VO

ASHESI

ASHESI UNIVERSITY

BUILDING A BACKEND FRAMEWORK ON THE DENO JS RUNTIME

APPLIED PROJECT

B.Sc. Management Information Systems

Isaac Kumi

2021



ASHESI UNIVERSITY

Fly-Deno: A backend web framework built on the deno Js runtime.

Applied Project

Applied Project submitted to the Department of Computer Science, Ashesi University in
partial fulfilment of the requirements for the award of Bachelor of Science degree in
Management Information System

Isaac Kumi

April 2021



Declaration

I hereby declare that this applied project is the result of my own original work and that no
part of it has been presented for another degree in this university or elsewhere.

Candidate’s Signature: {’\

Candidate’s Name:

Isaac Kumi

Date: .............. 5 -1 O ; 2 1 ................................................................................

I hereby declare that preparation and presentation of this applied project were supervised in
accordance with the guidelines on supervision of applied project laid down by Ashesi
University.

Supervm at




Acknowledgement

I want to thank the almighty God for seeing me through my four years of stay at Ashesi
University. | also want to express my profound gratitude to my supervisor, Professor Todd
Warren, for his guidance, comments and the recourses he provided me. To Reverend Divine
Asem and the entire campus Gem family, [ say God bless you for your support both in prayers

and in kind. Lastly, to my family for always being there for me each time I needed their support.



Abstract

This paper presents a minimal, opinionated and security-oriented backend framework built on
the Deno Js runtime. I have had the opportunity to work with some popular backend
frameworks like express Js, Adonis Js, and what have you. These frameworks are very
powerful and get the work done within a short period. However, they compromise on user's
security. They can access confidential information like environment variables, network, read
and write access etc., without the user's knowledge.

Aside from the problems as mentioned earlier, there is a steep learning curve. Newbies have to
spend a lot of time to understand some of the internal workings of the framework before they

can get along.

This project presents developers, especially newbies, to build powerful but secured applications
by writing less codes and leveraging their basic knowledge in programming to build
applications. Also, developers can make use of existing libraries and modules in the framework

as well. The framework is heavy on the model-view-controller architectural pattern.

Keywords: web framework, security, Deno Js



Table of Contents

DCCIATALION c.nuennnennnennnercnnenneerreercnicenisunessicseisueisasisssiesstissssssisssesssesssessssesssessssssssesssesssessssssssess 3
ACKROWICAZGOMEHL .....anonnnannainnnennerneicneicirseiseissaissssssisestsssssssssssissstssssssassssssssssessssssssssssesass 4
ABSIPACTuvenvenenneenrenrenrennesseneissessasssessnessnsssissessasssesssessssssssssssasssessasssssssssssssassssssssssassasssassassnssns 5
TADIC Of FiGUFES cuuenanevnnnviosnernsniissavinsanissssisssasiosssssssssiossssssssstssssssssssssssssssssasssssassssnsssssasssssssose 8
Chapiter 1: INPOAUCTION cu....uounneennnennennercainnissersesssnsssscssiscsisssssssisssissssssssssssssssessssssssssssesass 9
Chapiter 2: RelAIed WOTKS......eeevcuereeecsuersrerssersssessessssisssisssessssisssisssesssssssssssssssasssassssssssassss 10
Chapter 3: Requirement Analysis and SyStem ArCRILECIUFE ........euuuevevenerosueressusessavsosssssasans 12
3.1 Requirement DesiZn OVerVIEW ......c.ccvvieiinsvinssenssiossissiensssesssssssssssssssisssesssessssssssesss 12
3.2 Introduction t0 MVC Architecture .........uueiirensenseccenseenensecnsensecssensacsseessessessacssens 12
3.3 Fly-Deno Framework €ore Part........ceeieinsncsncssecsssnsssnesessssnsssnessesssessssnessesssesans 14
3.4 System DeSCriPtiOn......cceiicrveinssecssserssssenssssnessersssstssssssssssessssssssassssssssssssssssnsssssasssssess 14
3.4.1 SYStEM FEATUIES ...evveiriiiiiiiiiieerieeeite ettt ettt e e st e s e e sbaesens 15

3.5 Supported Operating System/Environment...........c.ccceceercnnvenssnssncscnssenssenssanssesns 17
3.6 Functional and Non-Functional requirements..........ccccceeevserssercsunssacssercsencsanssaesan 17
3.6.1 Non-Functional ReqUIrements...........coceveeiereeiienierieneeieneeeesieeee e seeeseseeeneas 18
30611 SECUTTLY ettt ettt et e e et e st e e sbe e et e st e sbeeabe e st e eatesabeesean 18

T IO D =] 1 1031 1SR 19
3.6.1.3 Maintainability .........ccceeiiieieecieeieeeeee et s s 19
Chapter 4: IMPIEIMEHIATION. ........uueeveioreiosuirsirseisssinssnssssssisssissssisssisssssssssssssssssessssssssssssesasass 19
4.1 The €ore Parts ....ccieeciinnineinnininnneninnineineiiisiniisisisiisississssissesssssssssessees 21
4.1.1 The Core Parts.......ccoieieiirienieienieesentce ettt ettt 21



4.1.1.1 The ENtry POINt ....couieiireiiieieeieseees ettt et 22

A.1.1.2 The SIC FOIT ..ueniiiiieiieieeieie ettt s 23
4.1.1.3 The public fOIAET .......ceiiiiirieiieieeeeeeee et 24
4.1.1.4 The application fOlder.........c.cocueririiririiininieeteereeeeee e 24
4.1.2 Implementation ProCESS ......ccveciirierciereieeieeriesieete et et e teeeeeeeesee e e e s sseeseesseennns 28
4.1.2 Technologies and TOOIS ........ccceeiriririninenieiieictcereeeeee e 34
4121 LANGUAZES ..veeueeenieeieeniteeie sttt st e st e et e st e et et e st e sate et e et e esbe e s st e sabesbeesbeenae 34
A.1.2.2 LIBIATIES .ttt ettt ettt ettt ettt et e sae b nees 34
A.1.2.3 TOOIS ettt sttt ettt e et n e ne e s 35
Chapiter 5: SYSIEM TOSTING c.....uueeuueriuerireiesuirsersreisssisssssssisssisssissssssssissstsssssssssssssesssssassssssssasess 37
5.1 Unit Testing with Deno Test FUNNEL: ......ccccoivuiiiiveinisninssanissssiossasisssanesssssossasssssassssssss 37
Chapter 6: Conclusion and ReCOMMENAAIION ........e.eneeeveneeooeneinssnevnsunossnerosesersssissssssssassons 39
6.1 Conclusion: 39
6.2 Limitation: ..cuceieieneinenniniiniciieninsinninisessessesssssesssssessssssessssssesssssssssasssessassssssssssessass 39
6.3 ReCOMMENAAtION......cccreirerireensneiiniisnicniistiseissstesanssanssstesseesanssasssssnesssssssssssesssesssesane 39
REFERENCES ......uiiieiisenessecsissssississsssisssssississississsssssssssssssssissssssssssssssssssssssssssesssnse 41



Table of Figures

Figure 1 JavaScript frameworks SUIVEY .......cc.evcieruerieriirieieseeieseete sttt sie e sanens 10
Figure 2 Model-View-Controller Architectural Pattern OVerview..........ccceevvereecieneecienennns 13
Figure 3 sample route in fly-deno framework ..........ccooveeviriiiininiiniieeeceeeeene 17
Figure 4 Functional requirement of @ developer/USer.........cceccvvecrierieecieeciieseeeie e eeie e 18
Figure 5 Root directory of the fly-deno framework..........ccceecveeciiiniiieiieciecieeeceeeeeeee 22
Figure 6 Entry point of the fly-deno framework..................... Error! Bookmark not defined.
Figure 7 sample command to start the app SEIVeT.........coceeviereerierieiiereeieseeterie e see e 23
Figure 8 Structure of the src fOlder...... ..o 24
Figure 9 Structure of the app fOlder......cc.ooiimiriiniiii s 26
Figure 10. content of the .env file in the app folder........ccoeovvecieeciieiieieeeeeeeee e, 26
Figure 11 The run method in the Application class................. Error! Bookmark not defined.
Figure 12 GetRoutes method in fly=deno..........cccoueeirvieniiniininiiniiieeceee e 30
Figure 13 The read routes function in deno-tly ..........ccoeceevierieiieniieiiinieeieeeeeee e 30
Figure 14 . method for extracting handler ..........c..cooeveriininiincnineceeeceeeee s 31

Figure 15 Controller class responsible for rendering view and communicating with data source

.................................................................................................................................................. 32
Figure 16 Enviroment variables initialized through the App constructor...........cccceeeeverernnene 32
Figure 17 Snippet of code for reading and parsing the env file.........c.cceceveriieniniiineniiinennen. 33
Figure 18 Code for setting read env variables ...........ccceeeevieririienieiieneeieeeeee e 33
Figure 19 allowing network access in fly-deno framework........c..cccccoeevenenieninicneniencnnens 35
Figure 20 Unit teSt FESUILS ...cc.eeruirieieeiiieeie ettt ettt et sae s 37
Figure 21 snippet of code for UNit teSt......c.oevieeieeciiecieciee ettt ens 38
Figure 22 Snippet of code for testing home controller ..........cocevervierernineniineniereeerenens 38



Chapter 1: Introduction

1.1 Introduction

Over the past few decades, web application development has seen quite a number of
improvements. These improvements are usually libraries and frameworks that seek to improve
the efficiency of development by providing boilerplate code, Application Programming
Interfaces (API’s) and abstractions which takes a lot of time and resources to build. Also, the
issue of security in a web application has been the major concern of most companies. Among
the many attacks, the most common is Structured Query Language (SQL) injection and cross-
site scripting (XSS) attacks [1]. This paper introduces a backend application framework built
on the deno Js runtime. The framework will be built using the Model-View-Controller

architectural pattern. An architectural pattern that is used by most software.

1.2 Background

I took an online course on web application security during my sophomore year in Ashesi. And
ever since, | have been so concerned about building a secured application without
compromising on user's privacy. Since the birth of web application frameworks like Laravel-
PHP, Adonis, etc., we have seen most security problems creep up over the years, yet none of
these runtimes and frameworks has addressed such an issue. It will interest you to know that
an application is given the exact same permission and privilege as the person executing the
script. This, in the long run, will expose user’s confidential information stored on the computer
to web applications. In mobile applications, the user has some control over what kind of
information the application can access. We normally see this during the very first stage of
installation. The users are required to allow or deny access to certain features like camera,

gallery, microphone and many more. This is not the case for the web application.



Chapter 2: Related Works

There are many frameworks for a web application that uses the architecture of the model view
controller [7]—Adonis, Express, Vue Js, Electron, etc., for example. In 2015, SitePoint, one of
the most popular websites providing only tutorials for web and software-linked developers,
carried out a global survey to find valuable insights into the various frameworks of JavaScript.
One of the most important questions is why developers prefer one framework over another.

Figure 1 shows the developer graph using different manufacturing frameworks.

What JavaScript frameworks do you regularly use?

54% I React

40% Express

39% Vue.js

23% Angular

20% React Native

16% Electron

14% Angularts
8% Cordeva / PhoneGap
3% I Folymer
3% I Backbone

Figure [ JavaScript frameworks survey

Express Js vs Adonis Js

ExpressJS is a web framework that is minimalist. It allows you to work freely with any
database, ORM or folder structure.

Adonis]JS is an MVC framework, on the other hand. The model, views and controllers stand

for MVC.

10



Each project of AdonisJS ships a number of files and folders. To work with it, we must first
understand the structure of the folder. But a good project structure is important for a scalable
Web application. So AdonisJS ensures that you're right.

With a solid routing system, we can quickly develop an application. Both frameworks have an
appropriate routing system.

This is applicable to both static and dynamic routes.

The express router is very simple, but it gets the job done.

Adonis allows us to connect pathways to controllers, group pathways and create REST
resources.

The problem Identified with these frameworks is that not only do they have steep learning
curves, but newbies are also required to understand certain core features of the framework
before they can build with them. This makes development difficult and time consuming. In this

proposed solution, the aforesaid problems will be dealt with.

11



Chapter 3: Requirement Analysis and System Architecture

3.1 Requirement Design Overview

When developing software, defining requirements before starting the development phase saves
much time and sometimes reduces financial costs. Gathering software requirements helps to
clearly define everything that the software will accomplish and serves as the basis for designing
and the development process. This chapter provides an overview of the design methods and

architectural pattern used in coming out with this framework.

3.2 Introduction to Fly-deno Architecture

MVC, was first described in 1979 by Trivet Reinking, while working on Smalltalk at Xerox
PARC[10]. The Model-View-Controller pattern is the most used pattern for today's world web
applications because it has been proven as an effective way to develop applications. The MVC
pattern separates an application into three separate layers: model, view and controller that work
separately to produce the same result. The controller handles the model and view layers to
enable them to work together. The controller is responsible for receiving a request from the
client, and invokes the model, responsible for interacting with a data source, to perform the

requested operations and presents the data to the view. which is responsible for rendering web

pages.

12



[ LFipil sm—e rigm | e 'Il
| — - —
"\ = ——— !

J TouTEsS h = ——]

MhoDBE L |

\
CoMHTReLLER |

1 PATARASE I

Figure 2 Model-View-Controller Architectural Pattern Overview

The diagram above shows the MVC architectural pattern and how data flows through it. Here,
a client hits an endpoint to request a resource. Under the hood, fly-deno will take the endpoint
and search through a predefined route based on the HTTP verb (i.e., it directs GET requests to
get.json route whereas POST request is directed to post.json). The route contains a path,
handler (controller class and method connected to the path) and an optional name parameter.
When the endpoint entered in the URL matches a path in the route, the handler(controller) is
then evoked. The controller, which is connected to the data source, then makes a request to the
database for resource and then passes in the retrieved data to the view. The view then presents

the resource/page requested by the client.

3.2.1 System Architecture

Fly-deno Architecture

D routers

Client A ,_’— f‘

Backend Rusty-V8 Database

Figure 3. Fly-deno system Architecture

13



The diagram above shows the system architecture of fly-deno framework. Over here a client
makes request to the backend via an endpoint. The backend searches through the routers and
fires request to the rusty-v8 engine (the main engine that process requests in Deno). The rusty-

v8 engine is also able to communicate with databases.

3.3 Fly-Deno Framework core part

This section is devoted to the workflow of the fly-deno backend framework. Fly-deno is a
minimalist framework built with security and MVC architectural pattern in mind. Fly-deno is
written in typescript (a superset and a statically typed of JavaScript) with Deno Js as its runtime.
The framework’s folder structure is similar to that of Angular Js, Laravel and the popular
frameworks out there with some small modification to make newbies navigate the framework.
In the root directory of the application, there are two files, namely .env and .env.example
similar to that of Laravel-PHP. The former is used to store information that are confidential to
the application and therefore needs to be hidden from the public eye. It contains information
such as application name, Application Programming Interfaces (API) keys, database
connection information, application secrete key etc. The latter stores' similar information as the
former but it is meant for storing production information like live-server URL, database
connection strings etc. Fly-deno also ships with an in-built handlebars template engine. This

will allow backend data to be easily interpolated into views and vice-versa.

3.4 System Description

14



Fly-deno backend framework is a security-oriented, lightweight and an MVC focused
framework. Unlike other frameworks like Adonis Js where newbies have to devote more time
to learning the core features like migration, page routing etc. Sometimes developers have to
drop their knowledge on certain things they know just to understand the bit and bytes of
frameworks. For instance, a developer with Structured Query Language (SQL) knowledge may
end up not applying any of this skill in Adonis because the framework does not require
developers to write raw SQL queries. These frameworks mostly ship with their own migration
libraries, which developers and newbies have to understand before they can fully use the
framework. Fly-deno takes a new approach. It was designed with beginners and security in
mind. It provides developers with a JSON-like route that is easy to understand [5]. Also, with
MVC at its core, developers will be able to separate their application logic from the business
logic hence making it easier to maintain and scale the codebase. Developers willing to build
complex application can do so by importing third party and standard libraries provided by

denoland.

3.4.1 System Features
Fly-deno has brought a shift in the way applications are built. Its features include:
No Node package manager (NPM), MVC support, security, typescript as a first-class citizen,

JSON route etc

i. No NPM
The fly-deno framework runs on the deno JS runtime and therefore does not have any
package manager as seen in Node Js, Angular Js, Adonis Js etc. Decan Posited, there had

been an increase in the number of vulnerabilities found in the application that uses npm [1].

15



This is very alarming, but thanks to deno, which has made it possible to build an application

without relying on such insecure packages.

i. Typescript supports out of the box

Developers around the globe understands how hectic it is to configure typescript compilers
in application. Typescript adds statically typed feature on top of JavaScript due to that it
helps developers to catch errors at runtime and fix them as soon as possible before rolling
their applications out. With the fly-deno framework, developers do not need to go through
the pain of configuring typescript before they can use them. It ships with deno js which is

the runtime the fly-deno framework runs on.

iii. Model-View-Controller support
With this, developers will be able to know where to do what in the application. For example,
of the developer wants to work with a controller, he just need to locate the controller folder

and write his code.

iv. Preconfigured router class

Another key feature of the fly-deno framework is the fact that routers are preconfigured.

So developers do not need to understand the underlying workings of how it works.

16



EXPLORER {) getjson x

"handler": "AboutController@about"

/home" ,
"handler": "HomeController@index"

Figure 4 sample route in fly-deno framework

3.5 Supported Operating System/Environment

The fly-deno framework can work in any operating system (OS) provided the OS has deno

runtime installed. There is no need to install web server software like Apache or nginx to run

3.6 Functional and Non-Functional requirements

Functional requirements provide the programmer with a snapshot of how to use the framework.

It starts from setting up the project to deployment.

17



Configure
Enviromental
variables

|:> create Controller

create Models

Developer

create Views

Figure 5 Functional requirement of a developer/user

3.6.1 Non-Functional Requirements

Non-functional requirements are requirements of the framework that will ensure reliability
and security in any application the framework will be used for in other to attain the desired
result. Some of the non-functional requirement of fly-deno are security, performance,

reliability, maintainability, scalability and usability.

3.6.1.1 Security

The framework limits the developer to certain confidential information unless explicitly
defined. This helps ensure that applications are secured and are not given exact permission as
the root user. Also, the developer is at liberty to handle request in their own convenient way

without compromising on security.

18



3.6.1.2 Reliability
Fly-deno should be able to catch errors and display them in a nicely formatted stack trace in a
way that the developer can read and understand. With this, developers will find it easier to

catch and debug errors with ease.

3.6.1.3 Maintainability

Even though fly-deno does not use NPM as its package manager, it has a way of locking
dependencies so that newer versions of dependencies will not conflict with older versions.
This makes maintaining the codebase much easier since dependencies mismatch and

environmental discrepancies are avoided [1].

Chapter 4: Implementation
The chapter is devoted to how the fly-deno framework was built. It shows some of the inner

workings, routing, environment variables etc are implemented.

19



4.0 Application Walkthrough

processEndpoint

process route

processRoute
HandlebarsEngine

convert .hbs to h

processMethod

o
- process
- Datastore

Figure 6. Application Walkthrough

Figure 6 shows a walkthrough of the fly-deno framework. First a client hit and endpoint in a
browser, the framework will extract the path visited from the url and search through the
routes.json file. Once it finds a match in the routes.json, it call the handler connected to the
path. It then get the handler class and the controller from the found handler. The handler
contains a class name and a method. The method now fires a request to the database for data.
Once the data is retrieved from the database, the controller then passes the data to a handlebar
template engine for processing. The handlebar template engine is responsible interpolating data
into loaded pages. Once handlebar engine is done with the data processing, it then render the

view with the data.

20



4.1 The Core Parts

The core part of this frameworks is:

I.

II.

II1.

IV.

VI

Environment variables initialization: This shows how environment variables are
created.

Folder structure: This shows the structure of the folders as well as how
files/folders are organized. It gives the user an idea of where to do what in the
framework.

Routing: This shows how pages and are being connected to each other in the
application.

Controllers: This forms a major part of the framework. It helps users to
communicate between a data source and the view.

Database: This shows how the database class is being created and used.
Custom Url library: The url library will be used to load binary files , css and

javascript files into loaded pages.

4.1.1 The Core Parts

For easier navigation, the framework has two folders in its root directory; public folder, src

folder, index.ts (entry point of the application) and fly ( bash file for running the application).

21



Favourites
(@) AirDrop
@ Recents
:.d‘-; Applications index.ts
@ Downloads
i MEGA

@8 OneDrive -... !

iCloud
& iCloud D... @

' Documents

public

Locations

e Remate Disc

Tags

Red

Figure 7 Root directory of the fly-deno framework

4.1.1.1 The Entry Point

The applications entry point is the index.ts. This is where the server is being called before the
application can run. This file contains the port on which the application will run on. The
developer is required to set a port number for the application to use, else the application will
use a default port (8000) to run the application. Fly-deno is aimed at making development
fast, simple and fun. As a result, the render function has been hidden from the controller. It’s

get triggered in the entry point.

22



console.log( s’ Server is running on http://localhost:${

for await (const req of server) {

CustomServer.setServer(req);

CustomServer.setDir D!

let res: any = await app.setup(() => {
CustomServer.setServer(req);
CustomServer.setDir( 5
console.log({ body: "Welcome to the Fly backend Framework™ });

B .runCreq);

CustomServer.persistData(res);

res = CustomServer.getRenderData(Q);

if(res !== undefined && res !== null && typeof(res) === 'object') {

await render(res.template,res.data);

Figure 8 Entry point of the fly-deno framework

Isaacs-Air:capstone isaackumi$ sh fly
Welcome to fly

;¥ Server is running on http://localhost:8000

Figure 9 sample command to start the app server

4.1.1.2 The src folder

The src folder contains the application logic and the backend logic. This folder structure was

borrowed from Angular, ionic and react Js.

23



— app
— controller
| — AboutController.ts
| — HomeController.ts
— get.json
— model
— routes
| L— get.json
— view
'— index.hbs
app.ts
artisan
— cli
— include
| — filesystem.ts
| — function.js
| — interfaces.ts
| — lib.ts
| L— test_env.ts
— utility
— protocols
| — Controller.ts
| — Model.ts
| — MySQL.ts
| — View.ts
| — usables.ts
| — view
| '— 1index.hbs
— routers
— Authentication.ts
— Router.ts

12 directories, 19 files
Isaacs-Air:src isaackumi$ i

Figure 10 Structure of the src folder

4.1.1.3 The public folder
The public folder contains view related files such as handlebars, Hypertext markup Language
(HTML), JavaScript and cascading style sheets (CSS). It also houses useful assets like

images, favicons etc.

4.1.1.4 The application folder
This is where the developer will write most of his code. It folders are structured to conform to
the MVC pattern. It contains four folders; the model, view, controller and the routes folder.

Aside from that, there is also two hidden files, namely .env and .env.example.

24



II.

1.

IV.

VL.

VII.

Model folder: The model folder contains database related queries. It is the “M” part
of the MVC pattern.

View folder: The view folder will contain frontend related codes. It is the “V” part
of the MVC pattern.

Controller folder: This contains the business logic. It is the “C” part of the MVC
pattern.

Route folder: All routes for the application are defined in the routes folder.

.env file: This file contains information that will be used throughout the application.
It also houses confidential information.

Public folder: The public folder lives in the application root. It is a place where
frontend files like html, handlebars, assets etc. live.

Page Not found folder: The fly-deno framework has a default file that get called
when a page cannot be found. To make this more flexible, the developer can define
his own 404 page, but it should leave inside the public folder and connected to a

route as well.

25



M app
v T~

get.json model routes

iCloud Drive

Documents

O Remote Disc

Tags

Red

Figure 11 Structure of the app folder

@ EXPLORER

APP_ROOT=
APP_ENV=development
APP_NAME=fly-Deno
DB_CONNECTION=mysql
DB_HOST=127.0.0.1
DB_PORT=3306
DB_DATABASE=fly
DB_USERNAME=root
DB_PASSWORD-|

PROBLEMS OUTPUT  TERMINAL  DEBUG CONSOLE v + O @

Wireshark: Permission denied
Isaacs-Air:capstone isaackumi$ deno run --allow-net server.ts[]

Figure 12. content of the .env file in the app folder

Comparing Fly-deno to Express Js

Routing and Controllers:

26



export class HomeController {

public test( : ServerRequest) {
return {
template: 'test',
data: { title: "Isaac Kumi" }
15

public index( : ServerRequest) {

return {
template: "index',
data: { app_name: "Fly-deno Framework" }

i

Figure 13 Fly-deno controllers

router.get(’ fservices:1d’ ,asyn
req.params.id
{_id:id})
.I-

res.send(dato
console. logldata

0 = {

res. json{ {message: "Service not found"});

Figure 14 Express Js combined routing and controller

Figure 13 shows how fly-deno does its controller. The controller returns a shape of data for the
framework to use. With this type of controllers, newbies will not find it difficult to understand

what is going on in the application. There is a hidden render function that process the data sent

27



by the controllers for processing. As seen, most the complexities have been hidden from the
developer so he can focus more on building rather than trying to understand what function to
call to do what in the application.

Figure 14 on the other hand shows how express Js does it routing and controllers. Its controllers
and call-back functions inside the routers. This type of implementation does not favour
beginners. This because newbies are mostly new to programming and framework in general,
so they get overwhelmed when they are exposed to something they have no idea about.

Also, with express Js, when an endpoint is visited, it goes through all the routes which end up
slowing the application. In fly-deno framework, once the path is found, the application doesn’t
go through the rest of the route, hence making the application faster. Also, fly-deno controller
is very, simple and clean as compared to express Js. The developer only needs to define the

shape of the data for the framework.

4.1.2 Implementation Process
The project started off by building a method that will be used to run the application with ease.
It takes a parameter of type server request. server request is a method that handles the request,

response in deno-http library.

28



public up(callable: Function) {
.callback = callable;
return this;

public async r req: any) {
console.log( method: ${req.method} - server: localhost - path: ${req.url} )
++Application. counter;
if(Application.counter % 2 == 0 || Application.counter > 2 ) {

Application. counter
1
if(Application.counter >= 1) {
1s.callback(req);
switch (req.method. tolLowerCa
case "get":
var router = new Rout

return await 15.getRoutes(req.url);

Figure 15 The run method in the application class

When the run method is called, it calls the getRoutes() method, which is responsible for
reading through the route file based on the request method. That is, if the request is a GET, it

will only search through the get.json routes for the path and handler connected to them.

29



public getRoutes(path: {
const = readRoutes( ${this.getApproot()}/src/app/get.json’);
const l_d JSON.parse(data);

var to_return = {};

var self =

parsed_data. forEach(
function (element: { name?: string; path: string; handler: string }) {

if (path = element.path)

return self.process(element);
t else {
return function () {
console.log("Invalid Path");

b

Figure 16 GetRoutes method in fly-deno

In the figure above, the routes file (get.json) is being read by a function called readRoutes().
readRoutes() is responsible for reading the route file and return its content as a string. It takes
a file path as string to be able to read the file. Also, because deno is secured at its core, read
and write permission is required to run this function. After the file content is returned, another

method (process ()) is called to extract the handler and the controller.

export function readRoutes(filePath: string): string {
return new TextDecoder("utf-8").decode(Deno.readFileSync(filePath));

}

export default dotenv;

PROBLEMS OUTPUT  TERMINAL DEBUG CONSOLE

Wireshark: Permission denied
Isaacs-Air:capstone isaackumi$

Figure 17 The read routes function in deno-fly

30



EXPLORER

public async process(c : routeInterface) {
var handler = data.handler.split("@");
if (handler.length = 2) {
let controller_class = handler[@];
let method = handler[1];
 controller = await import("./app/controller/${controller_class}.ts );
 con_class = controller[controller_class];

obj = new con_class(Q);

return obj[method]();

¥

PROBLEMS OUTPUT  TERMINAL  DEBUG CONSOLE

Wireshark: Permission denied
Isaacs-Air:capstone isaackumi$

Figure 18 . method for extracting handler

In the process method, the handler returned by readRoute method is being split into an array of
length two, with the first part being the class name of the controller and the second being the
method in the controller class. In order to get the developer/users defined controllers in the
application, a dynamic import statement is used to load controller classes for further processing

in the framework.

31



[Q EXPLORER

viewEngine
engineFactory
adapterFactory

import { ServerRequest, Response } from "https://deno.land/std/http/server.ts";

export class HomeController extends ServerRequest {
public constructor() {
Q;

1

public tes {
console.log("Testing controller,.,if you see this then rejoice!");
return ri r("index", { data: { name: "fly" } 1);

public index() {
| fAnenla 1Aar™T am  Tndav mathnd At HamaCankrallar flace™ -
PROBLEMS OUTPUT  TERMNAL  DEBUG GONSOLE e

Wireshark: Permission denied
Isaacs-Air:capstone isaackumi$

Figure 19 Controller class responsible for rendering view and communicating with data source

The framework borrows some concept from Laravel. For instance, in the Application class
constructor, an environment variable is being initialized. This will help the developers/users
to be able to use variables everywhere in the application. The env file follows laravel’s

environment file structure.

export class Application {
public approot = Deno.cwc

public constructo
dotenv(" ${this.getApproot()}/src/app/.env.example’);

Figure 20 Enviroment variables initialized through the App constructor

32



[Q EXPLORER

@return

const readFileToStrSync
return new T

@param decodedEnv
@return

1st parse = (

const

return en
const p

.map((i

const

return [pair|

PROBLEMS OUTPUT  TERMINAL  DEBUG CONSOLE

Wireshark: Permission denied
Isaacs-Air:capstone isaackumi$

Ltrim(

{
ync(filePath));

= decodedEnv.split(l

item.split("

Object.keys(pair).length;

Ltrim(

Figure 21 Snippet of code for reading and parsing the env file

[Q EXPLORER

@param parsedEnv

for (let i

void

i < parsedEnv.length; i++)

Deno.env.set(parsedEnv[i][@], parsedEnv[i][1]);

@return

return Deno.env.to0Obj

PROBLEMS OUTPUT  TERMINAL  DEBUG CONSOLE

Wireshark: Permission denied
Isaacs-Air:capstone isaackumi$

Figure 22 Code for setting read env variables

string) = {
rSync(envFilePath || ".

33



4.1.2 Technologies and Tools
This section describes the technologies, tools, and development stacks that were used to

implement the proposed fly-deno framework.

4.1.2.1 Languages

Typescript/JavaScript:
TypeScript is an open-source language that adds static type definitions to JavaScript. Types
allow you to describe the shape of an object, which improves documentation and allows
TypeScript to validate that your code is working properly (Typed JavaScript at Any
Scale.,2021). The TypeScript compiler or Babel converts TypeScript code to JavaScript code.
This JavaScript is clean, simple code that can be used anywhere JavaScript is supported, such
as in a browser, Node.JS [4], or your apps. Considering these features, I used typescript to

write classes, interfaces and decorators in the application.

MySQL:
MySQL was used to implement the project's database layer. MySQL is a relational database
management system that was chosen due to its ease of use, speed, and availability for free

and open-source use [11].

4.1.2.2 Libraries

Deno-Http:

This is the library used to run the application server. It contains in built methods for sending
and responding to requests. It also comes with a method that allows the application to listen on
a specific port for changes in the application while running the application. Because deno is

security oriented, this library will not be able to access network recourses unless access is

34



granted by the user running the application. To enable access, the user has to pass —allow-net

flag.

Below is a sample command for allowing network access in fly-deno framework

PROBLEMS OUTPUT  TERMINAL  DEBUG CONSOLE

Wireshark: Permission denied
Isaacs-Air:capstone isaackumi$ deno run --allow-net server.tsl

Figure 23 allowing network access in fly-deno framework

Deno Path Library:
I used the path library to navigate through the filesystem to find files and folders in the
application’s directory. To use this library the user must allow read and write permission by

passing —allow-read and —allow-write flags when running the application.

MySQL Connect Driver:
MySQL driver is a library that is used to connect deno application to mysql database [11]. 1

used this library to communicate with mysql in the application.

Deno- View-Engine:
Just like any framework, fly-deno has support for handlebars template engine [3]. This was

possible because of the view-engine library that ships with deno runtime.

4.1.2.3 Tools

Postman:
Postman is an API client. It is used to build, test, debug and document API’s. This client was

used to test endpoints in the framework.

Microsoft VSCode:

35



Microsoft Visual Studio Code is a free source-code editor that works on Windows, Linux,
and macOS. Among the features are debugging, syntax highlighting, intelligent code

completion, snippets, code refactoring, and embedded Git.

Phpmyadmin:
PhpMyAdmin is a relational database management system for managing MySQL on the web.
It is a simple lightweight web application that supports many MySQL and MariaDB database

operations. It was used to regulate SQL operations.

Xammp:
XAMPP is a web server solution package developed by Apache Friends for open-source and
free, which includes the Apache HTTP Server, the MariaDB database and PHP and Perl scripts

interpreters. I used Xammp to start mysql sever in other to communicate with the databases.

Git and GitHub:

Tracking changes in code is a pain in the neck. Things get messy when the application begins
to grow. In this framework, Git (a version control tool) was used to track changes in the project.
GitHub which is a cloud storage version control tool works with Git. So, each time I make a

change in the application I push it to GitHub through Git commands.

Bash:

Bash is a command-line utility that takes commands and returns results based on the commands
inputted [2]. I used bash to automate some part of the application. For instance, I realized that
each time I run the code, I had to pass all the required flags for it to work, so [ wrote a command-

line script with bash as the interpreter to run the server each time I call it.

36



Chapter 5: System Testing

The techniques and processes involved in fly-deno Framework software testing are
highlighted in this chapter. It is essential to verify the functionality and functionality of the
tests, as described in Chapter 2. To accomplish this, the functional or integration testing
procedure is used instead of testing each component separately for the whole application. A
detailed report of test cases, test results and analysis of test results are also included in the

following section of the chapter.

7.1 Unit Testing with Deno Test runner:

Unit testing is a technique for testing individual system components like a function, method,
or class [8]. Unit testing verifies the functionality of individual objects and fly-deno functions
to ensure that user operations on each object produce the expected results when given valid

[9], invalid, and null parameters. The Deno test runner was used for unit testing.

PROBLEMS OUTPUT  TERMINAL  DEBUG CONSOLE

Isaacs-Air:test isaackumi$ deno test --allow-read

Check file:///Users/isaackumi/Desktop/capstone/src/app/test/.deno.test.ts
running 3 tests

test Testing run method ... ok

test Testing process method ... ok

test Testing index-HomeController ... ok

test result: ok. 3 passed; @ failed; @ ignored; @ measured; @ filtered out

Isaacs-Air:test isaackumi$ |

Figure 24 Unit test results

37



@ EXPLORER

import { ServerRequest } from 'https://deno.land/std/http/server.ts’;
import { Application } from "../../app.ts";
import { assertEquals } from "https://deno.land/std@@.95.@/testing/asserts.ts";

= new Application();
Deno.test("Testing run method”, async (s : ServerRequest)

uals(C await app.run(s),"Welcome to fly");

t("Testing process method",
ertEquals( await app.process("/home™),"/Users/isaackumi/Desktop/capstone/s

13-
D
PROBLEMS OUTPUT  TERMINAL  DEBUG CONSOLE

Isaacs-Air:test isaackumi$ deno test --allow-read

Check file:///Users/isaackumi/Desktop/capstone/src/app/test/.deno. test.ts
running 3 tests

test Testing run method ... ok

test Testing process methed ... ok

test Testing index-HomeController ... ok

test result: ok. 3 passed; @ failed; @ ignored; @ measured; @ filtered out
Isaacs-Air:test isaackumi$ pwd

/Users/isaackumi/Desktop/capstone/src/app/test
Isaacs-Air:test isaackumi$ []

Figure 25 snippet of code for unit test

Deno.test("Testing index-HomeController",

assertEquals( await app.getRoutes("/home™),"/Users/isaackumi/Desktop/capsto

Figure 26 Snippet of code for testing home controller

38



Chapter 6: Conclusion and Recommendation

6.1 Conclusion:

This document aims to use methodologies and principles of software engineering to develop a
minimal but safe framework for developers. This approach allows any developer to take the
fly-deno framework and create an application or microservices on it, which will enable them

to be flexible to use all available libraries for this task as more complexity is demanded.

6.2 Limitation:

The framework is not yet a matured framework like Adonis, Express, Oak and others.There a
lot of complexities that must be catered for. Currently, the framework does not have a session
manager. The deno runtime is new and still growing, so most of the core libraries that will be
used to develop such complex functionalities are now being developed by the Deno
community.

Also, most of the standard libraries are not in their stable version so its ends up blowing up

your project when they are added.

6.3 Recommendation

In the future, the following features can be developed to improve system efficiency.

I. Add a session manager to be able to track users across web pages.

II. Popular frontend frameworks and libraries like React, Angular and Vue should be

made pluggable into the framework.

III. A command line tool for generating controller classes and migration scripts.

39



IV.  The framework should be able to work with multiple database instances
asynchronously.

V. The framework should have a bash script to bundle and deploy the application to
production with ease.

VI. It should support testing framework like mocha, jest and supertest.

VII. A command line tool to generate CRUD (create, read, update, delete) scripts.

40



REFERENCES

[1] Alexandre Decan, Tom Mens, and Eleni Constantinou. 2018. On the impact of security
vulnerabilities in the npm package dependency network. In Proceedings of the 15th
International Conference on Mining Software Repositories (MSR '18). Association for
Computing Machinery, New York, NY, USA, 181-191.
DOI:https://doi.org/10.1145/3196398.3196401

[2] Larry L. Smith. 2006. BASH Shell: Essential Programs for Your Survival at Work: Book 3
in the Rosetta Stone Series for Computer Programmers and Script-Writers (Rosetta Stone).
BookSurge Publishing.

[3] Lambert M. Surhone, Mariam T. Tennoe, and Susan F. Henssonow. 2010. XML Template
Engine. Watson-Guptill Publications, Inc., USA.

[4] Lambert M. Surhone, Mariam T. Tennoe, and Susan F. Henssonow. 2010. Node.js.
Betascript Publishing, Beau Bassin, MUS.

[5] Marie Taylor. 2014. Introduction to JavaScript Object Notation: a to-the-point guide to
JSON. CreateSpace Independent Publishing Platform, North Charleston, SC, USA.

[6] Mohammed Thakir Mahmood and Osama Ibraheem Ashour Ashour. 2020. Web
Application Based on MVC Laravel Architecture for Online Shops. In Proceedings of the 6th
International Conference on Engineering & MIS 2020 (ICEMIS'20). Association for
Computing Machinery, New York, NY, USA, Article 98, 1-7.
DOI:https://doi.org/10.1145/3410352.3410834

[7] Paul David Yanzick. 2009. Web service architecture framework for embedded devices.
Ph.D. Dissertation. Colorado Technical University. Advisor(s) Tim Maifeld. Order Number:
AAI3405680.

[8] Robert E. Noonan and Richard H. Prosl. 2002. Unit testing frameworks. In Proceedings
of the 33rd SIGCSE technical symposium on Computer science education (SIGCSE '02).
Association for Computing Machinery, New York, NY, USA, 232-236.
DOI:https://doi.org/10.1145/563340.563429

[9] Robert E. Noonan and Richard H. Prosl. 2002. Unit testing frameworks. SIGCSE Bull.
34, 1 (March 2002), 232-236. DOI:https://doi.org/10.1145/563517.563429

[10] RashidahF Olanrewaju, Thouhedul Islam and Nor'ashikin Bte.Ali. 2015. An Empirical
Study of the Evolution of PHP MVC Framework. In Advanced Computer and Communication
Engineering Technology - Proceedings of the 1st International Conference on
Communication , pp. 399-410.

41



[11] Rui Zhong, Yongheng Chen, Hong Hu, Hangfan Zhang, Wenke Lee, and Dinghao Wu.
2020. SQUIRREL: Testing Database Management Systems with Language Validity and
Coverage Feedback. In Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security (CCS '20). Association for Computing Machinery, New York, NY,
US4, 955-970. DOI: https://doi.org/10.1145/3372297.3417260

42



