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Abstract. We briefly present the motivation, architecture and usage
experience as well as proof statistics for a new Rodin Platform proof
back-end based on the Why3 umbrella prover. Why3 offers a simple and
versatile notation as a common interface to a large number of automated
provers including all the leading SMT-LIB and TPTP compliant tools.
The plug-in can function either in a local mode when all the provers are
installed locally, or remotely as a cloud service. We discuss the experience
of building the tool, the current status and the potential advantages of
a cloud-hosted proof infrastructure.

1 Overview

The Rodin Platform offers a fairly capable development and proof support for
the Event-B specification language. Some of the automated provers are a part of
the Platform and there is a number of add-on provers that significantly improve
proof success. Two more important one are the Atelier-B ML prover and the
SMT plug-in [3] that offers a bridge to a number of SMT-LIB compliant provers.

In addition to SMT-LIB interface, the majority of the prominent automated
provers support the TPTP [6] interface that originated as a common notation
for prover competitions.

Recently some important work has been done to bring a large number of
TPTP and SMT-LIB provers under the roof of a common, versatile notation -
the Why3 verification platform [1]. At the basic level Why3 offers a common
interface to over a dozen of automated provers; it also has its own high-level
specification notation to reason about software correctness though we do not
make any use of it in this work and rather rely on Why3 to offer a bridge to
tools like Z3 [4], SPASS [7], Vampire [5] and Alt-Ergo [2].

A theorem prover is a computationally and memory intensive program typ-
ically run for rather short periods of time (the vast majority of proofs is done
within two seconds) with long idling periods in between. Proof success and per-
ceived usability depend on the capability of an execution platform. Such require-
ment is best met by the cloud technology.

Doing proofs on a cloud opens possibilities that we believe were previously not
explored, outside, perhaps, prover contests. The cloud service keeps a detailed
record of each proof attempt along with (possibly obfuscated) proof obligations,
supporting lemmas and translation rules. There is a fairly extensive library of
Event-B models constructed over the past 15 years and these are a ready of source



Open, Open, Open,
Model Total POs built-in built-in + SMT Why3

Multi-core runtime 625 281 62 18
Paxos 348 121 9 4
Fisher’s alg. 82 14 2 0
Train Control System 133 36 5 32

Table 1. Performance benchmark for the cloud-based proving service.

of proof obligations. Some of these come from academia and some from industry.
We are now starting to put models through our prover plug-in in order to collect
some tens of thousands of proof obligations. One immediate point of interest
is whether one can train a classification algorithm to make useful prediction of
relative prover performance. If such a prediction can yield statistically significant
results, prover call order may be optimized to minimize resource utilization while
retaining or improving average proof time.

In order to convert Event-B into Why3 verification we had provide a mapping
for various Event-B operators, especially its set-theoretic treatment of functions
and relations. Unlike say, Isabelle/HOL, Why3 does not rely on a small proof
kernel and allows one to make axiomatic definitions. It is a much quicker way
to define an embedding of a logic but there is always a danger of making it
unsound. In a simpler case, an unsound axiomatisation may be detected by
proving of a tautological falsity but there are more intricate situations where
unsound definitions show up only in specific circumstances (that is, unsound part
is guarded by an implication or requires instantiation of some bound variables).
A database of proof attempts makes detecting suspect changes much easier as
we can go through historic proofs at any time to see if the outcome changes. We
also perform negated proofs on thousands of saved proof efforts.

Table 1 shows the comparative performance of the plug-in for some models.
Why3 plug-in at the moment is slower than the SMT plug-in but generally more
capable though we have one example where its performance is much inferior to
the SMT plug-in. The plug-in is open source and is available from the authors
on request; we plan to release it with a public cloud service in the coming few
months.

2 Translation

The translation of an Event-B proof sequent into a Why3 theory is split into
following four activities: a lightweight syntactic translation; construction of a
theory from an Event-B sequent and translated formulas; filtering of sequent hy-
potheses and support lemmas, Why3 axiomatisation of the Event-B mathemat-
ical language. Most of the effort goes in the last part so that the programmatic
bit of translation is relatively lightweight and generic.

The syntactic translator is written in Tom/Java and simply pretty-prints an
AST of an Event-B formula as an S-expression (which is, in essence, the input
syntax of Why3) with a static mapping of Event-B operator names. Thus a for-
mula f \ {t} becomes (diff f (singleton t)). There two non-trivial mappings:



the folding of left- or right- associative multi-operators into equivalent binary
forms, and the detection of enumerated set definitions (a native, algebraic defi-
nition of enumerated sets significantly improves prover performance).

An Event-B proof sequent is mapped into a Why3 theory. The Why3 language
has a different treatment of types - type variables are explicit and are separate
from the notion of a set - hence every carrier sets is defined twice: as a type
variable and as a maximal set. For instance, carrier set CORES and enumerated
set STATUS are translated into:

type tp_CORES

type tp_STATUS = T_ON | T_OFF

constant id_STATUS : (set tp_STATUS)

constant id_CORES : (set tp_CORES)

axiom hyp1 :(maxset id_STATUS)

axiom hyp2 :(maxset id_CORES)

where

axiom maxset_axm:

forall s:set ’a, x:’a . (maxset s) -> mem x s

Free identifiers occurring in a sequent become constants of a Why3 theory;
hypotheses are theory axioms and the sequent goal is mapped into a theory goal
(i.e., a lemma).

The filtering of hypotheses and support conditions is essential to enable proof
within reasonable time. It is discussed in Section3.

Most of the translation effort goes into the construction and fine-tuning of
Why3 support theories. We define each Event-B operator in a separate theory
and give the bare minimum axiomatic definition that must be checked by hand.
For instance, the following is the cardinality operator defined inductively:

theory Cardinality

use import Set

..

use import ElementAddition

function card (set ’a) : int

axiom card_def1:

forall s: set ’a.

finite s /\ is_empty s -> (card s) = 0

axiom card_def2:

forall x : ’a, s : set ’a.

finite s /\ not mem x s -> card (add x s) = 1 + card s

end



This is all one needs to know but not really enough to carry out proofs.
Thus we construct and prove a fairly long list of support conditions. These are
deposited in a separate theory (to facilitate filtering). The following gives an
example of such support lemmas:

theory Cardinality_support

use import Set

...

use import Union

...

lemma lemma_card_def5:

forall s, t: set ’a.

finite t /\ (forall x : ’a. mem x s -> mem x t) ->

card s <= card t

...

lemma lemma_card_def10:

forall s : set ’a, t : set ’b, f : rel ’a ’b.

finite t /\ (mem f s >->> t) ->

card s = card t

...

lemma lemma_card_def11:

forall s : set ’a, t : set ’b, f : rel ’a ’b.

card s = card t /\ (mem f s >-> t) ->

mem f s -->> t

...

end

3 Hypotheses and lemma filtering

The initial experiments have shown that a minimal axiomatisation support is
not sufficient to discharge a sizeable proportion of proof obligations. Provable
lemmas were added to assist with specific cases but then it become clear that
a large number of support conditions slow down or even preclude a proof. On
top of that, the auto tactic language of Rodin offers a very crude hypotheses
selection mechanism that for larger models tends to include tens if not hundreds
of irrelevant statements. It was thus deemed essential to attempt to filter out un-
necessary axiomatisation definitions, Why3 support lemmas and proof obligation
hypotheses.

The Rodin mechanism for hypotheses is based on matching conditions with
common free identifiers. To complement this mechanism we do filtering on the
structure of a formula. It is also a natural choice since support lemmas do not
have any free identifiers.

Directly comparing some two formulae is expensive: a straightforward algo-
rithm (tree matching) is quadratic unless memory is not an issue. We use a
computationally cheap proxy measure known as the Jaccard similarity which, as
the first approximation, is defined as JS(P,Q) = card(P ∩Q)/ card(P ∪Q).

The key is in computing the number of overall and common elements and,
in fact, defining what an ”element” means for a formula. One immediate issue



is that P and Q are sets and a formula, at a syntactic level, is a tree. One
common way to match some two sequences (e.g., bits of text) using the Jaccard
similarity is to use shingles of elements to attempt to capture some part of the
ordering information. A shingle is a tuple preserving order of original elements
but seen as an atomic element. Thus sequence [a, b, c, d] could be characterised
by two 3-shingles P = {[a, b, c], [b, c, d]} (here [b, c, d] is but a structured name)
and matching based on these shingles would correctly show that [a, b, c, d] is
much closer to [a, b, c, d, e] than to [d, c, b, a]. Trees are slightly more challenging.
On one hand, a tree may be seen (but not defined uniquely) as a set of paths
from a root to leaves and we could just do matching on a set of sequences and
aggregate the result. This is not completely satisfactory as tree structure is not
accounted for. So we add another characterisation of tree as a set of sequences
of the form [p, c1, . . . , c2] where p is a parent element and c1, . . . , c2 are children.
This immediately gives a set of n-shingles that might need to be converted into
shorter m-shingles to make things practical.

As an example, consider the following expression a ∗ (b + c/d) + e ∗ (f −
d ∗ 2). We are not interested in identifiers and literals so we remove them to
obtain tree +(∗(+/))(∗(−∗)) which has the following 3-shingles based on paths,
[∗,+, /], [+, ∗,+], [+, ∗,−], [∗,−, ∗], and only 1 3-shingle, [+, ∗, ∗], based on the
structure. The shingles are quite cheap to compute (linear to formula size) and
match (fixed cost if we disregard low weight shingles, see below). Let sd(P ) and
sw(P ) be set of depth and structure shingles of formula P . Then the similarity
between some P and Q is computed as

s(P,Q) =
∑
i∈I1

wd(i) + c
∑
i∈I2

ww(i) I1 = sd(P ) ∩ sd(Q), I2 = sw(P ) ∩ sw(Q)

where w∗(i) = cnt(i)−1 and cnt(i) is number of times i occurs in all hypotheses
and support lemmas. Very common shingles contribute little to the similarity
assessment and may be disregarded so that there is some k such that card(I1) <
k, card(I2) < k.

4 Prover scenarious

The cloud service accepts as inputs sequents S of the form: (p, t) where p defines
a proof scenario stipulating which provers need to be run and t is a Why3 theory
containing a single goal.

The server executes a proof scenario p to obtain a proof result. A proof sce-
nario is a function from an input sequent to a proof result: q ∈ S → {unknown, valid,
invalid} and is defined via the following proof scenario primitives:

p(t) := pr(t) (prover call, positive)
| pr(¬t) (prover call, negative)
| p(t) . w (deadline), w ∈ R+

| p1(t) ∧ p2(t) (and composition)
| p1(t) ∨ p2(t) (or composition)
| ¬p(t) (result negation)

The negation operator ¬ on proof results turns valid into invalid, invalid into



valid and does not affect unknown and failed.
The or composition (p1 ∨ p2)(t) is opportunistic: it may return any result r

such that r ∈ {p1(t), p2(t)} \ {unknown}, and when no such result exists, returns
unknown. The and composition (p1 ∧ p2)(t) evaluates max({p1(t), p2(t)}) where
unknown < valid < invalid.

The compositions are distributive and commutative so that provers invoca-
tions may be scheduled rather flexibly or invoked at the same time. In practical
terms, the or composition runs until any prover returns a definite results and
the and composition runs all the provers until it sees invalid result.

The multiplicity of (independently developed) back-end verification tools may
be relied on to increase the confidence in a proof result by applying adjudicating
on the results of prover calls: SA(t) ≡ pr1(t) ∧ pr2(t) ∧ pr3(t) ∧ . . . .

An important case is proving both positive and negative forms of an input
sequent: pr1(t)∧¬pr1(¬t). Negation may also be employed opportunistically with
the parallel composition: pr1(t) ∨ ¬pr1(¬t).

Provers may be run with a timeout. A practical example is to run a less
capable but often faster prover in parallel with a slower prover: pr1(t) . w1 ∨
pr2(t) . (w1 + w2), w1, w2 ∈ R+.

An efficient implementations of both sequential and parallel compositions
must rely on concurrent invocation of some or all of the composed prover calls.
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