
i

ASHESI UNIVERSITY

AUTONOMOUS DELIVERY ROBOT

CAPSTONE

Mechanical Engineering

Robert Boateng-Duah

2020

ii

ASHESI UNIVERSITY

AUTONOMOUS DELIVERY ROBOT

CAPSTONE

Capstone Project submitted to the Department of Engineering, Ashesi

University in partial fulfilment of the requirements for the award of Bachelor of

Science degree in Mechanical Engineering.

Robert Boateng-Duah

2020

iii

DECLARATION

I hereby declare that this capstone is the result of my own original work and that no part of it

has been presented for another degree in this university or elsewhere.

Candidate’s Signature:

……………………………………………………………………………………………

Candidate’s Name:

……………………………………………………………………………………………

Date:

……………………………………………………………………………………………

I hereby declare that preparation and presentation of this capstone were supervised in

accordance with the guidelines on supervision of capstone laid down by Ashesi University.

Supervisor’s Signature:

……………………………………………………………………………………………

Supervisor’s Name:

……………………………………………………………………………………………

Date:

……………………………………………………………………………………………

29/05/2020

Robert Boateng-Duah

iv

Acknowledgements

I would like to thank God for the gift of life, which has enabled me to embark on this project.

I am also especially thankful to my supervisor who has been very patient with me, very

inspiring and supportive. I would not conclude without thanking my lovely family for their

support and to Ashesi University.

v

Abstract

Autonomous robot navigation is a problem that has been tackled for many years now, since the

invention of electronic computers. Since then, many advancements have been made to the

extent of the development of self-driving cars on the streets in some countries across the world.

This project implements some algorithms for Autonomous Mobile Robot control and

navigation.

vi

Table of Contents
Acknowledgement ... v

Abstract .. vi

Table of Contents .. vii

Table of Figures.. viii

Chapter 1: Introduction .. 1

1.1 Background Information .. 1

1.2 Problem Definition .. 1

1.3 Project Aim & Objective .. 2

1.4 Scope ... 2

1.5 Expected Outcome of Project ... 2

1.6 Research Methodology .. 2

1.7 Chapter Outline.. 2

Chapter 2: Literature Review ... 4

2.1 Overview ... 4

2.2 Literature Review .. 4

2.2.1 Autonomous Mobile Robots (AMRs) .. 4

2.2.2 Kinematics & Dynamics ... 5

2.2.3 Odometry .. 5

2.2.4 Navigation .. 6

Chapter 3: Design.. 7

3.1 Requirements ... 7

3.2 Design Decisions ... 7

3.3 System Functionality ... 9

3.5 Autonomous Mobile Robot Design .. 10

3.4.1 Ackermann Steering.. 10

3.4.2 Kinematic Model .. 10

3.4.3 Control Algorithms ... 12

3.4.4 Enhanced Vector Field Histogram (VFH+) Algorithm 15

Chapter 4: Simulation ... 20

4.1 Simulation Environment .. 20

4.2 Robot Model .. 22

4.3 Robot Control .. 25

4.3.1 Ackermann Steering Node .. 25

4.3.2 Navigation Node ... 26

vii

4.4 Addition of Sensors ... 27

Chapter 5: Results and Discussion ... 28

5.2 Results ... 28

5.2 Discussion ... 29

Chapter 6: Conclusion, Limitations and Future Works .. 30

6.1 Conclusion ... 30

6.2 Limitations... 30

6.3 Future Works ... 30

References.. 31

viii

Table of Figures

Figure 3.1: Block diagram showing how systems will interact ... 8

Figure 3.2: Ackerman steering free body diagram ... 9

Figure 3.3: Bicycle model free body diagram .. 11

Figure 3.4: Simulink representation of bicycle kinematic model .. 12

Figure 3.5: Current position and goal .. 12

Figure 3.6: Simulink model for move-to-a-point.. 12

Figure 3.7: Simulation behavior of move-to-a-point for 8 different trajectories 13

Figure 3.8: Simulink model for move-to-a-pose .. 14

Figure 3.9: Simulation behavior for move-to-a-pose for 8 different trajectories 15

Figure 3.10: Visualization of active and inactive cells around the robot 16

Figure 3.11: Visualization of the working of the algorithm. ... 19

Figure 4.1: ROS Computational Graph Diagram…….........…………………………………20

Figure 4.2: The robot and a floor plan of a building shown in Gazebo 21

Figure 4.3: Robot visualized in RViz ... 22

Figure 4.4: 3D view of the robot .. 23

Figure 4.5: URDF Graph of the robot .. 24

Figure 4.6: Visualization of geometric positions of robot joint links 24

Figure 4.7: Robot control process diagram .. 25

Figure 4.8: Trajectory as projected by marker.. 26

Figure 4.9: Robot simulation with laser scanner. Blue color indicates the visualization of the

laser scanner ... 27

Figure 5.1: Robot starts moving from rest ... 28

Figure 5.2: Robot succeeds in avoiding obstacle .. 29

Figure 5.3: Robot unable to work its way around the obstacle ... 29

file:///C:/Users/qwerty/Documents/Capstone.docx%23_Toc40128531

1

Chapter 1: Introduction

1.1 Background Information

Human society, due to advancement in technology, is in constant evolution. One of the

most dominant technological revolutions in our time is automation. Processes, systems, and

procedures are gradually gravitating towards autonomy, and this is indeed same for

transportation systems. One major development in the transportation space is the Autonomous

Mobile Robot.

 The Autonomous Mobile Robot (AMR) is a type of robot that has the ability to move

from one point to another on their own, while having the ability to handle environmental

changes and obstacles that may impede or inhibit their movement towards a certain goal

location. This robot technology incorporates knowledge from Physics (Mechanics), Control

Systems, Mechatronics, and Algorithms.

 AMRs have many uses in the world, ranging from research, search-and-rescue, sports,

and day-to-day activities. In the evolving field of robotics, AMRs are a central theme and have

large areas of opportunity for research and implementation.

1.2 Problem Definition

For many industrial/logistical companies, the use of manpower to handle delivery and

logistics tends to be quite tedious and takes up a lot of time and resources. The use of manpower

makes logistics susceptible to human error and human inefficiencies. The development of the

AMR will propel the necessity for industry to shift its interest towards the use of machines to

increase efficiency and boost their production outputs. Also, in a time like this where the

coronavirus has taken its toll on the world, non-contact measures have become very essential

in providing services in a way that will mitigate the spread of the virus.

2

1.3 Project Aim and Objective:

The aim of this project is to design an autonomous mobile robot platform (hardware and

software) that can do delivery. The objectives are:

 To design and model an AMR platform

 To implement and test suitable algorithms for control and autonomous navigation.

1.4 Scope

The scope of this project is only limited to the control system of the mobile robot and

its integration with the mapping and localisation system. This will be implemented and tested

by the use of computer simulations.

1.5 Expected Outcome of the Project

It is expected that this project will lead to the development of control software that can

serve as the base for some AMRs.

1.6 Motivation for the Project Topic

I have always been fascinated by robots since I was young. This passion followed me

through high school where I was in the robotics club and together, we as a team excelled in

several competitions. Coming to university, I gained a larger context of robotics in its ability

to solve real life problems and I felt the capstone was a great opportunity to explore that, while

also being able to meet my undergraduate course requirements.

1.7 Research Methodology

The main source of information for this project would be from primary and secondary

research. The primary research data will come from conducted computer simulations while the

secondary data will come from journals, articles, books, videos, etc.

3

1.8 Thesis Chapter Outline

Chapter One is composed of the main introduction to the project, which has the

background information, project scope, project significance, expected outcome of the project,

the motivation behind the project, and the problem the project seeks to solve.

Chapter Two reviews the literature of which the project is based around, and explores works

conducted by researchers relating to the project topic.

Chapter Three constitutes the methodology, design selection procedure, and the tools and

techniques used in the project.

Chapter Four looks at how that methodology is implemented in software and computer

simulations

Chapter Five constitutes the results of the work

Chapter Six describes a summary of the project and concludes on the work done.

4

Chapter 2: Literature Review

2.1 Overview

This section explores what AMRs are, their types, and how they function. It also

looks into tools, techniques and systems that come together to make the AMRs function.

2.2 Literature Review

2.2.1 Autonomous Mobile Robots (AMRs)

AMRs are a class of mobile robots that are pre-programmed to move from one place to

another without physical guidance. This is in contrast to tele operated mobile robots, which

require a user to input commands in real-time to the robot. [1]. AMRs usually come in several

categories. Some of these are:

 Unmanned Aerial Vehicles (UAVs)

 Autonomous Ground Vehicles (AGVs)

 Autonomous Underwater Vehicles (AUVs)

There are also a class of autonomous vehicles that are able to operate both on air and land or

underwater and land. Modern technology has allowed the possibility for practically all vehicles

to be made autonomous. As per this project, the major focus is on AGVs with a specific look

into Wheeled Mobile Robots (WMRs) which are suitable for mobility on mostly smooth

ground surfaces. The major types of WMRs include [1]:

 Differential Drive WMRs

 Car-like (Ackerman steering) WMRs

 Omnidirectional WMRs

5

There are several areas that come together to form the complete design of a mobile robot. These

include the kinematics and dynamics of the robot, odometry, and navigation.

2.2.2 Kinematics & Dynamics

Robot kinematics deals with the configuration of robots in their workspace, the relations

between their geometric parameters, and the constraints imposed in their trajectories [1] The

kinematic model of a robot is therefore a mathematical model that predicts the future state of

the robot per a given set of kinematic inputs. Some of the parameters that make up the state of

the robot include position, acceleration, heading, angular speed, etc.

The dynamics of the robot on the other hand refer to the relationship between different types

of forces that interact with and affect the robot. The main physical elements considered during

dynamic modelling include inertia, elasticity, force or torque, and friction [1]. Together, the

dynamic and the kinematic model of the robot give a complete and accurate approximation of

the behaviour of the robot behaviour. Control algorithms are then applied to these models in

order to influence the robot behaviour to achieve desired results.

2.2.3 Odometry

Odometry is the process of determining the current state parameters (position, speed,

heading, etc.) using motion sensors [2]. Robot odometry is very essential in autonomous robot

navigation as knowing the robot’s state at every point in time informs the decisions the robot

has to make to get to its goal. Some sensors used for robot odometry include wheel encoders,

Inertial Measurement Units (IMUs), Global Positioning System (GPS), and range sensors like

ultrasonic sensors, infrared proximity sensors, and laser sensors.

Sensors used for odometry are prone to noise, which affects the accuracy of the sensor readings.

The IMU (Inertial Measurement Unit), which gives information on the attitude of the robot,

consists of a gyrometer, an accelerometer, and a compass (magnetometer). All these sensors

6

are prone to error due to electrical signal noise and drift. The gyrometer and accelerometer are

prone to drift, which causes the data readings from the sensors to offset at equilibrium position,

while the magnetometer is prone to magnetic field interference from high-powered radio

signals or magnets in its environment. These errors have debilitating effects on the autonomous

performance of the robot. With this, algorithmic techniques are used to fuse the sensors to

estimate a state close to the actual state of the robot. [3]

2.2.4 Navigation

An essential part of the AMR is its ability to find its way from its current position to its

goal position. There are various navigation techniques used by mobile robots, of which some

involve mapping the entire environment before navigating it. One example of this is SLAM

(Simultaneous Localization and Mapping). [4]

Other techniques are related to Waypoint Navigation, where the robot is given local or global

coordinates to go to. These techniques do not require a map of the surroundings. Some of these

techniques are bug algorithms and potential field methods [obst and path planning].

7

Chapter 3: Design and Modelling

3.1 Requirements

1. The system should be capable of avoiding obstacles

2. The system should be able to recognise where it is at every point in time and be able to

move from one recognisable location to another

3.2 Design Decisions

Before the project could be initiated, there were a series of decisions that had to be

made based on the requirements, cost, resources, and time constraint on the project. A decision

matrix was employed choosing the best approach in each of the given scenarios. The first

decision to be made was whether the project would be done completely physically, completely

as a simulation, or would be both simulated and physically built.

Table 3.1

Parameters

(weight)

Physical Build Simulation Both

Availability of

resources (35%)

30 90 50

Cost Effectiveness

(35%)

30 90 20

Complexity (30%) 50 50 20

TOTAL 36 78 30.5

The decision to go with simulations was the most reasonable one given that it is more expensive

to build, especially that failures during physical build can be very costly to development time.

Simulations on the other hand, are virtually free, especially when the software is open-source.

8

Upon arriving at simulations, the next decision was to figure out which simulation environment

would be suitable:

Table 3.2

Parameters

(weight)

MATLAB-

Simulink

ROS (Robot

Operating System)

CARMEN

Cost Effectiveness

(50%)

30 90 20

Ease of Use (20%) 50 30 70

Robotics Packages

Available (20%)

50 70 80

Community (10%)

Support

50 70 40

TOTAL 40 72 40

The decision to go with ROS is because ROS has a massive community and the software is

completely open-source. Many manufactures have their sensors and robot platforms available

to use on ROS, thus it makes it very practical for use for robotic simulations. On top of that, it

has the most seamless interoperability between simulations and physical build. It is also the

most widely used software for robotics in industry, such that MATLAB even has packages to

write software for ROS.

Table 3.3

Parameters

(weight)

Differential drive Ackermann (car-

like)

Omnidirectional

9

Manoeuvrability

(20%)

70 50 90

Complexity (20%) 50 40 30

Efficiency (30%) 65 80 40

Speed (30%) 50 80 50

TOTAL 58.5 66 51

The decision to go with the four-wheel robot was mostly based on speed and efficiency. A

four-wheel platform is also more capable of handling unstable terrain compared to other mobile

robot platforms. Considering that the autonomous robot is aimed that deliveries, speed and

efficiency are the most important benchmarks for making the best decision as to which platform

to use.

3.3 System Functionality

Figure 3.1: Block diagram showing how systems will interact

The way the system works is that it takes input parameters such as the desired pose and

position of the robot. This information feeds into the controller, which ensures that the robot is

10

on the right trajectory. An obstacle avoidance algorithm interferes causing a shift in the robot’s

planned path when a disturbance (an obstacle is detected). The present state of the robot is then

measured by a wheel encoder, IMU, and GPS and fused using a filter or optimal estimation

algorithm. The resulting state is then compared against the desired robot state to see if it has

achieved its goal. When the goal is achieved, the program ends.

3.4 Autonomous Mobile Robot Design

3.4.1 Ackermann steering

The Ackerman steering is a method of steering where the inner tyres are bent at a higher

angle than the outer tyre, with respect to the radius the inner tyre has to turn as compared to the

outer tyre. The Ackerman steering geometry ensures that the robot tyres do not slip while

negotiating a curve. This is ideal for maintaining the no-slip assumption for the mobile robot

and for calculating the centre of turn of the robot, which will be used by the bicycle kinematic

model to predict the robot future states and calculate its trajectory [5].

Figure 3.2: Ackerman steering free body diagram

11

3.4.2 Kinematic Model

The mobile robot uses a four-wheel, car-like platform. This platform adopts the bicycle

kinematic model with non-holonomic constraints. A free-body diagram of the system is

illustrated below [1]:

Figure 3.3: Bicycle model free body diagram

The state equation of this system is also presented below:

Where:

- Phi is the heading of the robot

- X is the displacement of the robot in the x-axis

- Y is the displacement of the robot in the y-axis

- Psi is the steering angle of the robot

A MATLAB Simulink model with the implementation of the bicycle kinematic model is shown

below:

12

Figure 3.4: Simulink representation of bicycle kinematic model

3.4.3 Control Algorithms

The robot acts like a state machine, switching between different algorithms depending on

the situation the robot finds itself in. These algorithms are [6]:

1. Move to a point

2. Move to a pose

3.4.3.1 Move to a point

This algorithm is to move the robot from one point to another. It calculates the error from the

goal by calculating its translational and angular deviations from the goal. The angular deviation

between the robot and the goal is defined by:

And the linear or translational deviation from the goal is defined by:

√(𝑥𝑔 + 𝑥)2 + (𝑦𝑔 − 𝑦)2

13

Figure 3.5: Current position and goal

Figure 3.6: Simulink model for move-to-a-point

Figure 3.7: Simulation behavior of move-to-a-point for 8 different trajectories

14

3.4.3.2 Move to a Pose

 Moving to a point may not be enough in many scenarios. Some require reaching a

goal with a particular heading or pose. To do this, a different approach in the algorithm design

is required. The bicycle kinematic equations are turned into polar equations as seen below [6]:

A linear control law with the equations

These drive the robot to a unique equilibrium while driving beta to zero to achieve the desired

pose [6]. The system is stable as long as all the constants in the linear control law are greater

than zero.

Figure 3.8: Simulink model for move-to-a-pose

15

Figure 3.9: Simulation behavior for move-to-a-pose for 8 different trajectories

3.5.4 Enhanced Vector Field Histogram (VFH+) Algorithm

This is a method of obstacle avoidance and path planning for real-time fast-moving

mobile robots [7]. The VFH+ algorithm comes with a safety distance, which is the minimum

distance from the robot to the obstacle from which obstacle avoidance should begin. It also

comes with a turn radius parameter, which takes in the maximum turn radius of the robot, used

by robots with non-holonomic constraints. The algorithm also enhances the “size” of the

obstacle to allow the robot safely navigate around it without having to worry about the

possibility of hitting it. Data collected from the range sensors go through five stages of

processing before the results are acquired.

3.5.4.1 The First Stage

In the first stage, a 2-dimensional map grid is converted to a primary polar histogram

grid. In this histogram grid, there is the active region and the inactive region. The active region

represents the region of the map grid within the robot sensor’s FOV (Field of View). This active

16

region has active cells Ci,j, which is treated as an obstacle vector with βi,j representing the

obstacle vector direction. βi,j is given by:

𝛽𝑖,𝑗 = tan−1 (
𝑦𝑜−𝑦𝑗

𝑥𝑜−𝑥𝑖
) ,

The magnitude of the active cell, Ci,j, is given by:

𝑚𝑖,𝑗 = 𝑐𝑖,𝑗
2 (𝑎 − 𝑏𝑑𝑖,𝑗

2)

Where:

- Ci,j is the certainty value of the active cell

- di,j distance from the RCP (Robot Centre Point) to the active cell

- a and b represent arbitrary constants.

Figure 3.10: Visualization of active and inactive cells around the robot

Di,j is squared so that as the robot moves, cells with obstacles produce larger vector magnitudes

than when far away. This is also done for the active cell certainty value, allowing for greater

confidence in the obstacle vector magnitude values. As said earlier, obstacles are also enlarged

by the robot ‘radius’ (with the assumption that the robot can be approximated as a disk).

17

Next, an arbitrary angular resolution is determined by the equation:

𝑛 =
360°

𝛼

Where n represents the number of angular sectors and k represents the index of each angular

sector. Therefore, a discrete angle, ρ = kα.

The distance around an occupied active cell, rr+s is enlarged by:

𝑟𝑟+𝑠 = 𝑟𝑟 + 𝑑𝑠

Where rr is the robot radius and ds is the minimum specified distance at which the robot should

start avoiding the obstacle. From this, the enlargement angle γi,j can be determined by:

𝛾𝑖,𝑗 = sin−1
𝑟𝑟+𝑠

𝑑𝑖,𝑗

For each sector k, the polar obstacle density can be calculated by:

𝐻𝑘
𝑝

= ∑ 𝑚𝑖,𝑗 ∗ ℎ𝑖,𝑗
′

𝑖,𝑗∈𝐶𝑖,𝑗

Where ℎ𝑖,𝑗
′ = 1 when 𝜌𝜖[𝛽𝑖,𝑗 − 𝛾𝑖,𝑗 , 𝛽𝑖,𝑗 + 𝛾𝑖,𝑗] and ℎ𝑖,𝑗

′ = 0 otherwise.

𝛽𝑖,𝑗 − 𝛾𝑖,𝑗 represents the minimum angle between the active cell and the enlarged obstacle

radius while 𝛽𝑖,𝑗 + 𝛾𝑖,𝑗 represents the maximum angle. This makes sure that the polar histogram

incorporates the width of the robot as well as the obstacle enlargement circumference. It also

smoothens out the polar histogram.

18

3.5.4.2 The Second Stage

Two hysteresis thresholds 𝜏𝑙𝑜𝑤 and 𝜏ℎ𝑖𝑔ℎ are introduced. It is based on these two

thresholds that the binary polar histogram. This groups all occupied cells into either free (0) or

blocked (1), similar to a non-inverting Schmitt trigger. It is mainly to indicate the directions

that are free for a robot to move in, and is the foundation for developing the robot trajectory

[8].

3.5.4.3 The Third Stage

A masked polar histogram is developed from the binary polar histogram. This masked

polar histogram incorporates the robot’s kinematic and dynamic model to make more accurate

approximations of the path the robot should take. It considers that the fact that a space is free

does not mean that the robot can move through that space.

19

Figure 3.11: Visualization of the working of the algorithm.

3.5.4.4 The Fourth Stage

In this stage, a range of possible paths the robot can take are developed per the

information on free and blocked areas given by the masked polar histogram. A cost function is

used to determine the best path among the candidate paths to be taken. This cost function is

given by [8]:

µ1 ,µ2, and µ3 are weights of the cost function responsible for the difference between the

candidate direction and target direction, difference between target heading and current heading,

and the difference between previous direction and current direction respectively.

20

Chapter 4: Simulation

4.1 Simulation Environment

The simulation is done in ROS, Gazebo and RViz. ROS (Robot Operating System) is a

middleware for robotics-based applications. It is modular and open-source, allowing engineers

to reuse boilerplate code and other system algorithms without having to completely start from

scratch. In its computational graph, ROS consists of a parameter server, nodes, messages,

topics, services, and bags. It has a core feature called ROS master, which is the core program

that tracks and manages all the software processes. The node is the smallest block of code

needed to run a system in ROS. Nodes communicate with the ROS master and with each other

through a topic which they can subscribe to or publish. They communicate on a topic by

sending ‘messages’ which, depending on the topic, have special structure to the information

they carry. ROS has a special feature called ROSbag which is primarily used to store data and

also develop graphs. It also has a parameter server which is a multivariate dictionary that is

accessible via network APIs [9].

Figure 4.1: ROS Computational Graph Diagram

Gazebo on the other hand is a graphical simulation environment that allows robot models to be

simulated in a game-like manner. It takes data from ROS as parameters and lets users visualize

and analyse the performance of robotic systems under various conditions.

21

Figure 4.2: The robot and a floor plan of a building shown in Gazebo

RViz, which stands for Robot Visualization is in some ways similar to Gazebo, except it is

mainly used to visualize the robot as described in the URDF and make some slight tweaks.

Figure 4.3: Robot visualized in RViz

22

4.2 Robot Model

The high-level goal of the robot is to be able to move from one global way-point to

another while avoiding obstacles. To achieve this in simulation, the simplest model of a four-

wheel mobile robot with non-holonomic constraints was used. This mobile robot used primitive

shapes only. Primitive 3D shapes such as cuboids and cylinders, where the cuboids were used

for the body and cylinders used for the wheels. This allows for easier modelling of the moment

of inertia of the vehicle as well as its collision matrices.

Figure 4.4: 3D view of the robot

The robot model is described using a special XML-like format called URDF (Unified Robot

Descriptor Format) [10]. This format contains descriptions of geometric properties of the robot

such as the dimensions/size, shapes and connecting parts. It also describes the dynamic

properties of the robot such as the collision matrix, the moment of inertia, mass, friction

coefficient, and the force and torque in the crucial moving or rotating parts. The URDF contains

description of the kinematic properties of the robot like the degrees of freedom/rotation and

23

limits like the maximum speed and acceleration of critical moving parts. In addition to that,

PID controllers can be added with gain parameters.

The robot description is formatted in a graph tree-like structure with nodes being called links

and vertices being called joints. The URDF graph tree of the robot is shown below:

Base_link

camera_mount Chassis_link

front_axle

front_right_steer

wheel_front_right_hubcap

front_left_steer

wheel_front_left_hubcap

back_axle

back_left_steer

wheel_back_left_hubcap

back_right_steer

wheel_back_left_hubcap

top_link

Laser_scanner

Figure 4.5: URDF Graph of the robot

24

Figure 4.6: Visualization of geometric positions of robot joint links

The robot description also has in it a transmission tag. The transmission represents the actuators

needed to provide torque for the vehicle. The transmission also comes with a

joint_state_controller which sets up a controller for all joints that are going to be in motion due

to the torque provided by the actuator. Position controllers using the joint state controller are

created for the front_left_steer, front_right_steer, back_left and back_right. The position

controllers ensure that, as in a real system, the desired velocity and position are met when

torque is applied, by correcting any errors. The transmission is applied on the front axle to

control the steering and to the back axle for forward and reverse movements.

4.3 Robot Control

The robot is controlled by the interaction of special nodes, mainly the tf (meaning

transform) and the joint_state_publisher. The joint_state_publisher is a node that takes the

states of all the joints from the URDF file and publishes them. The published states go through

25

the kinematic equations written as nodes and goes to the tf node which updates the joint states

with the results given by the equations.

Figure 4.7: Robot control process diagram

After going through the tf node, the new joint states can also be published on Gazebo and RViz,

where it is now possible to visualize what is going on.

4.3.1 The Ackerman Steering Node

A python API for ROS called rospy is used to create a node that computes the future

states of the robot given the current robot state using the kinematic model and the ackermann

steering equations. The node imports all controlled joint states from the joint state publisher.

From there, it initializes a module to send commands to the Gazebo environment. It then

initiates a program to read the angle and current position of each wheel. Using the Ackermann

equation, the spin center is computed and a special marker is generated to visualize the

trajectory of the robot in RViz.

26

Figure 4.8: Trajectory as projected by marker

4.3.2 Navigation Node

The VFH+ algorithm is implemented using the laser scanner as the range detection sensor. The

scanner FOV is divided into bins to be processed into the histogram grid. The navigation node

subscribes to range messages published by the topic /carbot/laser/scan which it uses to

compute the path the robot must take to avoid the obstacles and reach the goal point. The path

is then translated into the necessary linear and angular velocities required and then published

to the /cmd_vel topic which is responsible for issuing movement commands to the robot. The

move-to-a-point and move-to-a-pose control algorithms embedded in the navigation node are

used to ensure that the robot follows the VHF+ algorithm’s recommended path.

4.4 Addition of Sensors

Adding sensors was done by including a new link and joint tag in the robot URDF file

of the sensor. The sensor plugin code was also added to the Gazebo file, which contains a link

to the sensor’s simulation files. From there, the sensor can be initialized and visualized on the

Gazebo simulation environment. The first sensor to be added was the 2-D laser scanner with

27

had a 180-degree field of view and a range of 30 meters, with a resolution of 20 lasers per

degree manufactured by Hokuyo.

Figure 4.9:Robot simulation with laser scanner. Blue color indicates the visualization of the laser scanner

This same procedure was followed to add the GPS and the IMU. For the wheel encoder, it was

modelled as a simple programme to track the angular position of the wheels at every point in

time in the Ackermann steering node.

Chapter 5: Results & Discussion

5.1 Simulation Outcome

The simulation was run with a world designed in Gazebo to mimic some obstacles the

robot may encounter. The simulation was done with the robot’s rear wheels moving at a

constant translational velocity of 0.1m/s

28

Figure 12: Robot starts moving from rest

Figure 13: Robot succeeds in avoiding obstacle

This is for a very simple scenario, however for some more complex scenarios, the robot was

not able to successfully maneuver its way.

29

Figure 5.3: Robot unable to work its way around the obstacle

5.2 Discussion

The reason for the failure in the second scenario was that the robot saw similar distances

between the boxes, and given the constraints due to its kinematics, computing the most

efficient path became more complicated. This could be curbed by modifying the cost function

parameters; however, doing that would also affect its performance in less complex scenarios.

30

Chapter 6: Conclusion, Limitations and Future Works

6.1 Conclusion

Following the success of the robot design to achieve all of its objectives, the fact remains that

more can be done at improving the design to make it more comprehensive and more modular.

The simulations do not perfectly mirror the exact performance of the robot in real life, however

it is a great way to visualize how the robot is going to perform if built. It is also a great way of

observing which parameters in the robot need to be prioritized or paid attention to.

6.2 Limitation

Below are a few issues that were limitations to the project:

 Short project duration

 COVID-19 pandemic delayed the arrival of some components which would have

enabled the simulation to be implemented on a physical model

 Limited computational power did not allow for more advanced simulations

6.3 Future Works

 Test the simulations in a physical model

 Use more complex shapes other than primitive shapes for modelling the robot

 Make the software more modular and adaptable to different robot platforms

31

References

[1] Tzafestas, Spyros G. Introduction to mobile robot control. Elsevier, 2013.

[2] Howard, Andrew. "Real-time stereo visual odometry for autonomous ground vehicles."

2008 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2008.

[3] Jing, Xiaofei, et al. "Attitude estimation for UAV using extended Kalman filter." 2017 29th

Chinese Control And Decision Conference (CCDC). IEEE, 2017.

[4] Durrant-Whyte, H.; Bailey, T. (2006). "Simultaneous localization and mapping: part I".

IEEE Robotics & Automation Magazine. 13 (2): 99–110. CiteSeerX 10.1.1.135.9810.

doi:10.1109/mra.2006.1638022. ISSN 1070-9932.

[5] Mitchell, Wm C., Allan Staniforth, and Ian Scott. Analysis of ackermann steering geometry.

No. 2006-01-3638. SAE Technical Paper, 2006.

[6] Corke, P., 2011. Robotics, Vision and Control: Fundamental Algorithms in MATLAB. 1st

Edn., Springer, Berlin Heidelberg Springer, ISBN-10: 3642201431, pp: 570.

[7] Borenstein, J. and Koren, Y., “The Vector Field Histogram - Fast Obstacle Avoidance for

Mobile Robots”, IEEE Journal of Robotics and Automation, June 1991, Vol. 7, No. 3, pp. 278-

288.

[8] Ulrich, Iwan, and Johann Borenstein. "VFH+: Reliable obstacle avoidance for fast mobile

robots." Proceedings. 1998 IEEE international conference on robotics and automation (Cat.

No. 98CH36146). Vol. 2. IEEE, 1998.

[9] Quigley, Morgan, et al. "ROS: an open-source Robot Operating System." ICRA workshop

on open source software. Vol. 3. No. 3.2. 2009.

32

[10] Garage, Willow. "Xml robot description format (urdf)." URL {http://www. ros.

org/wiki/urdf/XML}{accessed May 4 2020.} (2012).

