -90, "AshesiAir": -90}

{"__location": "Drinking Water Dam", "PurpleAir-cb44": -79, "ASHESI-GUEST": -81,

"AshesiAir": -82, "AshesiAir": -87, "AshesiAir": -90}

{"__location": "Gum Tree", "ASHESI-GUEST": -53, "AshesiAir": -53, "ASHESI-GUEST": -75,

"AshesiAir": -76, "Support Center": -87, "ASHESI-GUEST": -79, "AshesiAir": -79}

{"__location": "Gum Tree", "ASHESI-GUEST": -50, "AshesiAir": -52, "ASHESI-GUEST": -72,

"AshesiAir": -71, "Support Center": -81, "ASHESI-GUEST": -80, "AshesiAir": -80}

46

{"__location": "Gum Tree", "ASHESI-GUEST": -52, "AshesiAir": -51, "Support Center": -80,

"ASHESI-GUEST": -72, "AshesiAir": -75, "AshesiAir": -79, "ASHESI-GUEST": -77, "ASHESI-

GUEST": -80, "AshesiAir": -81}

 '''

 X,y,classmap,converter_code=port_wifi_indoor_positioning(samples)

 clf = SVC(kernel = 'linear', gamma = 0.001).fit(X,y)

 print(port(clf))

The code down below is the implementation of the solution using the support vector

machine on Arduino IDE. The support vector machine model gives the results in IDs or

numbers hence the method idxToLabel converts those IDs into readable location names

using a switch case.

#include <ESP8266WiFi.h>

#include <ConverterSVM.h>

#include <model.h>

Eloquent::Projects::WifiIndoorPositioning positioning;

Eloquent::ML::Port:: SVM classifier;

void setup() {

 // put your setup code here, to run once:

 Serial.begin(115200);

 WiFi.softAP("SulaNodeMCU", "76747773");

}

void loop() {

 // put your main code hereere, to run repeatedly:

 positioning.scan();

 Serial.print("Jamludi is in ");

 //Serial.println(classifier.predict(positioning.features)); //returns a number

 /*

 This will convert the numbers the model gives out to readable names; these can be updated
on the setup side.

 */

 Serial.println(idxToLabel(classifier.predict(positioning.features)));

 delay(3000);

}

const char* idxToLabel(uint8_t classIdx) {

 switch (classIdx) {

47

 case 0:

 return "Cassava Field";

 case 1:

 return "Drinking Water Dam";

 case 2:

 return "Esibayeni";

 case 3:

 return "Gum Tree";

 case 4:

 return "Lab 221";

 case 5:

 return "Sorghum Field";

 case 6:

 return "Sweet Potatoes Field";

 default:

 return "We have a problem";

 }

}

Below is a similar implementation on Arduino IDE of the Decision Tree. The predictLabel

does the same task as the idxToLabel method implemented on the SVM.

Eloquent::Projects::WifiIndoorPositioning positioning;

Eloquent::ML::Port::DecisionTree classifier;

void setup() {

 // put your setup code here, to run once:

 Serial.begin(115200);

 WiFi.softAP("SulaNodeMCU", "76747773"); //to allow drivers to be alerted if a cow is
approaching the road

}

void loop() {

 // put your main code here, to run repeatedly:

 positioning.scan();

 Serial.print("Jamludi is in ");

 Serial.println(classifier.predictLabel(positioning.features));

 delay(3000);

}

48

Appendix B

The image below shows how the location that was predicted by the machine

learning algorithm in the ESP8266 Node MCU was sent from the transmitter to the

receiver. This was a continuous process. AT+SEND=0 is a command to send on the Reyax

Lora module, the ADDRESS, set as 0 for this project. +RCV=0 means received from the

address = 0. Addresses should be the same.

Figure 26: Sending location predictions from lab 221

Figure 27: Receiving location predictions from lab 221

