

ASHESI UNIVERSITY COLLEGE

AUTONOMOUS SELF-DRIVING VEHICLE:

PERCEPTION, SUPERVISED LEARNING AND CONTROL

APPLIED PROJECT

B.Sc. Computer Science

Benedict Quartey

2018

Page | 1

Branding and Identity Guide
The Ashesi brand and logo are integral parts of our worldwide image and identity. We must be
careful of how and where the Ashesi is used to ensure we maintain the integrity of our
organization.

This guide has been developed to help you clearly understand our policies towards the use of
the Ashesi logo in a variety of mediums, as well as type faces and a color palate to help you
produce materials that maintain the brand’s integrity. We would request that you seek
approval from the Ashesi University College Marketing Committee before creating any media
that reproduces the Ashesi logo.

Contents
The Logo .. 2

Using the Logo .. 3

Clear Space and Logo Design .. 5

Unacceptable Logo Uses ... 6

The Ashesi Seal .. 7

Color Palette ... 8

Fonts.. 8

Mission Statement .. 9

ASHESI UNIVERSITY COLLEGE

Autonomous Self-Driving Vehicle:

Perception, Supervised Learning, Control

APPLIED PROJECT

Applied project submitted to the Department of Computer Science, Ashesi

University College in partial fulfilment of the requirements for the award of

Bachelor of Science degree in Computer Science

Benedict Quartey

April 2018

 i

DECLARATION

I hereby declare that this applied project is the result of my own original work and that no part of

it has been presented for another degree in this university or elsewhere.

Candidate’s Signature:

……………………………………………………………………………………………

Candidate’s Name:

……………………………………………………………………………………………

Date: ……………………………………………………………………………………………

I hereby declare that preparation and presentation of this applied project were supervised in

accordance with the guidelines on supervision of Applied project laid down by Ashesi University

College.

Supervisor’s Signature:

……………………………………………………………………………………………

Supervisor’s Name:

……………………………………………………………………………………………

Date: ……………………………………………………………………………………………

 ii

Acknowledgement

This applied project would not have been possible without the help and input of several

individuals. Firstly, I am grateful to God for giving me the knowledge and resilience to complete

this project. I would also like to thank my supervisor Dr. Ayorkor Korsah, her guidance and

constant feedback helped me implement this project successfully.

Secondly, I would like to thank my family, friends and fellow self-driving car enthusiasts from

various self-driving and Deep Learning slack channels. They constantly helped me find answers

to every question and shared their own ideas on my implementation.

Finally, I would like to acknowledge all the lecturers I have had the honour of studying under

throughout my stay at Ashesi. I have learnt so much and the person I am now is as a result of

their cumulative guidance.

 iii

Abstract

Road accidents are estimated to be the ninth leading cause of death across all age groups

globally. 1.25 million people die annually from road accidents and Africa has the highest rate of

road fatalities (WHO, 2015). Self-driving technology has the potential of saving over a million

lives lost to preventable road accidents world-wide.

Africa accounts for the majority of road fatalities and as such would benefit immensely from this

technology. However, financial constraints prevent viable experimentation and research into self-

driving technology in Africa. In this applied project I designed and implemented RollE to bridge

this gap. RollE is an affordable modular autonomous vehicle development platform. It is capable

of road data collection and autonomous driving using a convolutional neural network. This

system is aimed at providing students and researchers with an affordable autonomous vehicle to

develop self-driving car technology.

 iv

Table of Content

DECLARATION ... i

Acknowledgement ..ii

Abstract .. iii

Chapter 1: Introduction ... 1

1.1 Background and Significance .. 1

1.2 Related Work .. 2

1.2.1 Autonomous Car Implementations ... 3

1.2.2 Perception.. 3

1.2.3 Supervised Learning .. 4

1.2.4 Control .. 5

1.3 Summary ... 6

Chapter 2: Requirement Specification ... 8

2.1 Project Overview .. 8

2.1.1 Objective .. 8

2.1.2 Approach ... 8

2.2 Procedure for Requirement Gathering .. 9

2.3 User Classes and Use Cases ... 9

2.4 Functional Requirements .. 9

2.4.1 Core Features ... 9

2.5 Non-functional Requirements .. 11

Chapter 3: Architecture and Design... 12

 v

3.1 System Overview .. 12

3.2 Physical Layer / Hardware Components .. 13

3.3 Logical Layers ... 15

Chapter 4: Implementation .. 17

4.1 Implementation Overview ... 17

4.2 Software Libraries / Tools ... 18

4.3 Physical Layer ... 19

4.3.1 RollE Rover ... 19

4.3.2 RollE Pilot ... 22

4.4 Control Layer .. 25

4.4.1 Actuation.py .. 25

4.4.2 RollE_Pilot.ino .. 26

4.4.3 Pilot_Transmitter.py / soft_Pilot.py ... 26

4.5 Perception Layer ... 27

4.6 Learning Layer .. 29

Chapter 5: Testing and Results .. 32

5.1 Approach ... 32

5.2 Component Testing ... 32

5.2.1 Physical Layer Tests .. 32

5.2.2 Control Layer Tests and Results .. 34

5.2.3 Learning Layer Tests and Results .. 37

5.2.3 Perception Layer Tests and Results .. 39

5.3 System Testing .. 40

 vi

Chapter 6: Conclusion and Recommendations... 45

6.1 Summary ... 45

6.2 Limitations and Challenges.. 45

6.3 Future Work .. 46

References .. 47

 vii

List of Figures

Figure Description Page
Figure 2.1 Diagram of core functionality classes of the Roll-E Mk II 10

Figure 3.1 Layered architecture of RollE MkII 12

Figure 4.1 Diagram of RollE rover component connections 20

Figure 4.2 3D printable components of RollE Rover 21

Figure 4.3 Completely assembled RollE Rover 22

Figure 4.4 Diagram of RollE Pilot component connection. 23

Figure 4.5 3D printable components of RollE Pilot 24

Figure 4.6 Completely assembled RollE Pilot 24

Figure 4.7 Image pre-processing results 28

Figure 4.8 Nvidia's Convolutional Neural Network Architecture 29

Figure 4.9 Data augmentation results 31

Figure 5.1 Serial plotter output 35

Figure 5.2 Snapshot of the RollE Pilot serial transmission 36

Figure 5.3 Model 1 mean squared error graph 38

Figure 5.4 Model 2 mean squared error graph 38

Figure 5.5 Model 3 mean squared error graph 39

Figure 5.6 Snapshot of data collection CSV file 42

Figure 5.7 Data distribution charts 44

 1

Chapter 1: Introduction

1.1 Background and Significance

Road accidents are estimated to be the ninth leading cause of death across all age groups

globally. Every year, the total estimated global tally of deaths as a result of road accidents hovers

around 1.25 million people (WHO, 2015). These accidents are mostly due to preventable human

driver error. Autonomous vehicles provide a prospective solution to this problem. Interest in the

potential of autonomous vehicles has grown substantially in the past four years. As of June 2017,

the research institution Brookings estimates the total investment in research and development of

autonomous vehicles by industry leaders to have grown from under $1 Billion in late 2014 to

about $80 billion (Kerry & Karsten, 2017).

As with other human technological achievements, self-driving technology might start a chain of

innovations that improves human life in general. However, Africa seems to be lagging behind in

this field. Investment data provided by Brookings reveals that the $80 billion research and

development transactions and acquisitions stated earlier are situated in already developed

economies. As an example, Uber donated $5.5 million to Carnegie Mellon in 2015 to solidify

their robotics program and fund three graduate fellowships. This donation was made as part of a

strategic partnership between the two entities in developing autonomous driverless-car

technology (Kerry & Karsten, 2017). Toyota also invested $1 billion in launching a research

institute solely for Artificial Intelligence (Kerry & Karsten, 2017). The report by Brookings also

showed a number of transactions involving startup investments, partnerships and acquisitions all

in the field of advanced perception systems, AI and autonomous vehicles. While these

investments show the positive interest in autonomous vehicles and spell out an exciting future for

 2

artificial intelligence, it also shows the unequal distribution of knowledge and resources in this

field.

African universities and corporations are yet to make attempts to bridge this gap in unequal

research into self-driving cars. Ironically, about 90% of the global death toll due to road

accidents occur in low and middle-income countries; a category in which most African countries

fall (WHO, 2015). This single statistic alone shows the importance of Africa joining the self-

driving car research and development train. My project, which is an attempt at developing a

modular autonomous self-driving vehicle platform, seeks help to bridge this gap. This platform

provides students and researchers with a low cost autonomous vehicle to develop self-driving

technology.

1.2 Related Work

Progressive developments in the pursuit of self-driving cars has led to technologies such as

cruise control and Advanced Driver Assistance Systems(ADAS). These systems have been

aimed at extending the sensory capabilities of human drivers to make the driving experience

safer. This additional intelligent functionality however is described as level 1 autonomy. My

project attempts level 4 autonomy, which involves the ability to act totally without human input

in constrained or specific environments. Breakthroughs in the fields of computer vision, visual

convolutional neural networks for image recognition and classification, as well as general

advances in machine learning have made achieving such an autonomous system possible. The

most important implementation of autonomous vehicles that my project closely models is

Nvidia’s end-to-end self-driving car experiment and Stanford University’s Stanley–winner of the

2005 DARPA Grand Challenge (Thrun et al., 2006).

 3

1.2.1 Autonomous Car Implementations

In 2016, Nvidia published the paper “End to End Learning for Self-Driving Cars” which details

their own implementation of an end-to-end self-driving car system. In their implementation, they

used a single front facing camera, which fed data into a convolutional neural network. This

neural network then predicted steering commands. This system used supervised training, where

data from human drivers was used to train the neural network. This particular end-to-end

approach to self-driving is what my project employs.

Stanford University’s self-driving car Stanley applied a more complex approach to self-driving.

Unlike Nvidia’s implementation that used a single camera, Stanley employed the use of multiple

sensor systems for environment perception. These included radars, a camera, laser range finders

and GPS antennas. This plethora of sensory data is integrated using an unscented Kalman filter

to provide a much more accurate localization system (Thrun et al., 2006). This approach of

complex sensor fusion would not be possible in the time frame of my applied project–such

projects can span decades (Stavens, 2011). However, the insights and some techniques used by

the Stanford team will improve my end-to-end implementation.

This project implements an autonomous vehicle using a modular architecture which the

following components: perception, supervised learning and control. This approach necessitates

building on work done by others under each module.

1.2.2 Perception

In the field of perception, Thorpe et al. (2001) of Carnegie Mellon university identify the

shortcomings of existing efforts to improve perceptive reliability of mobile robots. They propose

and illustrate the use of multiple sensor systems in developing reliable mobile robot perception.

Professor of Smart Grids at the Institute of Networked and Embedded Systems, Elmenreich

 4

(2002) shares the sentiments of the Carnegie Mellon roboticists on the importance of multiple

sensory nodes in developing reliable perceptive robots. He expands on the concept of multiple

sensing systems for robotics in the carefully developed art of sensor fusion. In his paper, “An

introduction to sensor fusion”, he gives an overview over the basic concepts of sensor fusion. He

defines terminology in the field and discusses motivations and limitations of using sensor fusion.

He also presents a detailed survey of the benefits and shortcomings of various sensor fusion

architectures and algorithms including: Kalman Filters and inference methods. Thrope and

Elmenreich’s research provides information that will help in selecting the most efficient sensors

to enable RollE observe its environment.

1.2.3 Supervised Learning

Pedro Domingos (2006) gives a simplistic yet informative and accurate overview of machine

learning. He characterizes machine learning algorithms as algorithms with the potential to figure

out how to perform tasks by generalizing from given examples. Supervised learning,

unsupervised learning and reinforcement learning form the three main categories of machine

learning algorithms. As stated by Domingos, most machine learning algorithms learn from

examples. The nature of these examples is what differentiates supervised and unsupervised

learning. Reinforcement learning on the other hand removes the need for examples. In

supervised learning, these examples have labels, i.e. the computer is shown an example and also

shown the expected behaviour for that example. From this example and correct behaviour pairs,

the algorithm learns to make predictions that match the given label. Unsupervised learning, on

the other hand, is given unlabelled data and learns the relationships and correlations that exist in

the dataset. Reinforcement learning algorithms learn how to accomplish a task without examples.

This is done using a trial and error approach with time delayed rewards associated to every

 5

random decision the algorithm takes. In the end, learning is achieved by maximizing the rewards

the algorithm accumulates.

Machine learning is essential in developing adaptable autonomous vehicles. It enables the system

to capitalize on previous knowledge (training), to predict reasonable actions when given new

problem sets. As an illustration, in Stanley, supervised machine learning techniques such as the

Naïve Bayes algorithm were used to classify types of terrain and make speed selection

predictions after training on previous terrain feature label combinations (Thrun et al., 2006). In

my implementation, I use supervised learning techniques to enable RollE learn to drive itself

using data gathered as a human agent drives the vehicle. This data is labelled with steering and

throttle values associated with each data point. Domingos (2006) provides invaluable insights

into the common pitfalls and best practices of developing practical successful machine learning

applications, usually not stated in textbooks. His insights serve as a guideline I use to avoid

common mistakes in designing my supervised learning system.

1.2.4 Control

Ronald Arkin and Douglas Makenzie, prolific researchers in Robotics and Artificial intelligence,

discuss control architectures in their paper “Planning to Behave”. They highlight the motivations

and benefits of applying hybrid control architectures in mobile robot manipulation. They theorize

that merging reactive and deliberative control architectures delivers an effective means of

integrating world knowledge with reactive control (Arkin & Mackenzie, 1994). A case study in

mobile manipulation in the context of the Autonomous Robot Architecture (AuRA), is used to

solidify this theory. This article provides insight into effective control architectures for robots,

such as a self-driving vehicle, that must be able to plan actions based on representation but also

be able to adapt to changes and unforeseen circumstances. This desire to build a self-driving

 6

vehicle able to adapt to unforeseen circumstances led to the design choice of using machine

learning to implement the autonomous capability of RollE as opposed to rule-based

programming.

 Gat (1992) also presents a heterogeneous asynchronous architecture for controlling autonomous

mobile robots, which can control a robot performing multiple tasks in real time, in noisy and

unpredictable environments. Gat’s findings confirm the benefits of hybridization in robot control

as proposed by Arkin and Mackenzie (1994). The architecture proposed by Gat produces

behaviour which is reliable, task-directed and reactive to contingencies–qualities which are

essential to a self-driving car. The validity of the architecture detailed in this article can be seen

from the experiments carried out on simulated and real-world robots. To merge deliberative and

reactive control, both functions are implemented asynchronously using heterogeneous

architectural elements. The central result of this work is to show that completely unmodified

classical AI programming methodologies using centralized world models can be usefully

incorporated into real-world embedded reactive systems (Gat, 1992).

1.3 Summary

Autonomous vehicles have the potential to significantly reduce the global death count due to

road accidents. The purpose of this applied project is to apply breakthroughs in the fields of

computer vision and artificial intelligence–specifically, machine learning–to implement an

autonomous self-driving system. This system would help accelerate self-driving research in

Africa by serving as a low cost modular autonomous vehicle development platform, aimed at

providing students and researchers with a low cost autonomous vehicle to develop self-driving

technology.

 7

This project is divided into three modular components that communicate with each other yet are

self-sufficient. This approach to the self-driving problem provides a skeleton that enables further

developmental work on the independent components namely; perception, supervised learning

and control. These independent modules fit into a larger self-driving vehicle ecosystem.

 8

 Chapter 2: Requirement Specification

2.1 Project Overview

2.1.1 Objective

This applied project seeks to build a low cost modular autonomous vehicle development

platform, aimed at providing students and researchers with an affordable autonomous vehicle to

develop self-driving technology. This autonomous self-driving platform shall be called RollE

MkII.

2.1.2 Approach

RollE MkII is a level 4 autonomous vehicle built using a 1/16 scale RC (remote control) vehicle

as the mobile base. Despite the fact that RollE MkII is built on top of an RC car, similar

technologies and machine learning frameworks used in full scale autonomous cars are used in

developing this platform. This makes the software system scalable to larger car platforms with

minimal changes to the code base. The approach this project uses is an end-to-end one, meaning

that sensor data–in this use case a camera–is directly passed through a machine learning

algorithm that would in turn output steering and throttle commands. With this approach, we do

not explicitly teach the model to identify hand engineered features such as outlines of roads,

however the system learns necessary representational features on its own directly from the

training data provided.

RollE MkII acts as a development platform for possible future work on more advanced

autonomous vehicle functionality, such as complex sensor fusion using Kalman filters and self-

supervised learning.

 9

2.2 Procedure for Requirement Gathering

Requirements for this project were developed from an analysis of requirement documents for

similar robotics projects built primarily for the purpose of further research as opposed to

consumer markets. The requirement documents primarily used in developing these requirements

were DARPA’s requirement specification for the 2005 Grand challenge (DARPA, 2004). The

requirements for this project are applicable to RollE MK II because, much like the objectives for

this project, a core interest area of DARPA is promoting the development of autonomous ground

vehicles with the ability to navigate between points while avoiding obstacles. Also, according to

DARPA, “The Grand Challenge serves as a field test for autonomous ground vehicles over

realistic terrain and sets specific performance goals for distance and speed” (DARPA, 2004),

therefore these requirements provide a realistic framework with which to measure success.

2.3 User Classes and Use Cases

The main users of this system are researchers and fellow students looking for a complete

autonomous self-driving platform to build applications for self-driving cars, or to implement

higher level functionality such as road sign recognition or communication protocols for other

self-driving cars in a multi-robot system.

2.4 Functional Requirements

2.4.1 Core Features

The functional requirements for the system are classified under the following;

Mobility and Locomotion

• The system should have actuators and effectors that enable it move in its environment.

 10

• The platform should mimic a full-size car hence it should utilize proportional steering

mechanisms as opposed to differential drive mechanisms.

• The system should be able to autonomously drive itself on tracks similar to what it was

trained on.

 Processing Data

• The onboard computer should be capable of processing images and running computations

simultaneously.

• The onboard computer should be capable of running a trained machine learning model to

enable autonomous driving.

• The system should have a data pipeline infrastructure that enables training data to be

collected and stored efficiently.

Sensing

• The system should be able to sense its internal components such as battery capacity and

strength of communication signals (proprioception).

• The system should have a camera that enables it to sense its environment (exteroception).

 Figure 2.1 Diagram of core functionality classes of the Roll-E Mk II

 11

2.5 Non-functional Requirements

In addition to the requirements that cover the functionality of RollE, there exists the following

set of non-functional requirements:

• The system should be untethered from any station, either for power or computation. All

necessary components should be onboard or communicated with via a wireless protocol.

• Batteries used to power the system should not pose a fire hazard to users.

• The system should include a visual interface to enable users view status of internal

components and other processed information.

 12

Chapter 3: Architecture and Design

3.1 System Overview

RollE MkII is a low-cost modular autonomous vehicle development platform aimed at providing

students and researchers with an affordable autonomous vehicle to develop self-driving

technology. This platform was developed primarily for researchers and fellow students looking

for a self-driving platform to build applications for self-driving cars.

The system architecture of RollE provides a complete overview of its hardware and software

infrastructure. RollE can be considered as having four layers: the physical layer which consists

of hardware components, and a collection of logical layers which refers to conceptual layers

representing the organization of related of software units.

 Figure 3.1 Layered architecture of RollE MKII

 13

3.2 Physical Layer / Hardware Components

One of the objectives of RollE is to be modular; as such the system consists of a number of

interacting physical components. The physical layer refers to the collection of hardware

components carefully selected and assembled in a fashion that fulfils both the functional and

non-functional requirements stated earlier.

The hardware components that make up the physical layer are:

• RC car: this is a 1/16 scale Exceed Blaze RC car that acts as the mobile base of RollE. Its

1/16 scale ratio means every inch on the replica vehicle corresponds to 16 inches on a

real-life car. The Exceed Blaze was chosen for its build quality and proportional steering

which, unlike the differential drive mechanism used in some mobile robots, closely

imitates the steering mechanism of an actual car. It also has hobby-grade parts which

makes upgrading easy. This component has actuators and effectors that enable RollE to

move in its environment, thus fulfilling the “Mobility and Locomotion” functional

requirement. The Exceed Blaze has the following electronic components;

o 7.2V brushed DC motor with RPM <30000 which acts as the throttle motor

o MG 996R servo motor which controls steering

o WP-1040-Brushed Electronic Speed Controller (ESC)

o 6 cell 1100mAH 7.2V Nickel Metal Hydride(Ni-MH) battery pack – chosen

because this battery composition makes the battery pack less likely to explode

during charge as compared to lithium polymer(Lipo) batteries.

o 4-channel 2.4Ghz receiver and transmitter

 14

• RollE Pilot: this is a remote controller that pairs with RollE and is designed to enable a

user to manually drive the vehicle. It consists of the following components:

o One Arduino Uno, an open source microcontroller designed to enable reading

sensor inputs, performing some computation and effecting physical outputs

through electronic components. It serves as the brain of the remote controller

o A pair of XY joystick modules, each built from two potentiometers set up in a 2 -

dimensional fashion that enables the movement of a central arm along the X and

Y axes to be measured.

o One liquid crystal display (LCD) module which displays information.

• Raspberry Pi: this is a single board computer that acts as the on-board processor of RollE.

It is capable of processing images and running computations, hence fulfils the

“processing data” functional requirement. The Raspberry Pi was chosen for its affordable

price point, as well its plethora of I/O ports which gives the end users of RollE the

freedom to add on various other sensors. The inbuilt general-purpose input/output (GPIO)

pins provide an interface to programmatically communicate with low-level sensors and

electronic devices such as the ESC and servo motor on the Exceed Blaze.

• Raspberry Pi Camera: this is a single board module fitted with a 5MP Omnivison 5647

fixed focus sensor. It is capable of taking high resolution images and gives RollE the

ability to sense its environment, and thus fulfils the “Sensing (exteroception)” functional

requirement.

• Router: this creates an on-board wireless network that enables a user to wirelessly

communicate with RollE over considerable distances.

 15

• Adafruit PCA9685 16-Channel 12-bit PWM/Servo Driver: this module enables

programmatic control of the steering servo motor and throttle DC motor on the Exceed

Blaze through pulse width modulation signals.

The physical layer also consists of a collection of 3D modelled components designed to allow

the other electronic components of the physical layer to be assembled in a functional and

aesthetic fashion. The 3D components are also designed to enable end users attach more

components, such as additional sensors like LIDARs, onto RollE.

3.3 Logical Layers

The logical layers of the system each contain a collection of related software units or processes

that work together to accomplish some goal. Processes within a layer can communicate with

each other as well as communicate with processes from other layers. Inter-process

communication is achieved through a publish/subscribe-based communication system. This

allows processes to subscribe to specific topics of interest in order to receive broadcast messages

published on those topics by other processes. This communication architecture is implemented

using the lightweight Message Queuing Telemetry Transport(MQTT) protocol built for

connecting devices on networks with minimal bandwidth.

RollE consists of the following interacting logical layers:

• Control: the software units in this layer serve as an interface between the user and the

hardware components of the physical layer. They are also responsible for converting

steering outputs from the processes in the learning layer into specific pulse values the

PCA9685 PWM module can understand. This layer also contains a command-line

software implementation of the RollE Pilot (remote controller) called Soft Pilot. This

 16

terminal application gives a user discrete control of the throttle and steering values that

drives RollE.

• Perception: the software units in this layer mainly implement computer vision

procedures for capturing, formatting and either transmitting or locally storing images

obtained from the on-board camera sensor.

• Learning: the software units in this layer deal with machine learning. They specify the

architecture for machine learning models and contain code that manage data processing,

training the machine learning model and transmitting predictions from trained models to

other processes. The machine learning model architecture of choice for this problem

domain is a convolutional neural network. Convolutional neural networks are multilayer

perceptron machine learning algorithms optimised for analysing visual images and

feature extraction by incrementally applying convolutional operations to images at certain

layers of the network.

 17

Chapter 4: Implementation

This chapter contains a detailed description of the implementation of this applied project. As

stated in the earlier chapter, the architecture of RollE MkII consists of a physical layer and a

collection of logical layers, each comprising various components and modules. In this chapter, I

give an overview of the functionality of the complete prototype and a detailed description of how

each of these modules are implemented to satisfy the functional requirements. I also detail the

software tools and libraries I used in my implementation.

4.1 Implementation Overview

A front-facing camera connected to the on-board computer (Raspberry Pi) acts as the single

exteroception sensory node of RollE. RollE has two modes of operation:

• Data collection mode

• Autonomous mode

When in the data collection mode, RollE is controlled by a human agent using either the RollE

Pilot or the terminal remote-control application (Soft Pilot). In this mode, image frames are

captured from the camera at a resolution of 200x66 at a frame rate of 32 fps. Each frame is stored

and its filename recorded with a timestamp and the corresponding throttle and steering values

sent from the remote controller at the time of capture. At the end of a data collection run, the

images are stored in a folder and the records of steering and throttle commands compiled and

saved in a csv file.

The data from a data collection run is used to train an end-to-end convolutional neural network

implemented using Keras, a neural network application programming interface, and based on the

architecture used by Nvidia in their self-driving car experiment.

 18

In autonomous mode, RollE is controlled by an autopilot. The camera repeatedly captures frames

of its environment and the autopilot software, running locally on RollE, uses the trained

convolutional neural network model to predict steering angles for each frame. The throttle value

for speed control is set to a constant value.

The captured image frames and steering predictions are transmitted via a socket connection to a

user’s computer for visualization.

4.2 Software Libraries / Tools

The implementation of this applied project depended on a suite of existing libraries and software

tools. The following libraries and tools were used in the development of RollE MkII;

• Keras: This is a high-level application programming interface for designing neural

networks. In my implementation, I used Tensorflow, which is a software library for

numerical computation using data-flow graphs, as a backend for Keras. Keras allows

neural network architectures to be represented as a sequential stack of layers and is aimed

at allowing fast experimentation with neural networks.

• OpenCV: This is a library of pre-implemented functions aimed at easing the development

of computer vision applications.

• Paho-mqtt: This library provides an implementation of the MQTT protocol wrapped as a

collection of objects and functions.

• Pyserial: This is a python application programming interface that allows a user to access

serial ports.

• Autodesk Fusion 360: This is computer-aided design (CAD), computer-aided

manufacturing(CAM) and computer-aided engineering (CAE) software that enables

robust design, testing and fabrication of complex 3D components.

 19

• Pandas: This is a data analysis library that provides data structures and data analysis

tools.

• Numpy: Numpy is a python computational library optimized for performing

mathematical operations on multi-dimensional arrays and matrices.

• PiCamera Library: This is a library with a collection of functions that simplifies

interfacing with a Raspberry Pi camera module.

• Adafruit_PCA9685 Library: This is a library with a range of intuitively designed objects

and functions that makes interfacing with the Adafruit PCA9685 16-Channel 12-bit

PWM/Servo Driver easy.

4.3 Physical Layer

The physical layer consists of a collection of hardware components carefully selected and

assembled in a fashion that fulfils both the functional and non-functional requirements stated in

Chapter 2. These hardware components are put together to form the complete RollE MkII system

which consists of a complete RollE Rover and RollE Pilot.

4.3.1 RollE Rover

The RollE Rover uses a 1/16 scale Exceed Blaze RC car as its mobile platform. This RC car

comes with a 7.2V brushed motor, MG 996R steering servo motor, electronic speed controller, a

6 cell 1100mAH 7.2V Nickel Metal Hydride battery pack and a 4 channel 2.4 Ghz receiver. The

default setup of the RC car wired the battery pack and throttle motor to the electronic speed

control. The steering servo and ESC were connected to separate channels on the 2.4Ghz receiver,

enabling the car to be controlled via a radio transmitter.

 20

For my purposes, I kept the connection between the battery pack, ESC and throttle motor.

However, I rewired the steering servo and ESC from the 2.4 Ghz receiver to individual channels

on an Adafruit PCA9685 PWM driver. I then connected the PWM driver to a Raspberry Pi via

the on-board GND, VCC, SCL and SDA GPIO pins of the Raspberry Pi. This connection enables

programmatic control of the servo and throttle motors by sending pulse width modulation signals

to these components. Enabling otherwise discrete 1/0 electric signals to become a range of

values. This is achieved through the repeated pulsing of 1/0 states in a specified duty cycle. The

technique of pulse width modulation enables a user to programmatically vary the speed of the

throttle motor or specify the desired angle of turn of the steering servo motor. I also connected a

single Raspberry Pi camera, which acts as RollE’s sensory node, to the Raspberry Pi.

 Figure 4.1 Diagram of RollE Rover’s component connections

 21

A collection of modular 3D printable components designed in Autodesk Fusion 360 provide a

functional and aesthetic way to attach all the components of the RollE Rover to the mobile RC

car platform. These components are designed to vertically stack on top of a base structure called

the spine. This enables end users to vertically stack as many additional components and sensors

as desired.

Below is an image of what the RollE Rover looks like after the complete circuit has been built

and 3D printable components have been assembled.

Figure 4.2 3D printable components of RollE Rover

 22

4.3.2 RollE Pilot

The RollE Pilot (remote controller) is built from an Arduino Uno, a pair of XY joystick modules

and a liquid crystal display (LCD). It is designed to allow end users to add additional

functionality; it is designed to be attachable to a standard breadboard providing room for

experimentation. The Arduino acts as the brain of the remote controller; it takes sensor readings,

performs computation and outputs information. A pair of XY joysticks acts as the sensors in this

system; each joystick is connected to the Arduino in a fashion that restricts readings to one axis

per joystick. With this configuration, the joystick that takes readings from the X-axis controls

throttle while the other takes readings from the Y-axis and controls steering. An LCD module

displays the real-time readings from each joystick and prints out error messages. Sensor readings

from joysticks are analog and fall in a range of values from 0 to 1023. I remap these values to a

range between -1 to 1. These readings are then transmitted via serial communication from the

Figure 4.3 Completely assembled RollE Rover

 23

Arduino to a python script that separates each joystick reading and broadcasts the values to two

MQTT topics (RollE_MKII/throttle and RollE_MKII/steering). The description of the control

logical layer expands on this python script.

Much like the RollE Rover, the remote controller also has a collection of 3D printable

components designed to hold all components in a functional and aesthetic fashion. The base 3D

component of the remote controller is what allows it to be attached to a standard breadboard,

enabling end users to experiment with the remote and attach more components.

Figure 4.4 Diagram of RollE Pilot component connection.

 24

Figure 4.6 Completely assembled RollE Pilot

Below is an image of what the RollE Rover looks like after the complete circuit has been built

and 3D printable components have been assembled.

Figure 4.5 3D printable components of RollE Pilot

 25

4.4 Control Layer

This layer contains a collection of software units that directly interface with the components of

the physical layer. The software in this layer has three primary functions:

• provide programmatic control of the steering and throttle motors of the RollE rover

• take joystick position readings and drive the LCD display on RollE Pilot

• transmit steering and throttle values to the rover

Three software units “Actuation.py”, “RollE_Pilot.ino” and “Pilot_Transmitter.py /

soft_Pilot.py” respectively provide this functionality.

4.4.1 Actuation.py

This is a python script that runs on the Raspberry Pi on the RollE rover and uses the

Adafruit_PCA9685 library to specify which signals the PWM module sends to steering and

throttle motors. I remap input values from a range of -1 to 1 into pulse signals that correspond to

maximum and minimum duty cycles. This technique associates the maximum and minimum

steering servo angles and throttle motor speed with a value of -1 and 1 respectively. All values

between this range then represents different steering positions and throttle speeds. As an

example, a steering value of -1 would turn the steering servo to its maximum position on the

right while a steering value of 0 would turn the steering servo to its middle position; similar logic

applies to throttle speeds.

Limiting motor control inputs to the range -1 to 1 simplifies controlling RollE for end users as

they can create higher level programs and only have to think of steering and throttle outputs in

terms of proportionality as opposed to raw duty cycles. This also allows them to make simple

modifications to global maximum and minimum duty cycle values in actuation.py to change the

range of responsiveness or sharpness of steering turns without changing the outputs from their

 26

higher-level programs. An example of such higher-level programs is the software

implementation of the RollE pilot. This program takes keyboard inputs from users and outputs

steering and throttle to values in the range -1 to 1 to control RollE.

4.4.2 RollE_Pilot.ino

This is an Arduino sketch that controls the RollE Pilot controller. It takes readings from the 2-

dimensional potentiometers that make up each joystick module and remaps these analog values

from a range of 0 to 1024 to values in the range -1 to 1. It also drives a 20x4 LCD module which

displays the real-time remapped steering and throttle values from the joysticks. This code is

flashed and runs on the onboard microcontroller of the RollE Pilot.

4.4.3 Pilot_Transmitter.py / soft_Pilot.py

The pilot_Transmitter.py script communicates with the RollE Pilot via a serial interface and

transmits steering and throttle values obtained from the controller to the RollE rover via MQTT,

a wireless lightweight messaging protocol. Soft_Pilot.py is also a command-line software

implementation of the physical remote controller; it accepts user keyboard inputs and outputs

steering and throttle values in the -1 to 1 range to RollE also via MQTT. MQTT is a

publish/subscribe based messaging protocol, the messaging network is facilitated by a host

(broker) and enables clients to subscribe to topics and receive messages published to that topic

by publisher clients. In RollE, the onboard Raspberry Pi acts as the broker for the network. A

user connects the RollE Pilot to their computer and the Pilot_Transmitter.py program, which also

runs on the user’s computer, transmits real-time steering and throttle values to the

RollE_MKII/throttle and RollE_MKII/steering topics respectively. Actuation.py, which

subscribes to these topics, receives the transmitted steering and throttle values and converts them

to PWM duty cycles to drive RollE.

 27

4.5 Perception Layer

The software units in this layer implement computer vision procedures for capturing, formatting

and either transmitting or locally storing images obtained from the on-board camera sensor of the

RollE rover. In the data collection mode, images are stored locally on the Raspberry Pi. In

autonomous mode, images are served as inputs to a trained neural network model running locally

on the Raspberry Pi for steering predictions. These images can also be transmitted via a socket

connection to the user’s computer for visualization.

The computer vision pre-processing operations performed on each image frame are:

• performing a 180-degree rotation on captured images. This is done because restrictions

in the length of ribbon cable that connects the Pi camera to the Raspberry Pi forced the

camera to be placed upside down during assembly of the Rover.

• cropping image to remove unwanted parts of images. Unwanted parts are classified as

parts of the image above the track.

• resizing image to fit the shape that the convolutional neural network accepts. The

acceptable shape must have an image height of 66 pixels, width of 200 pixels and 3

colour channels (3@66x200).

• converting the colour model of the image frame from RGB to the YUV colour space.

The YUV colour space represents images with one luma component (Y) and two

chrominance components(UV). The input image is split into these individual YUV

planes before being passed into the convolutional network for feature extraction.

Below is a series of images that show the transition of an image from its original state to its state

after pre-processing:

 28

Figure 4.7 Image pre-processing results

Final Image sample, image converted from
RGB to YUV color space

Original image as captured from raspberry pi

180-degree rotation performed on image

Image cropped to contain only track

Cropped image resized to fit the shape (
66x200)

 29

Figure 4.8 Nvidia's Convolutional Neural Network Architecture

4.6 Learning Layer

The software units in this layer deal with machine learning. They specify the architecture of

machine learning models and contain code that manage data processing and augmentation,

training the model and transmitting predictions from trained models to other processes. The

model used for this system is a convolutional neural network based on the end-to-end

architecture used by Nvidia in their self-driving car experiment.

 30

Below is a snapshot of Nvidia’s model implemented with Keras:

**

def model():

 model = Sequential()

 # normalize inputs to range -1 to 1

 model.add(Lambda(lambda x: x/127.5-1.0, input_shape=(imageHeight,

imageWidth, imageChannels)))

 #convolutional layers for feature extraction

 model.add(Conv2D(24, 5, 5, activation='elu', subsample=(2, 2)))

 model.add(Conv2D(36, 5, 5, activation='elu', subsample=(2, 2)))

 model.add(Conv2D(48, 5, 5, activation='elu', subsample=(2, 2)))

 model.add(Conv2D(64, 3, 3, activation='elu'))

 model.add(Conv2D(64, 3, 3, activation='elu'))

 #dropout with probability of 0.5 to reduce overfitting

 model.add(Dropout(0.5))

 model.add(Flatten())

 # fully connected layers with elu activation

 model.add(Dense(100, activation='elu'))

 model.add(Dense(50, activation='elu'))

 model.add(Dense(10, activation='elu'))

 # this is the output layer

 model.add(Dense(1))

After data is collected during a data collection run, the recorded collection of image frames and

steering labels are used to train this convolutional neural network. Data augmentation is

performed on the training examples to produce variations that help the model learn more from

 31

Figure 4.9 Data augmentation results

existing examples. Two key data augmentation operations, namely, random horizontal flips and

random shadowing, are performed on training examples in real-time before the actual training is

done. I randomly flip some training examples and negate the steering angle to create new data

points. I also create random shadows on some training examples to help the model learn how to

handle real-world scenarios where captured images are dark due to shadows from objects.

During autonomous mode, a constant throttle value is set, and new image frames are inputted

into the trained neural network which predicts a steering angle. This steering value is published

via MQTT to actuation.py, effectively steering the car as it moves.

 32

Chapter 5: Testing and Results

5.1 Approach

In implementing this applied project, various component and system-wide tests were conducted

to confirm that all software units functioned optimally. The collection of tests conducted can be

grouped into two sub groups, namely, component testing and system testing. This chapter

discusses the details of various tests and their observed results.

5.2 Component Testing

Component testing encapsulates all tests conducted on individual software units and components

that collectively make up the RollE system. As stated earlier, the architecture of RollE comprises

four interacting layers: the physical layer and the control, perception and learning logical layers.

Tests were conducted for each of these layers.

5.2.1 Physical Layer Tests

Testing circuit connections of RollE Pilot and RollE Rover.

This test was performed to verify the correct circuit connection of all electronic components of

the RollE Rover and Pilot according to the circuit diagrams described in Chapter 4.3. It was also

performed to identify possible defects in components or jumper wires.

RollE Rover circuit testing

 Circuit connections between the Adafruit PWM module, GPIO pins of Raspberry Pi, electronic

speed controller and motors were confirmed using the schematic 4.1 and the system was

powered on. The following results were expected:

• an indicating LED on the PWM module was expected to turn on

 33

• the electronic speed controller was expected to blink a red LED and give out a single

short beep

• steering servo motor was expected to freeze its position and resist manual repositioning

Results

After conducting the test all the expected behaviours highlighted above were demonstrated by

the RollE Rover.

RollE Pilot circuit testing

Circuit connections between the Arduino, XY joysticks and LCD module were confirmed using

the schematic provided in Figure 4.4 and the system was powered on. The following results were

expected:

• LCD backlight was expected to turn on

• Green power LED near reset button of Arduino was expected to turn on.

Results

After performing this test, the following observation was made;

• The expected LCD backlight turned on for a few seconds and turned off again

• The power indicative LED on the Arduino turned on for a few seconds and turned back

off

Resolution

I used a hardware variation of step debugging to isolate the cause of this behaviour. By

incrementally reassembling and testing individual components of the system, I identified the

problem to be a fault in the soldering of the header pins of one XY joystick module. This mistake

caused the setup to short-circuit. A safety feature built into the Arduino microcontroller prevents

the flow of excessive current by immediately shutting down the microcontroller. Hence, the

 34

system shuts down seconds after turning on. I replaced the faulty joystick and the expected

behavior was exhibited.

5.2.2 Control Layer Tests and Results

Testing throttle and steering values computation on RollE Pilot and displaying results on

LCD module

This unit test was performed to verify that throttle and steering values could be computed from

positions of the XY joysticks to fit in a range from of –1 to 1. The test was also performed to

confirm that real-time throttle and steering values could be displayed on the LCD screen of the

remote controller. In this test, I used the inbuilt serial plotter tool in the Arduino IDE to graph the

computed throttle and steering values.

The following results were expected:

• Joystick positions converted to throttle and steering values in the range -1 to 1

• The computed throttle and steering values should be displayed and updated on the LCD

module in real-time

Results

During the testing, the following behaviours were observed:

• The serial plotter tool revealed that indeed computed throttle and steering values were in

the range -1 to 1.

 35

Figure 5.1 Serial plotter output

The plot above shows throttle values mapped out over time, it can be noticed that values peak

and flatten at -1 and 1. The same behaviour is exhibited by steering values.

• Another behaviour noticed was that the LCD failed to display the computed throttle and

steering values. The bulk of text displayed on the LCD was an unintelligible sequence of

characters and symbols.

Resolution

Isolating the display system and incrementally reconnecting and testing its circuit revealed the

problem to be a faulty jumper cable. A faulty jumper cable connecting one of the signal pins of

the LCD module to the Arduino introduced noise which was interpreted as valid signal by the

LCD module. Replacing this cable rectified the problem.

Testing Serial communication between RollE Pilot and Pilot_Transmitter.py

This unit test was performed to verify that steering and throttle values could be transmitted from

the RollE Pilot to a user’s computer running “Pilot_Transmitter.py” via serial communication. In

this test, the Pilot was connected via a USB cable to a laptop. A serial connection with a baud

 36

Figure 5.2 Snapshot of the RollE Pilot serial transmission

rate of 9600 (9600 bits of data transmitted per second) was established between the two devices

through a test python script. The throttle and steering joysticks were randomly moved to various

positions during this test.

The expected result was for the throttle and steering values computed by the remote controller to

be logged on the screen of the laptop in real-time.

Results

The expected behavior was observed during the test. Below is a snapshot of the logged values

transmitted from the remote controller.

Testing communication between PWM module and motors

This unit test was to ensure that the Adafruit PWM module correctly interfaced with the motors

and electronic speed control. The essence of the test was also to verify that pulse width

modulation signals could be used to control the throttle and steering motors. In this test, I wrote a

 37

python script to instantiate a connection between the Raspberry Pi and the throttle and steering

motors through the Adafruit PWM module. This script then sent test PWM signals to the motors.

The following behaviour was expected:

• A blinking LED on the ESC was expected to stop blinking and stay on, the ESC was also

expected to give out a beep that lasted for a second

• The servo motor was expected to reset its position to its default and resist manual

repositioning

• When PWM signals were sent to steering motor it was expected to turn to its leftmost

position, wait a second and turn to its rightmost position

• When PWM signals were sent to the throttle motor, it was expected to drive forward at it

maximum speed, brake after two seconds and reverse at its maximum speed

Results

After conducting this test, all of the expected behaviour outlined above was exhibited by the

system.

5.2.3 Learning Layer Tests and Results

Training convolutional neural network model for different hyper parameters

This unit test was designed to verify that my implementation of Nvidia’s neural network works

and yields acceptable results. It was also used to give an idea of which range of hyper parameter

values of the network would produce a good model. In this test, I gathered data by driving RollE

and trained 3 models each with some changes to hyper parameters. I kept the number of epochs

and learning rate hyper parameters constant and only varied the number of samples per epoch for

each model.

 38

Figure 5.3 Model 1 mean squared error graph

Results

I graphed the mean squared error of both training and validation sets over all epochs to evaluate

the performance of each model.

Model 1

Hyper parameters:

Number of Epochs = 10, number of samples per Epoch = 200, learning rate = 1.0 ∗ 𝑒&'

Model 2

Hyper parameters:

Number of Epochs = 10, number of samples per Epoch = 2000, learning rate = 1.0 ∗ 𝑒&'

 39

Figure 5.5 Model 2 mean squared error graph

Figure 5.6 Model 3 mean squared error graph

Model 3

Hyper parameters:

Number of Epochs = 10, number of samples per Epoch = 20000, learning rate = 1.0 ∗ 𝑒&'

It took approximately 20 minutes, 2.5 hours and 20 hours to train models 1, 2 and 3 respectively

on a 2.3GHz dual-core Intel Core i5 processor. It can be seen that Model 3 produces the least

validation mean squared error (below 0.03) and thus would produce the best steering predictions.

5.2.3 Perception Layer Tests and Results

Testing image recording on Raspberry Pi and transmission to user computer

This test was designed to verify that multiple images could be captured with the Raspberry Pi

camera and also to ensure that images can be transmitted in real-time from the Raspberry Pi to a

user’s computer. In this test, I wrote a python script to take a continuous stream of image frames

and display these frames on the Raspberry Pi. The script also transmits these images from the

Raspberry Pi to a laptop via a socket connection.

 40

The following behaviour was expected:

• Image frames display and update on screen of Raspberry Pi with negligible latency

• Image frames successfully transmit to test laptop

• Transmitted image frames display on laptop screen

Results

After conducting the test all expected behaviours was exhibited. However, images displayed on

the laptop screen updated with a considerable latency. This is due to the time it takes to transmit

the image over the wireless network. This latency is not a problem since the images displayed on

a user’s computer are just for visualization.

5.3 System Testing

System testing refers to tests carried out on the complete prototype. They test and evaluate

overall performance and discover potential component integration problems. Three primary

system tests were conducted on RollE: an inter module communication test, data collection

testing and autonomous driving testing.

5.3.1 Testing MQTT communication between all modules

This test was designed to ensure that all modules could subscribe and publish to desired topics.

In this test, I powered on the RollE Rover, connected its remote controller to the test laptop and

started the Pilot_transmitter.py program. I moved the throttle and steering joysticks to various

positions. This was to verify that various software units in the Control Layer could communicate

with each other via MQTT to control the Physical layer. To help debug possible errors, I opened

a terminal session and subscribed to the topic the remote controller was publishing on.

The following behaviour was expected:

 41

• A stream of throttle and steering values should be displayed from the terminal session

subscribed to Pilot’s control topic

• RollE was supposed to move around as the steering and throttle joysticks were moved.

Results

During the test all expected results were exhibited by the system.

I also verified that the Learning layer could communicate with the Control layer by running the

Autopilot.py program which predicted steering angles and transmitted it to Actuation.py in the

Control layer via MQTT. I logged out predicted values from Autopilot.py on screen.

 The following behaviour was expected:

• RollE should continually update its steering position to the values predicted by

Autopilot.py

Results

During the test the system functioned as expected and exhibited the behaviour described above.

5.3.2 Data collection test

This test was conducted to ensure that the entire pipeline of data collection processes functioned

optimally. The test verified that images were correctly captured and stored on-board the

Raspberry with a timestamp. It also verified that a csv file with image paths labelled with

steering and throttle values was created at the end of a data collection run. In this test, I drove

RollE in data collection mode on a tiled path bordered on both sides by lawns.

The following behaviour was expected at the end of the run:

• Data/IMG folder created on the Raspberry Pi with multiple images stored with

timestamps as filenames

 42

Figure 5.7 Snapshot of data collection CSV file

• The Data folder should also contain a CSV file with three fields: a filename column,

steering value column and a throttle value column

Results

After conducting this test, the expected behaviour was achieved. A total of 3144 images were

collected and stored on the Raspberry Pi. A CSV file displaying the steering and throttle values

and filename of corresponding images was created.

5.3.3 Autonomous driving test

This test was conducted to ensure that once a model has been trained RollE can successfully

drive itself on the tracks similar to what it was trained on. In this test, I trained a convolutional

neural network using the data collected in the Data collection test. The model had the following

hyper-parameters:

• Number of Epochs = 10

• Number of samples per Epoch = 20000

• Learning Rate = 1.0e-4

 43

The validation loss of the trained model was 0.028 which was very good. After training I set

RollE on the tiled path and ran the Autopilot program.

The following behaviour was expected:

• RollE should successfully drive itself in a fashion that shows intelligence and

intentionality. For instance, RollE should avoid the lawns and stick to the tiled path.

Results and Observations

During the testing RollE exhibited intelligence and intentionality in its driving. It successfully

made corrective turns to avoid the lawns and stick to the tiled path. RollE seemed to favour

driving towards the left and after a couple of meters, it completely swayed to the left and ended

up on the lawn. This behaviour was because of the distribution of the training data; while

training I favoured steering towards the left. The horizontal flipping data augmentation operation

helped balance out this data. However, the magnitude of examples with steering towards the left

forced this behaviour to be incorporated in the model.

The graphs below show the distribution of steering values for a random sample of 100 training

examples. It can be seen that, most of my steering was either towards the left (-1) or in the

resting position (0) in the original data. After performing data augmentation, the data distribution

became more balanced. However, it is still clear that left steering values would be favoured.

 44

Figure 5.8 Data distribution charts

Steering Angle Frequency

 N
um

be
r o

f I
m

ag
es

Steering Angle Frequency

 N
um

be
r o

f I
m

ag
es

Steering Angle

Steering Angle

 45

Chapter 6: Conclusion and Recommendations

This chapter presents a summary of this applied project. It reiterates the goal of the project and

provides a summary of what was implemented. This chapter also discusses limitations and

challenges faced during implementation and states some recommendations for future work.

6.1 Summary

Since its inception in the DARPA Grand Challenge in 2004, steady progress has been made

towards developing truly self-driving cars. This technology has the potential of saving over a

million lives lost to preventable road accidents world-wide. Road fatalities in Africa is the

highest in the entire world and as such we would benefit immensely from this technology.

However, financial constraints prevent viable experimentation and research into self-driving

technology in Africa. The goal of this applied project was to help bridge the gap by developing

an affordable self-driving development platform.

This project lead to the design and implementation of RollE MKII. RollE is an affordable

modular self-driving development platform aimed at providing students and researchers with an

autonomous vehicle to develop self-driving technology. RollE is a complete ecosystem of

interacting software and hardware units that together create an invaluable self-driving research

tool.

6.2 Limitations and Challenges

A couple of challenges were faced while developing and testing the RollE system. The most

important of these limitations and challenges is due to the end-to-end behavioural cloning

approach used to develop RollE’s autonomous behaviour. In behavioural cloning, the machine

learning model learns to drive solely from examples provided by a human agent. As such the

human agent needs to have considerable skill in driving RollE, in order to produce fairly

 46

consistent data. Also, the smoothness of RollE’s driving would depend on the skill of the human

agent.

6.3 Future Work

This project accomplished its goal of implementing a complete development platform. The

system comes with a stock end-to-end machine learning model for autonomous driving. While

this implementation works quite well, further work can be done using the tools provided by

RollE to develop and test other machine learning techniques. RollE would also benefit from the

following additions to its hardware components:

• a GPS module for precise localization

• a Light Detection and Ranging(LIDAR) sensor for advanced perception

 47

 References

Arkin, R. C., & Mackenzie, D. C. (1994). Planning to Behave: A Hybrid Deliberative/Reactive

Robot Control Architecture for Mobile Manipulation. Atlanta, G: Georgia Institute of

Technology.

Domingos, P. (2006, October). A Few Useful Things to Know about Machine Learning.

Communications of the ACM, 55 (10), 78-87 . doi:10.1145/2347736.2347755

Elmenreich, W. (2002). An Introduction to Sensor Fusion. Austria: Institut fu ̈r Technische

Informatik Vienna University of Technology.  

Gat, E. (1992). Integrating Planning and Reacting in a Heterogeneous Asynchronous

Architecture for Controlling Real-World Mobile Robots. Tenth national conference on

Artificial intelligence, (pp. 809-815). San Jose, California.

Kerry, C. F., & Karsten, J. (2017). Gauging investment in self-driving cars. Brookings.

Thorpe, C., Clatz, O., Duggins, D., MacLachlan, R., Miller, R. J., Mertz, C., . . . Yata, T. (2001).

Dependable Perception for Robots. International Advanced Robotics Programme.

IEEE.

Thrun Sebastian, M. M. (2006). Stanley: The Robot that Won the DARPA Grand Challenge.

Journal of Field Robotics, 23.

World Health Organization. (2015). GLOBAL STATUS REPORT ON ROAD SAFETY 2015.

Geneva, Switzerland: World Health Organization.

