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Abstract

Machine learning models have gained prevalence in the world we live in today. Cur-

rently, they are employed in different fields to automate the decision-making process of

various institutions. With the increasing availability of data to train these models, machine

learning models are adopted to solve complex classification problems that have the potential

to affect people’s lives both positively and negatively. Unfortunately, certain patterns of bias

that are tied to the presence of socio-economic characteristics of individuals such as race,

gender and income levels may exist in the data used in training these models. When such

data is employed in creating predictive machine learning models, they go on to make deci-

sions that go against certain classes of individuals in society and favour others. This paper

elaborates on a method that improves the fairness of machine learning models by closing the

disparity between the misclassification rates of predictions made for classes within a sensi-

tive group under consideration. It achieves this by modifying the loss function of a classifier

such that it considers the disparate mistreatment of people, based on their membership of a

particular sensitive class. This is done by calculating for the gradient of the error between

predictions made and the ground truth for each sensitive group (based on the sensitive fea-

ture taken under consideration that may contribute to unfair decision making). This gradient

is then added to the gradient of the Cross-Entropy loss function of a Logistic Regression

classifier. By including this modification to models’ loss functions, it learns parameters that

not only correctly predict recidivism, but also minimize disparate mistreatment. This exper-

iment was able to close the disparity between the false positive rates of recidivism risk score

predictions made on African Americans and individuals of other racial origin in a subset of

the COMPAS Recidivism Dataset by 52% (from a difference of 0.25 to 0.12). It was able to

do so with a test accuracy of 70.4%.

Keywords:

Fairness; bias; predictive machine learning; Logistic Regression
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Chapter 1: Introduction

Currently, 2.7 zettabytes of data exist in our world. And by the year 2020, each per-

son is estimated to be responsible for the production of 1.7 megabytes of data every ticking

second [24]. With such large amounts of data being generated comes the opportunity to cre-

ate powerful Artificial Intelligence systems and Machine Learning models to automate and

solve a variety of problems in the world today. These problems range from the classification

of customers’ sentiments behind reviews on e-commerce platforms to national intelligence

surveillance of individuals for terrorist alerts. Here, grave danger arises in the possibilities

these machine learning solutions present, because machine learning models learn exactly

what they are taught.

In their attempt to make efficient generalizations of the data they learn, machine

learning models encounter the problem of bias; the occurrence of prejudiced results due to

wrong assumptions made in the process of learning [19]. Examples of such bias show up

in the word embeddings of Natural Language Processing models which are more likely to

associate gender neutral occupational titles such as “doctor” and “nurse” to the male and

female gender respectively [6]. Such an error may come across as benign, but as we begin

to trust these machine learning models to make more complex decisions, the consequences

of their wrong classifications exhibit more gravity. In 2016, research by ProPublica on a

commercial tool developed by Northpointe Inc. (now known as Equivalente) called COM-

PAS (Correctional Offender Management Profiling for Alternative Sanctions) which is used

in some legal systems in the United States to predict recidivism (the likelihood of offenders

committing crimes again) was nearly twice as likely to classify black defendants as higher

risk when compared to its classification of their counterpart white defendants [12, 17]. And

a tool developed by Amazon to automate the recruitment process of top companies was

found to reject the applications of women to fields regarded as more technical; such as those

within the areas of Science, Technology, Engineering and Mathematics (STEM)[8].

The biases that machine learning models demonstrate may arise for different reasons

including but not limited to an insufficient scope of training data (sample bias), systematic

distortion of values due to an error in a tool for data collection (measurement bias), bias in

the algorithms behind these models (which have nothing to do with the data the models are

trained on) and/or prejudice or learned bias, which is introduced as a result of stereotypes
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that humans introduce into data used to train models. Regardless of the types of bias present

within a given machine learning model, the need to address them presents itself in order to

produce more accurate outcomes [7, 9, 22, 27].

As varied as sources of bias in data may be, they may be mitigated with due dili-

gence. For example, one may simply ensure that tools of measurement are properly func-

tional to mitigate measurement bias. With sample size bias, one may make a conscious effort

to select a sample that represents its larger population well [22]. Regardless of the aforemen-

tioned efforts one may make, certain biases are ingrained in the very existence of features

in data. These biases, referred to as learned biases or societal biases in some literature are

those that are picked up by models as a result of passed on human biases. Although usu-

ally benign, learned biases target specific features that revolve around the socio-economic

characteristics of human subjects represented in training data. Learned biases may occur

through the presence of factors such as the age, gender, race and income levels of subjects

represented in training data. When such bias exists in data, machine learning models begin

to display and possibly perpetuate it. By its latent nature, learned biases are difficult to mit-

igate simply. However, it is necessary that they be evaluated because they may negatively

affect human lives directly or indirectly.

This gives rise to the objective of this research paper; to mitigate learned biased

in machine learning models. To achieve this, the misclassification of a model is used to

penalize it in its training steps, to help it adjust for its biased outcomes and improve the

general fairness of models.

Misclassifications refer to the errors that arise during a model’s attempt to classify

data. This paper is concerned with misclassifications that arise on the basis of a particular

sensitive feature in training data. In the paper, misclassification is measured relative to

additional data referred to as ground truth and included in the loss function of a Logistic

Regression classifier such that the model begins to consider its unfair misclassifications as

it learns during training. In detail, an error is computed as the difference between a model’s

predictions and the ground truth for each class within a specified sensitive feature. The

gradient of this error is computed similarly to the gradient of the Logistic Regression Cross-

Entropy loss function and added to the classifier’s gradient descent function. This teaches

the classifier to learn parameters that optimize for both correct and fair predictions. Weights

are place on the classifier’s correctness and fairness to analyze its behavior when they are

2



adjusted. The misclassification rates for each sensitive group are analyzed as the weights

are adjusted to assess how well the model is able to address the disparity between them.

This approach yielded positive results when an even weight was placed on correctness and

fairness in the model’s predictions as it was able to bring the misclassification rates of the

different sensitive groups closer to each other. When more emphasis is placed on fairness

than on correctness, the model is unable to learn appropriately to make neither correct nor

fair predictions.

It is worth noting that the term bias (not to be confused with the statistical measure)

and unfairness are used interchangeably in this paper.
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Chapter 2: Related Work

2.1 Bias Testing in Machine Learning

Current efforts to test for the biases inherent within the data fed into training ma-

chine learning models are gaining ground. These efforts have approached the problem of

testing and auditing bias in machine learning models from different perspectives. One of

such approaches is the application of psycho-social metrics that are useful in assessing hu-

man bias. One such example of this is the Implicit Association Test (IAT) that is used in

quantifying the prevalence of known biases (such as those of race and gender), inherent in

human associations [3]. The IAT has been applied on corpora of text found on the web that

have been used in Natural Language Processing models to give researchers a sense of the

possible biases such models may perpetuate.

However, it is not enough to simply know the possibilities of bias existing within

the data and the algorithms used in training these models. Also, such measures require

qualitative research involving human interaction to be able to accurately define the nature of

biases existing in the IAT. This requirement may not be easily fulfilled when dealing with

raw data to be trained on.

2.2 Formalizations of Fairness

Seeing that the application of standard measures of assessing social bias to machine

learning models may not prove feasible in application to real-word problems, researchers

have coined formalizations of bias that may be checked for in machine learning, to allow the

implementation of methods to mitigate them. Thus, machine learning models may be clas-

sified as exhibiting bias in the form of disparate treatment, disparate impact and/or disparate

mistreatment [21, 22, 26, 27]. These measures are further explained as follows:

1. Disparate treatment: This type of bias is realized in a model if its prediction or clas-

sification of a given instance changes when a change is made to a sensitive feature.

Take a model that scans through resumes to classify individuals as either qualified or

unqualified for a given job. If for a given female individual it classifies as unqualified

yet classifies as qualified when the gender of that individual is adjusted to male with

all other features remaining equal, the model is said to exhibit disparate treatment.
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2. Disparate impact: This type of bias is realized when there is a difference in the pro-

portion of a model’s various outcomes for the various sensitive groups under its con-

sideration. Taking the example of the resume assessing model above, if it tends to

predict black people as unqualified more than it does for white people it is said to

exhibit disparate impact.

3. Disparate mistreatment: More aligned with the goal of this study is the idea of dis-

parate mistreatment. Disparate mistreatment occurs when a model produces different

proportions of accurate outcomes for the various sensitive groups under its considera-

tion. To asses this kind of bias, the misclassification rates of models must be taken into

consideration. Using the resume scanning model to demonstrate this, it would be said

to exhibit disparate mistreatment if it is more likely to classify Hispanic individuals

as unqualified when the ground truth of such individuals is qualified than it is to clas-

sify Caucasian individuals as unqualified when the ground truth of such individuals is

qualified.

These definitions may be expressed mathematically depending on the use case at hand and

enforced as constraints on predictive models.

2.3 Auditing Machine Learning Models

Researchers have taken different approaches to the task of evaluating bias and/or

enforcing fairness in machine learning models. One such approach that is gaining recogni-

tion involves revealing the significance of the features fed into predictive models to assess

the extent of models’ discrimination. This is integrated into various machine learning li-

braries in the form of feature importance metrics. Using these metrics provide information

on whether or not a potentially problematic sensitive feature has a high importance score

(meaning, the model takes it into consideration in decision-making heavily). Another tool

known as FairML developed in the Massachusetts Institute of Technology presents a solution

for diagnosing this bias and how it affects the results these models present. The application

of these tools on a given model generates a percentage that informs users on how much a

given feature influences a model’s decisions. In a nutshell, such machine learning auditing

tools are able to inform its users on how much a model takes certain variables into consider-

ation when making decisions [1]. These tools are said to be model-agnostic as they can be
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applied on any machine learning model. In contrast to model-agnostic tools, certain models

are able to explain their own outcomes. For example, decision rules can be extracted from

decision trees for given outcomes [15].

Aequitas is another tool developed by researchers at the Center for Data Science and

Public Policy in University of Chicago [21]. It enables users to audit data that they use to

train models to generate reports on the types of bias (where bias indicates a breach in the

aforementioned formalizations of fairness) that both the data and the model such data is fed

exhibit. With Aequitas, users can upload data to a web toolkit, call on methods implemented

in a Python library, or pass command line arguments to generate bias reports.

Tools used to audit machine learning models are beneficial in assessing the potential

source of bias that may result from the models’ outcomes. However, they are neither directly

preventive nor corrective.

2.4 Algorithm Transparency

The complex nature of some machine learning models makes it hard for scientists to

interpret the outcomes of such models. As a result, many models are considered to be black

boxes. Another attempt to improve the fairness of machine learning models is to eliminate

the black-box nature of these models’ algorithms in what has been as described as algorith-

mic transparency. A solution within this area is a tool known as Local Interpretable Model-

Agnostic Explanations (LIME) [14] which seeks to increase the transparency of classifica-

tions carried out by machine learning models, by giving an explanation to their outcomes.

This helps humans take a step further into decisions on trusting the predictions these mod-

els make (regardless of how accurate they may be) as it provides more context on how the

models come about the decisions they make.

Furthermore, researchers at Google have developed what is known as Google What-

If [25], a tool that assists data scientists and individuals who create machine learning models

to probe the behavior of such models. The What-If tool offers users an interactive web

interface to explore the results of the models they build. It allows users to visualize data

and examples from the models they build. It also displays the behavior and changes in the

model’s outcomes if any of the data given or examples they provide changes.
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2.5 Measures for Bias Correction in Machine Learning

The concept of bias correction is not one that is novel in the field of machine learning.

As machine learning gains ground in recent times and the effects of the bias it presents be-

comes more and more realistic and dire, researchers put in much more effort into exploring

methods to curb the bias. However, as we have seen that bias stems from numerous areas, it

is an area that presents great complexity. One of such methods focuses on the spreading of

misclassification rates amongst the bias and weights that models learn as part of their fea-

tures [7]. Work has also been conducted on the penalization of models by placing constraints

on their loss functions based on the misclassifications they make [26]. Here, the constraints

placed on the loss function are the aforementioned mathematical formalizations of fairness.

These mathematical expressions are non-convex in nature and as such make it difficult to

impose them on the convex nature of the model’s optimization problems. To solve this,

mathematical heuristics such as the Discipline Convex-Concave Program (DCOP) [26] are

employed to enable them to be represented as convex functions. From here, the loss func-

tions of predictive models are optimized, subject to these derived convex functions which

act as mathematical constraints. In the attempt to correct bias in machine learning models,

a tradeoff between model fairness and accuracy is presented [1, 13, 26].

2.6 Legal Work on Fairness in Machine Learning

In the legal sphere of algorithm governance, various regulations have been put in

place to ensure the risk of bias in machine learning algorithms [11] is checked. In the

United States of America, the Algorithm Accountability Act has been introduced to address

the biases in decision making models that may affect sensitive groups of society negatively

by denying them certain services or providing outcomes that deepen the data bias against

them [2]. Though this bill is yet to be passed, it is also yet to be considered in other parts of

the world to improve the effect of biased outcomes of machine learning models.
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Chapter 3: Methodology

As has been discussed in this paper and in numerous works surrounding the ideas

of fairness and bias correction in machine learning models, bias leading to unfair decisions

may arise from the nature of the data employed in training said models. As a result, fairness

in a model’s outcomes is characterized in this paper as a closeness between selected misclas-

sification rates (either false positive or false negative rates) for training examples belonging

to various classes of a given sensitive feature.

p(ŷ 6= g |z = 0,g = 0)≈ p(ŷ 6= g |z = 1,g = 0)

where ŷ = Model’s predicted value [0,1],

g = Ground truth [0,1],

z = Sensitive feature [0,1]

The expression above demonstrates an attempt to neutralize disparate mistreatment

(as explained in Section 2.2 of the paper) in models, by removing large disparities between

the false positive rates between members of the sensitive group. Implementing these restric-

tions on the learning process of models implies that they may be forced to make a tradeoff

between accuracy and fairness. For example, an attempt to address the disparity between the

false positive rates of sensitive groups may result in an increase in the false negative rates

of the groups. However, in some use cases, accuracy may not necessarily be an optimal

measure of good performance in models. This is evident in some scenarios which require

that models maintain either good precision or good recall [5]. As such this becomes a fair

tradeoff for scientists to take into consideration [10].

3.1 Requirement Analysis on Data

Given that the goal of this paper is to implement and assess bias correction in ma-

chine learning models, the data to be employed must exhibit features that could give rise to

learned bias. These may include but not be limited to race/ethnicity, gender, age and income

levels of human subjects under consideration. For the purposes of this study, it is assumed

that data under consideration is devoid of sample size and measurement bias (that is, the data
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is representative of its larger population and tools of measurement are accurate). It is also

imperative that the data contains the ground truth of predictions made within the dataset.

Note that ground truth as referred to by this paper, differs from the dependent variable of

a given set of data. Whereas the dependent variable (y) of the data may represent a classi-

fier’s output on a set of independent variables, the ground truth represents an assessment of

correctness on the output of classification.

Assuming that the table below represents data employed in predicting whether or

not an individual is carrying a gun (y). As demonstrated, Example 1 is predicted to be a

carrier (y = 1). Say that after the prediction was made, police officers frisk the individual

represented by Example 1 and find that indeed they carried a gun, ground truth (g) is also

reported to be 1. This is referred to as a true positive. In the case of Example 2, y = 0

(meaning the classifier predicted the individual as carrying no gun) and g = 1 (after being

frisked, the individual was found to be carrying a gun). This is referred to as a false negative.

In Example 3, y = 1 (indicating that the individual was predicted to have a gun) but g = 0

(upon being searched, was found to carry no gun). Example 3 reflects the idea of a false

positive. Finally, in Example 4, y = 0 (individual was predicting as not carrying a gun) and

g = 0 (meaning that after being frisked was found to have no gun). This is referred to as a

true negative.

Table 3.1: Demonstration of Difference between Dependent Variable and Ground truth

Example Dependent Variable
(y)

Ground Truth (g)

1 1 1
2 0 1
3 1 0
4 0 0

3.2 Dataset

The dataset under consideration to test this paper’s approach is the ProPublica for

FairML Dataset. This is a subset of the data sourced by ProPublica in its analysis of the

COMPAS Recidivism Prediction Tool [17]. It contains 6172 examples of data about the de-

mographics and conviction information of individuals convicted in Broward County, Florida

in the United States. It also contains 10 rows of independent features including sensitive

variables such as race and gender.

9



Below is a description of the dataset:

1. Two yr Recidivism: This variable represents the ground truth and informs on whether

or not a defendant recidivated within two years. 1 for True, 0 for False.

2. Number of Priors: Number of past arrests for the given defendant.

3. Score factor: Categorical variable encoding either a low or high COMPAS score. 1

implies high risk of recidivism and 0 implies low risk of recidivism.

4. Age Above FourtyFive: Boolean representing whether or not the defendant is older

than forty-five years. 1 for True, 0 for False.

5. Age Below TwentyFive: Boolean representing whether or not the defendant is younger

than twenty-five years. 1 for True, 0 for False.

6. African American: Boolean representing whether or not the defendant is African

American. 1 for True, 0 for False.

7. Asian: Boolean representing whether or not the defendant is Hispanic. 1 for True, 0

for False.

8. Hispanic: Boolean representing whether or not the defendant is Asian. 1 for True, 0

for False.

9. Native American: Boolean representing whether or not the defendant is Native Amer-

ican. 1 for True, 0 for False.

10. Other: Boolean representing whether or not the defendant is either African American,

Hispanic or Native American. 1 for True, 0 for False.

11. Female: Boolean representing whether the defendant is female. 1 for True, 0 for False.

12. Misdemeanor: Boolean representing whether or not the crime committed by the de-

fendant was a misdemeanor or not. 1 for True, 0 for False.
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3.3 Logistic Regression for Binary Classification

In choosing which machine learning model best suits the task of this paper (fairly

predicting the risk scores of individuals in the COMPAS Recidivism Dataset), Logistic Re-

gression was settled upon. Logistic Regression is suitable for classification problems as it is

able to calculate the probability that a given example belongs to a given class based on its

features. It is a simple classification model to employ in predicting binary categorical depen-

dent variables. In this paper, Logistic Regression would be able to predict the probability of

a given defendant being either high or low risk recidivism (risk score factor) based on their

demographic and criminal information. Logistic Regression classifiers are able to calculate

these probabilities by mapping the output of predictions with an activation function referred

to as the sigmoid function.

S(z) =
1

1+ e−z

where:

S(z) = Probability value between 0 and 1

z = Model’s prediction

In the implementation of the work of this paper, a decision boundary is set such that

a given probability estimate (p) maps to a risk score factor of either 0 (low risk recidivism)

or 1 (high risk recidivism).

p≥ 0.5;y = 1 (high risk recidivism)

p < 0.5;y = 0 (low risk recidivism)

This was chosen to maintain an even split in the probability estimates of the model’s de-

cisions. Though this may not necessarily yield results that optimize the model’s accuracy

and/or fairness, this decision threshold is maintained as a control to ensure that desired op-

timizations result from the implementation of the work of this paper.

To ensure that Logistic Regression models learn to make accurate predictions, a loss

function known as the Cross Entropy function is used to measure the error (cost) between
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the model’s predictions and the expected predictions at each step of is training process.

J(Θ) =
1
m

m

∑
i=1

cost
(
hθ

(
xi) ,yi)

cost(hθ (x),y) =− log(hθ (x)) if y = 1

cost(hθ (x),y) =− log(1−hθ (x)) if y = 0

where:

m = length of training set

hθ (x) = Model’s prediction

y = Expected prediction

This piecewise loss function can be compressed into one expressed as:

J(θ) =− 1
m

m

∑
i=1

[
yi log

(
hθ

(
xi)+ ε

)
+
(
1− yi) log

(
1−hθ

(
xi)+ ε

)]
Notice that by multiplying each of the components of the loss function by yi and

1− yi respectively, the equation is able to solve for y = 0 and y = 1 cases separately. Also

a very small constant ε is introduced to avoid running into log errors when computing the

loss. The model’s cost is minimized during gradient descent. In gradient descent, an optimal

set of parameters that find the global minimum value of the loss function is learnt.

The gradient of the loss function is calculated as:

θt+1 = θt−α

m

∑
i=1

(
hθ

(
xi)− yi)xT

where :

θt = Parameters at a given iteration,t

α = Learning rate

3.4 Approach

The work to be done in this paper may be thought of in two segments:

1. The Base Experiment: This involves demonstrating that inherent bias or unfair behav-

ior stems from the data and sensitive features used in the training of the classifiers.

This is done as a confirmatory procedure to ensure that it is worthwhile pursuing the
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core work of this paper, as it would be needless to ensure fair decision making in a

model if it does not make unfair decisions, or if its unfair decisions do not arise from

the presence of sensitive features in its data.

Figure 3.1: Flowchart of Base Experiment

2. The Core Experiment: This aspect of the paper’s work has to do with the mechanisms

put in place to abate the biased decision-making process of machine learning models.

This is achieved by taking into account the gradient of the error between predictions

made by the classifier and the ground truth when z = 0 and z = 1. The introduction

of the gradient of this error forces the model to learn weights that bridge the disparity

between the misclassification rates of the sensitive groups under consideration.
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Figure 3.2: Flowchart of Core Experiment

3.5 Technologies Employed

3.5.1 Google Colaboratory

Google Colaboratory is a cloud based Python development environment developed

by Google. It allows users to create machine learning and deep learning programs and

experiments by utilizing the hardware capabilities of Google’s cloud severs. On Google Co-

laboratory, users can run code on Graphical Processing Units (GPUs) or Tensor Processing

Units (TPUs) to accelerate the time intensive process of deep learning computations for free.

Google Colaboratory comes ready with several useful packages and libraries to assist

users to create machine learning programs and visualize their outputs and results. Its envi-

ronment is similar to that of Jupyter Notebook, such that users write programs in modular

bits referred to as cells. It also gives provision for users to provide some form of documen-

tation to their software in the form of Markdown, HTML and LATEXsyntax.

It was chosen as the preferred means of creating the experiments outlined in this

paper as it provided all significant packages at hand. Since it is cloud based, it provides a

form of security and ease of accessibility to the software.
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3.5.2 Sci-kit Learn

Sci-Kit Learn is a machine learning library that includes tools for creating super-

vised and unsupervised machine learning models. It provides users with an abstraction of

these machine learning models such that users need not know the ins and outs of them to

apply them to their work. It also comes with various tools for preprocessing of data and

evaluation of the model’s performance. Sci-Kit learn was chosen as the preferred library to

create the Logistic Regression classifier and evaluate its accuracy in the Base Experiment

for its simplicity. It was also used in splitting the training data into test and train sets in a

manner that ensures the same examples are used throughout the conducting of both of the

experiments.

Sci-Kit Learn is built of the NumPy scientific computation library which is elabo-

rated on below.

3.5.3 NumPy

NumPy serves as the basic package for scientific computations in Python. It allows

users to represent information in multidimensional containers and perform mathematical

operations such as linear algebraic calculations and Fourier transformations. It also has good

implementations for the randomization of data. In the core experiment, data is contained and

manipulated with NumPy.

3.5.4 Altair Visualization

The Altair Visualization Library is a powerful data visualization tool based on the

Vega and Vega-lite visualization frameworks. It is useful in creating clear visualizations of

the dataset being used and the output of the classifier. One major advantage it presents is the

simplicity of its commands. It is used in visualizing the data and predictions made in both

the Core and Base experiments.

3.5.5 Matplotlib

Matplotlib is a more commonly used visualization tool employed in Python appli-

cations. Though more verbose than the Altair visualization library, Matplotlib is useful in

creating simple but powerful displays of the outcomes of the experiment. It is used in both
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the Base and Core experiments to visualize the models predictions and performance. Other

libraries employed such as the Sci-Kit Plot visualization package are built from Matplotlib.
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Chapter 4: Methodology 2 - Implementation

4.1 The Base Experiment

As has been previously established, bias may not only arise from data. It may stem

from the implementation of algorithms that perform classifications on the given data. For

the work of the experiment to be conducted in this paper, it must firstly be established that

a model’s exhibition of bias stems from its data and specifically the presence of sensitive

features in the data. Since previous studies suggest that COMPAS has the tendency to make

unfair predictions towards people who possess certain racial features [12,17], this aspect of

the paper’s work is conducted to assess the nature of predictions made by a machine learning

classifier with regards to individuals belonging to specific racial groups within the dataset

under consideration.

In short, the sensitive feature under consideration here is race and more specifically,

whether or not a person is African American or not (Other). This separation into two funda-

mental racial groups also aids in creating an almost even split in the proportions of different

races in the dataset, as African Americans make up a larger number of examples in the data.

From here, a Logistic Regression (LR) classifier is built to emulate the COMPAS

prediction algorithm such that, the created classifier should be able to predict the risk score

factors of individuals based on given independent variables including racial information.

The classifier is trained on 80% of the examples in the data described earlier, to predict the

score factor of individuals within the remaining 20% of the data set which is set aside for

testing. It’s accuracy of prediction is then measured to show how well it is able to emulate

the predictions of the COMPAS algorithm.

Table 4.1: Distribution of Training and Test data

Dataset Number of
Examples

African
American

Other

Training 4937 2536 2401
Testing 1235 639 596
Total 6172 3175 2997

Subsequently, a second classifier that trains without a given sensitive feature of the

dataset (which is racial information in this case) is implemented and the risk score factors

17



of individuals within the test dataset are predicted from it. Its accuracy of prediction will

be assessed relative to the aforementioned classifier to determine how well it is able to

accurately predict recidivism without the data’s racial information. Though this aspect of

the experiment takes a naı̈ve approach by simply eliminating the sensitive feature under

consideration, it demonstrates the impact of race on the classifier’s unfair decision making.

It must however be noted that the removal of a given sensitive feature from the data

that a given machine learning classifier trains on may not necessarily give rise to fairer clas-

sifications. This is because many times, features taken into consideration are not mutually

exclusive and as such may be telling of which sensitive features training examples may pos-

sess or not. For example, names of individuals may be indicative of their gender or race and

addresses may serve as proxies to their income levels.

4.2 The Core Experiment

After it has been established that bias arises from the data employed in training,

it becomes feasible to implement measures to deal with the biased outcomes of machine

learning models. In the core experiment, disparities between the misclassifications across

the sensitive feature that are based on the data’s ground truth are employed to inform the

machine learning models on unfairness in its learning process. Misclassifications may be

quantified as either False Positive (FP) rate or a False Negative (FN) rate based on the use

case at hand. However, for the purpose of this experiment and with regards to the data being

employed (the COMPAS Recidivism data), the FP rate is taken as the misclassification rate

to be considered. This is because in the case of predicting risk scores with the COMPAS

Recidivism dataset, it is considered unfair to rate a defendant as being high risk recidivism

when in fact the defendant in question does not recommit the offence. As such what one

hopes to achieve in terms of fairness in such a model, would be to narrow the big gap

between the FP rates for both African Americans and individuals of other racial origins

(Other). This is essentially telling the model to ensure that the probability that a person of

Other racial origins being predicted as high risk when in fact, they do not recidivate should

be as equal as possible to that of an African American being predicted as high risk when in
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fact they do not recidivate. The FP rate is calculated as:

FP rate =
FP

FP+T N

where:

FP = Number of false positives

T N = Number of true negatives

As with the Base Experiment, race is the sensitive feature (z) under consideration

here as well. Race is constructed as it was in the Base Experiment with z being either

African American (to indicate that a defendant is African American) or Other (to indicate

that a defendant is of another race). For simplicity, the two racial groups are expressed as

z = 0 | 1 where 0 represents Other and 1 represents African American.

The goal of this aspect of the experiment is to enforce parity in the probability of

misclassification between the given racial groups. To achieve this, an approach based on the

modification of the loss function of a Logistic Regression classifier to allow it to consider,

the gradient of the error between predictions made and the ground truth for z = 1 and z = 0.

4.2.1 Gradient of Error Between Predictions and Ground Truth

In the implementation of this approach, the gradients of the error of prediction must

be separated according to z and calculated accordingly. This is done by reconstructing the

feature array and ground truth such that we now have two different feature arrays for when

z = 0 and z = 1 respectively. This is demonstrated in the tables below:

Assuming a feature table of independent variables:

Table 4.2: Demonstration of Feature Table with Features (Xn) and Sensitive Feature (z)

Example X1 ... z
1 1 0 0
2 10 1 1
3 7 1 0
4 0 0 0

When z = 0, Table 4.2 is reconstructed such that all rows where z = 1 are filled with zeros:
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Table 4.3: Demonstration of Reconstructed Feature Table for z = 0

Example X1 ... z
1 1 0 0
2 0 0 0
3 7 1 0
4 0 0 0

And when z = 1, Table 4.2 is reconstructed such that all rows where z = 0 are filled with

zeros:

Table 4.4: Demonstration of Reconstructed Feature Table for z = 0

Example X1 ... z
1 0 0 0
2 10 1 1
3 0 0 0
4 0 0 0

The same approach outlined above is taken to reconstruct the ground truth (g). This is done

to ensure that for each X ,g where z = 0 and z = 1 respectively, predictions are made without

taking into account the value of the opposite z’s features. From here, the gradient of the

error between the prediction and ground truth for each sensitive group z = 0,1 is computed.

This gradient is introduced into the loss function as follows:

θt+1 = θt−
α

m

(
m

∑
i=1

(
β0
((

hθ

(
xi)− yi)xT)+β1

((
hθ

(
xi)−gi

0
)(

xi
0
)T
)
−
((

hθ

(
xi)−gi

1
)(

xi
1
)T
)))

where:

go = Ground truth of training exampled for z = 0

x0 = Feature array of training examples for z = 0

g1 = Ground truth of training exampled for z = 1

x1 = Feature array of training examples for z = 1

Note that the variable β0 is introduced to place weight on the classifier’s correct predictions

according to the dependent variable y. And β1 is a weight placed on the classifier’s “fair”

predictions according to the ground truth. Both values of β must sum up to 1
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4.2.1.1 Algorithm of Implementation of Core Experiment Algorithm 1 below demon-

strates the implementation of this methodology in software.

Algorithm 1 Batch Cross Entropy Gradient Descent including the Gradient of Error Be-
tween Predictions and Ground Truth
Input:Parameters (θ), Learning rate (α), β0, β1, iterations

Output: Optimal Parameters

Data: Testing set (X), Dependent Variable (y), Ground truth (g)

1: procedure GradientDescent

2: x0← X where Xr,z=1 = 0 . r represents row of feature table

3: x1← X where Xr,z=0 = 0
4: g0← g where gr,z=1 = 0
5: g1← g where gr,z=0 = 0
6: for i← 0 to iterations−1 do

7: hθ (x) ← σ(X ·θ)
8: θ ← θ − α

m ∗ (β0 ∗ (hθ (xi)− yi) · xT+
9: β1 ∗ ((hθ (xi)−gi

0) · (xi
0)

T − ((hθ (xi)−gi
1) · (xi

1)
T )))

10: . m represents the length of X

11: return θ . The optimal parameters

4.2.2 Using Mean Squared Error of Misclassification Rates

Before implementing the approach stated above, one based on penalizing the loss

function of a Logistic Regression classifier with a constant metric (penalty) was imple-

mented. The calculation of this penalty is computed as the mean squared error between the

FP rates for z = 1 and z = 0. To achieve this, at every iteration of learning, the false posi-

tive (FP) rates of that iteration are calculated for groups z = 0 and z = 1 respectively. The

Mean Squared Error (MSE) between the aforementioned FP rates is calculated to serve as a

penalty to the classifier’s loss function. The Mean Squared Error is calculated as:

MSEFPrate =
(FP rate0−FP rate1)

2

2

where:

FP rate0 = FP rate when z=0

FP rate1 = FP rate when z=1

In this experiment, the classifier’s gradient descent was carried out as Batch Gradient

Descent where the batch size was the entire training dataset. This means that for each
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iteration of the training step, predictions are made on the entire training set and the gradient

of the error between predictions and the expected prediction is calculated from it. This

implies that for each training step, the FP rates and MSE are calculated based on predictions

and expected output of the entire training dataset.

After calculating the MSE of the FP rates, it is added to the gradient descent function

as follows:

θt+1 = θt−
α

m

(
m

∑
i=1

(
β0
(
hθ

(
xi)− yi)xT +β1MSEFPrate

))
where:

θt = Parameters at a given iteration

α = Learning rate

MSEFPrate = Mean Squared Error of False Positive rates

β0,β1 = Number between [0,1]

This approach did not yield desired results as for each β value pair, the classifier

was unable to address the issue of disparity between the FP rates. This is demonstrated in

Figure 4.1 below that shows the classifiers FP rates per iteration for β value pairs (1,0),

(0.5,0.5) and (0.3,0.7) respectively.

(a) β0 = 1, β1 = 0 (b) β0 = 0.5, β1 = 0.5 (c) β0 = 0.3, β1 = 0.7

Figure 4.1: Results Achieved Using Mean Squared Error of Misclassification Rates
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Chapter 5: Results

The results of the experiments conducted to achieve the goal of this paper are out-

lined in the subsections below.

5.1 Results of Base Experiment

The Base Experiment buttressed the findings of previous literature [12, 17] on the

presence of racial unfairness in the COMPAS prediction algorithm.

(a) Ground Truth of Recidivism
across z

(b) Predictions of Recidivism
across z from ”Fair”
Classsifier

(c) Predictions of Recidivism
across z from ”Unfair”
Classsifier

Figure 5.1: Results of Base Experiment

The graphs above are discussed in more detail in the table below:
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Table 5.1: Distribution of Classifier Predictions Across Sensitive Feature (z)

Ground

Truth

”Fair” Classifier

(approx. count of y across

z based on X with no

racial information)

”Unfair” Classifier

(approx. count of y across

z based on X with

racial information)

Race

(z = 0,1)
Other

African

American
Other

African

American
Other

African

American

High

Risk (1)
230 (18.4%) 330 (26.4%) 190 (15.2%) 330 (26.4%) 140 (11.2%) 370 (29.6%)

Low

Risk (0)
370 (29.6%) 320(25.6%) 410 (32.8%) 320 (25.6%) 450 (36%) 260 (20.8%)

From Figure 5.1a above, we can tell that the data in the ground truth shows that

about 320 African Americans did not recidivate within two years while around 370 individ-

uals of other racial origin did not recidivate as well. However approximately 330 African

Americans and around 230 people of other racial origin recidivated within two years.

Figure 5.1c demonstrates the result of predictions made by the “unfair” Logistic

Regression classifier that has racial information as part of the features it learns. From it

we can see that around 260 African Americans were predicted as low risk recidivism. A

significantly lower number when compared to the ground truth. Also, around 450 people of

other racial origin were predicted as low risk recidivism which is significantly higher than

the ground truth depicts. It is also evident that the classifier predicts more African Americans

as high-risk recidivism and significantly less people of other origin as high risk recidivism

when compared to the ground truth (approx. 370 vs. 330 and 140 vs 230 respectively).

The confusion matrices of this classifier separated for z = 0 and z = 1 are depicted

below.
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(a) Confusion matrix demonstrating
misclassifcations according to ground truth for
z = 0. The number of false positives are found

in the upper right quadrant.

(b) Confusion matrix demonstrating
misclassifcations according to ground truth
for z = 1. The number of false positives are

found in the upper right quadrant.

Figure 5.2: Confusion Matrices from ”Unfair” Classifier

Here, one can tell that the classifier has a low number of false positives and a high

number of false negatives when z = 0. On the other hand, when z = 1 it has a high number

of false positives and a low number of false negatives. This tells us that it classifies less

individuals of other races as high risk when they do not recidivate than it does African

American individuals as high risk when they do not recidivate. The classifier also wrongly

classifies African Americans as low risk (when according to ground truth they are not), less

often that it does for other races.

Figure 5.1b shows results of predictions made by the “fair” Logistic Regression clas-

sifier that does not have racial information as part of its training features. Just by taking a

glance at it, it becomes obvious that removing racial features from the training dataset results

in predictions that are closer to the ground truth. Here, approximately 320 African Ameri-

cans and 410 people of other racial origin are predicted as low risk recidivism. Around 330

African Americans and about 190 people of other origin are predicted as high risk recidi-

vism. The confusion matrices of this classifier for z = 0 and z = 1 are depicted below.
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(a) Confusion matrix demonstrating
misclassifcations according to ground truth for
z = 0. The number of false positives are found

in the upper right quadrant.

(b) Confusion matrix demonstrating
misclassifcations according to ground truth
for z = 1. The number of false positives are

found in the upper right quadrant.

Figure 5.3: Confusion Matrices from ”Fair” Classifier

From the matrices, it depicts that the number of false positives increases when z = 0

and decreases when z= 1. The number of false negatives, however, decrease when z= 0 and

increase when z = 1. This demonstrates the tradeoff between model accuracy and fairness

because though this classifier makes fairer decisions they may not necessarily be the accurate

decisions regarding the data.

5.2 Results of Core Experiment

The Core Experiment was carried out using three different sets of weights on the

model’s correctness and fairness (β0 and β1 respectively). In detail, three sets of sub-

experiments were conducted using:

1. β0 = 1 and β1 = 0

2. β0 = 0.5 and β1 = 0.5

3. β0 = 0.3 and β1 = 0.7

The results obtained by these in the experiment are elaborated on below:

5.2.1 β0 = 1 and β1 = 0

Using these values of β , the model behaves as a regular Logistic Regression classi-

fier. It also reflects the behavior of the “unfair” classifier in experiment one. Here, training is
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completed in 120.11 seconds with a validation accuracy of 70.4% The cost graph and graph

of FP rate per iteration are shown below:

(a) Cost per Iteration of Classifier (b) FP Rates per Iteration for Both z = 0 and
z = 1

Figure 5.4: Results of Core Experiment with β0 = 1 and β1 = 0

The graph of predictions side by side with the ground truth are also identical to that of the

“unfair” classifier in the Base Experiment.

(a) Ground Truth of Recidivism across z (b) Predictions of Recidvism across z

Figure 5.5: Predictions of Core Experiment with β0 = 1 and β1 = 0
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From Fig 5.5, one may observe that using these weight values, the classifier is able to make

predictions that are closer to the ground truth than when the classifier does not take fairness

into consideration.

5.2.2 β0 = 0.5 and β1 = 0.5

Introducing equal weights to the values of β , the classifier was able to complete

training in 120.59 seconds with a validation accuracy of 70.4%

(a) Cost per Iteration of Classifier (b) FP Rates per Iteration for Both z = 0 and
z = 1

Figure 5.6: Results of Core Experiment with β0 = 0.5 and β1 = 0.5

The cost function is able to reach a minimum after the number of iterations. However, it

does not level out smoothly in the end and this can be resolved by introducing more training

iterations. Interestingly, the FP rates for both values of z decrease as the training iterations

increase. However, the disparity between them is addressed such that the FP rate when z = 1

gets closer to the FP rate when z = 0. This does well to address the issue of unfairness as set

out by this paper because the classifier is able to ensure that members of each racial groups

are misclassified similarly.

The ground truth and predictions made with these weight values are placed side by side

below
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(a) Ground Truth of Recidivism across z (b) Predictions of Recidvism across z

Figure 5.7: Predictions of Core Experiment with β0 = 0.5 and β1 = 0.5

From Figure 5.7, one may observe that using these weight values, the classifier is

able to make predictions that are closer to the ground truth than when the classifier does not

take fairness into consideration.

5.2.3 β0 = 0.3 and β1 = 0.7

Here, more emphasis is placed on fairness than correctness of prediction. The clas-

sifier was able to complete training in 119.47 seconds with a validation accuracy of 53.5%.

This is poor performance as it does not perform any better than a random guess when pre-

dicting, assuming that each example had equal chances of being predicted as high or low

risk recidivism.
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(a) Cost per Iteration of Classifier (b) FP Rates per Iteration for Both z = 0 and
z = 1

Figure 5.8: Results of Core Experiment with β0 = 0.3 and β1 = 0.7

From Figure 5.8a, one may observe that the cost eventually begins to rise as the iterations

increases. This phenomenon indicates that the model is unable to accurately learn a good set

of parameters for prediction. From Figure 5.8b, the FP rate when z = 1 takes a significant

drop only to increase again after a thousand iterations. The FP rate when z = 0 however,

increases gradually and levels out at the end. This is not desirable behavior as it implies that

the classifier makes predictions on the group z = 0 unfairly.

The graphs of predictions and ground truth demonstrate the further below:
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(a) Ground Truth of Recidivism across z (b) Predictions of Recidvism across z

Figure 5.9: Predictions of Core Experiment with β0 = 0.3 and β1 = 0.7

This shows that placing a large emphasis on fairness and a small one on correctness results

in neither correct nor fair predictions.
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Chapter 6: Conclusions and Further Work

6.1 Summary of Conclusions

The paper explored a method of enforcing fairer outcomes on machine learning mod-

els. The method includes the gradient of the error of prediction for members of a given sen-

sitive group in the loss function. Both methods used a subset of the COMPAS Recidivism

Dataset used in predicting individuals’ risk scores. For the purposes of this research, the

sensitive feature under consideration was race and the classifier of choice was a Logistic

Regression.

This attempt performs well in achieving the goal of the paper in terms of fairness

when an even emphasis was placed on the model’s fairness and correctness. In this case

it is able to address the disparity between the false positive rates of the sensitive groups

by reducing the difference between them by 52%, while lowering them ultimately. It also

mirrors the ground truth of prediction closely and maintains an accuracy of 70.4%. This

is very similar to the accuracy of a regular Logistic regression (70.2%) as demonstrated

in the paper and does not present the tradeoff between accuracy and fairness discussed in

literature [1, 13, 26]. However, placing more emphasis on fairness than correctness results

in an inability of the model to learn either correctly or fairly. On average, the experiment

takes 120.06 seconds to return results.

A previous experiment conducted involving the addition of the mean squared error

between the false positive rates of prediction did not produce significant results regardless

of the weight placed on fairer prediction, such that the behavior of penalized models did not

differ from that of regular Logistic Regression. This is because the calculated mean squared

error is introduced as a constant and added to the gradient in the gradient descent. For it to

have an effect on the model’s learning, it should be a function of the model’s parameters

6.2 Limitations

The following are the limitations on the work of this paper. They are the factors that

affect the performance of development and results produced by them:

1. The Core Experiment can only be carried out on sets of data for which ground truth is

present. This limits their applications as many current machine learning problems do
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not collect ground truth as part of the data they utilize in making decisions.

2. The current implementation of the Core Experiment is inefficient due to the recon-

struction of the features to enable them to be separated according to racial group. This

causes the learning process of the classifier to slow down significantly.

3. Finally, the subset of the data that was used to conduct this study was significantly

smaller than the original COMPAS dataset. This was because several examples were

discarded as some of their features were missing or not considered useful to the study.

This limited the performance of the classifiers that were built as more data could have

improved their accuracies.

6.3 Suggestions for Further Work

To improve the work done in this paper, the following may be considered:

1. A refinement of prior work done int the Core Experiment to express the Mean Squared

Error as a function of parameters to allow for the gradient of it to be applied to the

loss function. This improves the functionality of the experiment and has the potential

to yield meaningful results.

2. The problem of this paper may be framed as a Reinforcement Learning question such

that the state of the model’s training informs it on what actions to take to maximize a

reward expressed in terms of how well the model is doing with regards to fairness.

3. The speed of the experiments conducted may be improved by looking into more effi-

cient ways to reconstruct training fields and separate them according to the sensitive

feature under consideration.
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