

ASHESI UNIVERSITY COLLEGE

IMPLEMENTATION OF A WEB-BASED CODE GENERATOR FOR

THE ANDROID MOBILE PLATFORM

APPLIED PROJECT

B.Sc. Computer Science

Constant Likudie Komla

2018

Page | 1

Branding and Identity Guide

The Ashesi brand and logo are integral parts of our worldwide image and identity. We must be

careful of how and where the Ashesi is used to ensure we maintain the integrity of our

organization.

This guide has been developed to help you clearly understand our policies towards the use of

the Ashesi logo in a variety of mediums, as well as type faces and a color palate to help you

produce materials that maintain the brand’s integrity. We would request that you seek

approval from the Ashesi University College Marketing Committee before creating any media

that reproduces the Ashesi logo.

Contents
The Logo .. 2

Using the Logo .. 3

Clear Space and Logo Design .. 5

Unacceptable Logo Uses ... 6

The Ashesi Seal .. 7

Color Palette ... 8

Fonts.. 8

Mission Statement .. 9

ASHESI UNIVERSITY COLLEGE

Implementation of a Web-based Code Generator for The Android

Mobile Platform

APPLIED PROJECT

Applied Project submitted to the Department of Computer Science, Ashesi

University College in partial fulfilment of the requirements for the award of

Bachelor of Science degree in Computer Science

Constant Likudie Komla

April 2018

i

DECLARATION

I hereby declare that this applied project is the result of my own original work and that no

part of it has been presented for another degree in this university or elsewhere.

Candidate’s Signature:

……………………………………………………………………………………………

Candidate’s Name:

……………………………………………………………………………………………

Date:

……………………………………………………………………………………………

I hereby declare that preparation and presentation of this applied project were supervised in

accordance with the guidelines on supervision of applied project laid down by Ashesi

University College.

Supervisor’s Signature:

……………………………………………………………………………………………

Supervisor’s Name:

……………………………………………………………………………………………

Date:

……………………………………………………………………………………………

ii

Acknowledgements

I would like to honour God, my family, friends and all who stood by me in

completing this project.

A special gratitude to my supervisor Dr. Nathan Amanquah for his academic

guidance and dedication to this project.

iii

Abstract

 Producing software compels programmers to have in-depth knowledge of several

programming languages, tools and frameworks. This time-consuming process demands

dedication and mastery which are typically the foremost reasons most novice programmers

give up a little into the software development process. This project seeks to eliminate

learning programming languages and tools to create Android applications and reduce the

time used in creating Android applications.

 This paper presents a comprehensive implementation of a code generator intended

for skilled and novice programmers to build Android applications through drag and drop.

Likened to other code generators, using this code generator does not require knowledge of

a programming language. A key advantage of using this code generator is the ability to

download the source code of the generated Android application for customization, a feature

that other code generators do not provide.

 Regarding outputs, the code generator creates an APK that can be installed on an

Android device or uploaded to the Google Play store, backend and frontend pages with a

database to save all the data of the generated Android application.

iv

Table of Contents

DECLARATION .. i

Acknowledgements .. ii

Abstract ... iii

Table of Contents .. iv

List of figures .. vi

Chapter 1: Introduction ... 1

1.1 Aim... 1

1.2 Background ... 1

1.3 Related Work .. 3

1.4 Objectives ... 7

Chapter 2: Requirement Analysis ... 9

2.1 User Requirements .. 9

2.1.1 Approach ... 9

2.1.2 Scenarios.. 9

2.1.3 Use Case Diagram .. 10

2.1.4 Functional requirements ... 11

2.1.5 Non-Functional Requirements .. 14

2.2 System Requirements .. 14

2.2.1 User interface ... 14

Chapter 3: Architecture and Design .. 15

3.1 Project Overview .. 15

3.2 Software Process Model .. 15

3.3 Project Modules .. 16

v

3.3.1 User Module .. 19

3.3.2 Android Application Creation Module ... 23

Chapter 4: Implementation ... 26

4.1 Overview .. 26

4.2 Implementation Process .. 26

4.2.1 Code Generator Web Application ... 26

4.2.2 Android Code Generation... 31

4.2.3 Android APK Generation ... 32

4.2.4 Code Generator Database ... 35

4.3 Implementation Tools ... 35

Chapter 5: Testing .. 36

5.1 Overview .. 36

5.2 Development Testing .. 36

5.2.1 Unit Testing ... 36

5.2 Component Testing ... 39

5.3 System Testing.. 40

Chapter 6: Conclusion and Recommendation ... 41

References .. 43

Appendix.. 44

A. Requirements Gathering ... 44

A.1 Interview Questions ... 44

Interview Insights ... 44

Summary and charts of responses ... 45

B. Class Diagram .. 49

vi

List of figures

Figure Description Page

Figure 1.1 Diagram showing a conceptual overview of the code generator 7

Figure 2.1 Use case diagram 11

Figure 2.2 Code generator architecture. 12

Figure 3.1 Context diagram 15

Figure 3.2 Agile software process model 16

Figure 3.3 Layered architecture 17

Figure 3.4 Code generator database schema 18

Figure 3.5 Sample generated Android application database schema 19

Figure 3.6 MVC architecture for user module 19

Figure 3.7 Activity diagram 22

Figure 3.8 Code generator modules 24

Figure 4.1 Project specification page 27

Figure 4.2 Builder page 28

Figure 4.3 Edit UI element properties modal 29

Figure 4.4 Metadata structure 31

Figure 4.5 Generated application folder structure 32

Figure 4.6 Gradle file structure 34

Figure 4.7 Application creation success 34

Figure 4.8 Sample generated application 35

Figure 5.1 Sample PHP unit test code 37

Figure 5.2 PHP unit test result 40

1

Chapter 1: Introduction

1.1 Aim

This project aims at developing a code generator that automatically writes the source

code for an Android application by creating an intuitive drag and drop interface where users

can build their projects without having to write much or any code at all. This application is

targeted at software developers who have programming experience and novices who have

never written a line of code. The code generator also seeks to eliminate the repetitive tasks

involved in writing data management-oriented software applications. Experienced

developers may further customize the generated source code if they so wish but would

typically be unnecessary.

1.2 Background

The influx of computers, smartphones and tablets in the twenty-first century has

undoubtedly enhanced the usage of such devices as millions of households can boast of at

least one. The abundance of smart devices such as phones and tablets has necessitated the

creation of software applications for the masses. The enormous number of applications in

the Google Play store and Apple store are testament to the progress of software creation.

Although there are over a million applications in the mobile app stores, software

development demands an enormous amount of time and a lot of repetitive code. “App

developers are currently required to write copious amount of boilerplate code, scripts,

organize complex directories, and author actual functionality” (Barnett, Grundy, & Vasa,

2015). The challenge of writing huge chunks of code for each application developed is

indeed a pain and if too much time is spent on writing codes for configurations rather than

the actual application, there is a high probability that it will result in slippage in delivery

time. The current solution to this predicament is developing programs that automatically

generate code for the mundane tasks of software development such as database connections,

2

creating configuration files, database migration files and so on. In so doing, the developer

can focus on developing the actual software.

The process of making software development easier started with making integrated

development environments (IDEs) used for developing software applications “smarter”.

IDEs such as NetBeans and Eclipse just to mention a few, automatically create folder

structures and boilerplate code which most times are just HTML pages with header tags.

These simple pages are not very useful when it comes to the overall implementation of a

software project. Overtime, software developers started writing libraries to make the process

easier, but this was also not very effective. “Modern libraries alleviate these issues, but they

can only do so much. Many components need to be wired up correctly to render data to a

list and each instance has slight differences” (Barnett, Grundy, & Vasa, 2015). Lately, some

web application frameworks such as Ruby on Rails, Laravel and .Net Core provide software

developers with scaffolds to make them write code faster and focus on the most important

aspects of the software being developed. This however is not the case for mobile application

development. The most used mobile application platforms, Android and iOS do not come

with extensive scaffolding abilities as compared to the web application frameworks and

hence make the developer code almost the entire application by hand.

The ability to automatically generate code for programs is deeply rooted in

understanding how most applications work. A critical look at all data-driven applications

will reveal that most applications are created based on the idea of CRUD. CRUD means

create, read, update and delete. At the core of every data-driven application, what really is

happening is that a user is either creating a new resource, updating, reading, deleting or

searching for a resource. Code generators or scaffolding applications simply examine the

parameters that the user wants in the application and then create a database, database tables,

models, controllers and views based on the user’s requirements. As useful as this may be,

3

developers often do a lot of refactoring to the scaffolds that were generated to make the

application useful. Another disadvantage of the current scaffolding method is that it creates

just a small part of the application and hence the developer must put the various pieces of

the code together to integrate the components of the application and make the application

do exactly what it is supposed to do. A typical example of this is Laravel, a PHP framework.

For non-technical users however, even the generation of scaffold code still does not solve

the problem of being unable to edit the applications since there is no way they can step

through the code to tweak it and make it work as they desire.

This paper details how a complete Android mobile application can be created

without having to write a line of code. The approach introduced in this paper makes the

process of software development effortless such that novices can create applications on the

go. For experienced software developers, the process is also simplified to the extent that

they do not have to piece all the different segments of the generated code together before it

becomes a complete application. They could also view the underlying code to make tweaks

if they so desire.

1.3 Related Work

Developing software for production is no easy task and as affirmed by Shinde & Sun

(2016), creating software applications require a lot repetitive code. To solve this problem,

the two proposed “a template-based code generation framework to automate the database-

oriented web services for improving code quality” (Shinde & Sun, 2016). According to

Shinde & Sun (2016), given that clients want their applications developed faster, it is

prudent to have a tool that enables developers generate applications in a shorter time frame.

Using a code generator makes developers focus on the main functionalities of the

application while the repetitive aspects of the code are dealt with by the code generator.

Their template-based code generator ensures that programmers adhere to standards that

4

make their programs more secure and maintainable. Security has been a major issue in most

code generators as the boilerplate code generated is the same each time. This means that if

a hacker can bypass one system that was built using a code generator, chances are that the

same hacker can bypass all systems that have used that code generator since they will be the

same code at the core.

For users who are tech savvy, there exists a tool for generating code that uses domain

specific language. This means that for the code generator to generate the much-needed

underlying code, the user must specify the specifications of the application in a higher-level

language called RAPPT DSL. The code generator known as RAPPT, developed by Vasa,

Grundy & Barnett (2015), passes the code generated by the RAPPT DSL through a parser

and then through an inference engine before it finally generates the program that the

programmer specified. The advantage of this method is that the code generator does not

generate just any generic code but rather generates code based on the user’s specifications.

Though this is an improvement on previous code generators, its target users are limited.

Users who have no programming skills may find it difficult to use RAPPT because they

must get an in-depth understanding of how RAPPT DSL works. The code generator also

does not generate a ready-to-ship application as its primary features are to generate the

database and then some higher-level code. This means that the user still needs to piece the

code together to make it work as a full application.

An advanced approach to code generation has been developed by Franky & Pavlich-

Mariscal (2012) which makes use of regular expressions substitution to generate code based

on previous projects that the user has worked on. This code generator requires a user to have

some past projects. Running regular expression substitution on the past project, the codes

of the old project that are no longer required in the new project are replaced. Generating

code from the programmer’s previous code projects means that the programmer will be

5

familiar with the code base that is generated by the code generator. Although this code

generator has immense benefits, it is not ideal for users who have no coding experience

because they might not have previous projects that the regular expression code generator

will be run on. It also means that if there were some flaws in the programmer’s previous

project, the flaws will most likely be found in the new code that is generated by the code

generator since they will have the same code base.

As per the examples provided above, it is evident that a lot of effort has been put

into code generators. However, a new wave of code generators is beginning to spring up.

Unlike all the previous versions of code generators, this new wave of code generators uses

artificial intelligence to generate their code. A typical example is the Airbnb sketching

interfaces where the front-end code of an application is generated by an AI observing

wireframes drawn on paper (Wilkins, n.d.). What all these code generators have in common

which is a limitation that my paper seeks to address is that they all generate code for the

user interfaces and do not go any further. This means that even an expert in writing computer

programming will still have to modify the code for it to communicate with some database

to make it useful.

In Ashesi University College, two students previously worked on code generators

that were primarily used for data collection. In this project, the limitations of the previously

worked on code generators is addressed. These limitations are the lack of an intuitive user

interface for users to build their application and the burden of users having to compile their

own code using the terminal. The code generator implemented in this paper automatically

compiles the generated Android source code into an APK. This code generator also provides

an intuitive interface where users build their applications through drag and drop unlike the

previous implementation where the users had to choose the user interface elements needed

for their application from a list.

6

The MIT App Inventor is another platform for generating code through drag and

drop. With its powerful features such as giving access to most of the phone’s capabilities

and allowing users to write logic for their applications using code blocks, it has a

disadvantage that this code generator seeks to address. The disadvantage of App Inventor

that this code generator seeks to address is the inability to download the source code of the

generated application.

In this paper, a code generator that can generate front-end, backend code and

database thereby creating a finished data collection application, is presented. As most

business applications revolve around collection of data, the code generator presented in this

paper does not only build user interfaces but also generates a database for every Android

application generated to give the application data collection abilities. Applications that can

be built using this code generator include but not limited to visitors’ log book, record of

sales and record of deliveries.

The code generator presented in this paper will reside on the web making it platform

independent. A major advantage of using this code generator is that the source code of the

generated Android application can be downloaded and modified by the user, a feature which

is non-existent in other code generators. Figure 1.1 shows a conceptual overview of the code

generator implementation in this paper.

7

Figure 1.1 Diagram showing a conceptual overview of the code generator.

1.4 Objectives

To complete this project, the following objectives need to be met:

1. To create a web-based application that enables a user to create an android

application.

2. To create a drag and drop user interface that is usable by novices.

3. With respect to the code generator, metadata refers to the set of data that

describes the Android application to be created. As such, an objective is

to extract the metadata that was generated through dragging and

dropping.

4. To store the extracted metadata for future editing/or to permit storage and

retrieval of metadata.

5. To create an application for generating the code.

8

6. To package the generated Android application and make it ready for

deployment.

9

Chapter 2: Requirement Analysis

2.1 User Requirements

2.1.1 Approach

To complete the code generator, there was a need to understand the stakeholders of

the project and know exactly what they wanted the application to do. The stakeholders as

identified during the user requirements gathering are experienced programmers who would

like to use the application to quickly generate start up code to make their work faster. The

other stakeholders are users who do not have any programming knowledge at all but have

some experience using the computer and can perform basic functionalities such as drag and

drop. The stakeholders were interviewed and their responses to the interview questions have

been added in Appendix A for reference.

2.1.2 Scenarios

The data collected, and insights drawn from interviewing the stakeholders of the

code generator application were used to formulate the following scenarios under which the

code generator will be used.

First Scenario: Kwame an experienced programmer working in a well-established

software company in Ghana has been given the task of building a data collection application

by his boss. This new application was impromptu, and Kwame is already hard pressed for

time since he has unfinished tasks from a project the company is currently working on.

Deadlines are rushing at him fast and he needs a faster way of creating this new application

assigned to him by his boss. Kwame launches his web browser and then visits the URL of

the code generator. He builds the application faster by using the drag and drop feature

provided by the code generator. Upon completion, Kwame realizes that he needs a few

tweaks to the application. He goes on to download the source code that was generated by

10

the code generator and launches it in Android Studio where he makes his tweaks and then

packages his app as an APK and hands it over to his boss in a couple of minutes. He is

satisfied and goes back to his original tasks for the day.

Second Scenario: Antoine, a Business Administration major in Ashesi University

wants to build an Android application for a business he is running. Unfortunately, the

semester is almost getting to and end and most of his friends who can quickly build the

application for him are seriously studying for examinations and working on their final

projects. This means that he has no option but to build the application himself. He signs

onto the code generator platform and quickly starts building his application through drag

and drop. In a few minutes, Antoine has built his application and successfully uploaded the

application to the Play store.

2.1.3 Use Case Diagram

The use case diagram in figure 2.1 was generated using the data collected from the

interviews. The diagram outlines each user’s usage of the application and will aid in

measuring the project’s completion.

11

Figure 2.1 Use case diagram.

2.1.4 Functional requirements

Figure 2.2 outlines the step-by-step process involved in the operation of the code

generator. The various actions in the diagram influenced the functional requirements that

have been outlined below.

12

Figure 2.2 Code generator architecture.

 2.1.4.1 User registration and log in

A user should be able to register and log onto the platform. This will help him/her

get a personalized feel of the application and grant him/her the ability to view older

projects that he/she has completed.

2.1.4.2 Platform selection

 A user of the code generator should have the ability to select which mobile platform

he/she wants to build his/her application for. The available options should cover the major

mobile platforms which include but not limited to Android, iOS and Windows.

2.1.4.3 Drag and Drop Interface

To create his/her desired application, a user should be given the luxury of

dragging and dropping the various UI elements unto a mobile-like interface of the code

13

generator. This makes the process faster, less prone to errors and he/she does not need

to memorize any long lines of syntax of a programming language to build the application.

2.1.4.4 User Interface Elements Edits

 A user of the code generator should have the ability to edit the details of the various

user interface elements that he/she used in building the application. This involves specifying

his/her own activity names, specifying the name, labels and ID given to each element used

in the creation of the application. However, the application should work even without

editing the details of the various user interface elements.

2.1.4.5 Application Creation

After a user has designed his/her application through drag and drop, the metadata

created from each activity should be used to generate the Android folder structure, XML

files for the Android application’s layout and the Android application’s Java code.

2.1.4.6 Application Compilation

 The generated Android source code should be compiled into an APK that can be

installed on a mobile device or an emulator and uploaded to the Google Play store if need

be.

2.1.4.7 Application APK Download

 A user should have the ability to download the APK generated. Alternatively, for

multiple downloads, a user should be sent a link where he/she can download the APK

anytime.

14

2.1.4.8 Past Projects Retrieval

 The code generator should give a user the ability to retrieve past projects. This

involves searching through the database and retrieving the projects that correspond to the

ID of the logged in user.

2.1.5 Non-Functional Requirements

2.1.5.1 Product

1. The user should be able to use the code generator to design an Android interface.

2. The code generator should be able to package the user’s application as an Android

APK.

2.1.5.2 External

1. The code generated by the code generator should be secure enough so that users can

confidently move the application from development to production mode.

2.2 System Requirements

The section below is a description of what the system requires for the functional

requirements to be met.

2.2.1 User interface

1. The user interface of the code generator should be friendly, clean and intuitive so a

user can easily build his/her desired application.

2. The user interface of the code generator must have all the components required in

developing an Android application

3. The user must have a computer and an active internet connection to use the

application.

15

Chapter 3: Architecture and Design

3.1 Project Overview

The aim of this project is to create a web application that will help users with little

to no technical background in computer programming quickly create applications that can

be installed on a phone or uploaded to the Google Play store. This is done by providing a

nice and intuitive interface where users only need to drag and drop the various UI elements

that make up their Android application onto a mobile interface provided by the code

generator. With a button click, an APK file that can be installed on a phone or uploaded to

the Google Play store is generated.

 Figure 3.1 Context diagram

3.2 Software Process Model

 To complete the project, the agile process of software development was adopted. In

this method, “increments are small and, typically new releases of the system involve

customers in the development process to get rapid feedback on changing

16

requirements”(Sommervile, 2011). The steps involved in the agile process are outlined in

figure 3.1. The main advantages of this software process model are as follows:

1. New features are quickly delivered and frequently.

2. It is easy to integrate changes anytime in the project.

3. The users are the focus of the applications created.

4. Breakdown of the project into manageable units ensure the product is of

high quality

Figure 3.2 Agile software process model.

3.3 Project Modules

For the code generator to function effectively, the different tasks it performs are

broken down into different modules. The modules that make up the code generator are

presented below:

• User module

• Android Application Creation Module

17

• Folder generation module

• Android manifest code generation module

• Java code generation module

• XML code generation module

• Values resources generation module

Layered Architecture

Figure 3.3 Layered architecture.

Figure 3.3 is a layered architecture of the code generator. The first layer, the user

module, is where all the interactions between the user and the code generator take place.

This module contains user registration, login and project specification, the page where the

user provides details about the application to be built. The details required at the project

specification page are the application name, description and the platform of choice, be it

Android, iOS or Windows. The last page in this module is the builder page. This is where

18

the dragging and dropping of user interface elements is done. This module also has a

database where information about users and their projects are stored. Figure 3.3 is a

diagrammatic representation of the code generator database schema.

Figure 3.4 Code generator database schema.

The application creation module is where the dragged and dropped user interface

elements are translated into Android code. In this module, the UI elements are extracted

from the code generator and passed to the backend in the form of JSON for an Android

application to be built. This module starts by generating the appropriate folder structures

followed by the Android source code. Automatic compilation of the source code into an

APK is done by running a gradle script on the terminal.

The generated Android APK with its source code can be downloaded by a user for

further tweaking or installation on a phone. Once the generated Android application is

launched, it initiates the last layer by creating a database unique to each generated

application. The generated application name is assigned as the database name while the

tables are the names of the activities in the application. The attributes of each table are the

UI elements that are editable such as edit texts and combo boxes, just to mention a few . In

the diagram below, the database was generated for an application called Sample, that had

two activities, mainactivity and user. The user table had username and password as attributes

19

and these were dynamically generated from edit text elements in Android. The schema for

the Sample Android project is described in figure 3.4.

Figure 3.5 Sample generated Android application database schema.

3.3.1 User Module

The user of the code generator interacts directly with the user module. Using this

module, the user can build the user interface for their desired Android application. The users

build the user interface using the drag and drop feature provided by the user interface

module. The user module is built following an MVC web architecture. The various aspects

of the MVC architecture are described in figure 3.6.

Figure 3.6 MVC architecture for user module.

20

3.3.1.1 Model

The model contains all the files that describe the data of the application to be created

by the user. The models of the user module are described below:

3.3.1.1.1 User

 The user model specifies the details of a user that is registered or logged onto the

code generator. The attributes of the user are as follows:

a) ID: An autogenerated identification number assigned to the user at the point of

registration.

b) Email: The user’s unique identifier. Example, likudie@gmail.com

c) Password: An encrypted string that is required during the login.

3.3.1.1.2 Project

The project model specifies the details of a project that is created using the code

generator. The attributes of the project are as follows:

a) ID: An autogenerated identification number assigned to a project upon creation.

b) Metadata: A string representation of the metadata collected from the application

upon creation.

3.3.1.1.3 UserProject

 The UserProject model specifies the details of a project in relation to its user. Below

are attributes of the UserProject model.

a) ID: An autogenerated identification number assigned to a user’s project upon

creation.

b) UserID: The ID of a user to whom a project belongs.

c) ProjectID: The ID of a project that is being associated to a user.

21

3.3.1.2 View

The view contains all the files that define the user interface of the code generator.

Below are the various screens that make up the code generator:

3.3.1.2.1 Registration page

 On this page, a user will provide his/her name, email address and password to be

registered on the code generator.

3.3.1.2.2 Login page

 On this page, a user will provide his/her email address and password to be given

access to the full functionalities of the code generator.

3.3.1.2.3 Project description page

 On this page, a user will give brief descriptions about the project that he/she is about

to create. This includes specifying the application name, a succinct description about the

project and then the platform for which the application should be built for.

3.3.1.2.4 Builder page

 This is the page where the dragging and dropping of UI elements take place. A user

can add more screens and edit element properties.

3.3.1.2.5 Download page

 This page has a button which when clicked will download a zipped folder containing

the source code and the APK file of the generated application.

3.3.1.3 Controller

3.3.1.3.1 User Controller

 This controller is responsible for the communication between the user model and the

user view (registration and login)

22

3.3.1.3.1 Project Controller

 This controller is responsible for deserializing the JSON containing the metadata of

the application to be built. It is also responsible for issuing commands that generate the

folder structure and the source code.

3.3.1.3.1 AJAX Controller

 The AJAX controller enables communication between the front-end code and the

backend.

Figure 3.7 is an activity diagram which describes the various dynamic aspects of the

code generator.

Figure 3.7 Activity diagram.

23

3.3.2 Android Application Creation Module

 Creating an Android application without Android Studio or Eclipse involves

replicating the Android folder structure, writing the XML and Java code. Replicating the

folder structure involves creating the lib and src folders which will hold the various libraries

and source codes respectively. The values folder contains files that specify the colour and

strings to be used throughout the Android application. The next stage is generating the

layout files which define the look and feel of the Android application to be created. The

logic and backend of the Android application is handled by the Java code. The manifest file

contains information about the application being created. In the manifest file, various

permissions and dependencies are added to ensure that the Android application runs

smoothly.

The Android application creation module will contain most of the logic of the code

generator as illustrated in figure 3.8. To achieve abstraction, this module is broken down

into five submodules. The role of this module is to create the Android application that was

designed using the user module of the code generator. The functions of the submodules of

the Android Application Creation Module are outlined below:

24

Figure 3.8 Code generator modules.

3.3.2.1 Folder Generation Module

 The folder generation module is responsible for generating the Android folder

structure. This includes generating the src, libs and all subfolders.

3.3.2.2 Values Resources Generation Module

 This module is responsible for generating all files and code in the values folder of a

generated Android project. This includes specifying the application theme, strings and

colours that define the user interface of a generated Android application.

3.3.2.3 Manifest Code Generation Module

 The manifest code generation module is responsible for generating the code in the

Android manifest file. This module specifies the various permissions and activities that

make up the Android project.

25

3.3.2.4 XML Code Generation Module

 The XML code generation module is responsible for generating all the layout files

that make up the user interface of a generated Android project. The tasks of this module

include specifying the details of all the UI elements that make up the various activities in

the application to be created.

3.3.2.5 Java Code Generation Module

 The Java code generation module is responsible for generating the code that makes

up the logic of the application. This module is responsible for initializing UI elements and

specifying the on click behaviours of the various elements among many other functions.

26

Chapter 4: Implementation

4.1 Overview

 In this section, the processes involved in implementing the code generator are

described in detail. The chapter is divided into sections that describe the implementation

process of the code generator web application, creation of Android code, generation of the

Android APK and the code generator database.

4.2 Implementation Process

4.2.1 Code Generator Web Application

 The code generator is a web application that can be accessed from any location when

connected to the internet through a web browser. By drag and drop, a user can design and

build a complete android application ready for production using this platform. A sample

project that can be built using the code generator is a traffic offence collection application.

4.2.1.1 Registration

 A user must be registered onto the code generator platform to gain access to its

functionality. Registration involves providing a username, email and a password, which is

hashed before saved into the database. Registering enhances an effective retrieval of a user’s

past projects. For instance, if a user wants to edit a past project, he/she does not have to start

from scratch.

4.2.1.2 Login

 The code generator requires users to be authenticated before starting any project. As

such, an email and a password are required of a user during login. Once these details are

verified to be correct, the authenticated user is allowed access to the full functionality of the

code generator.

27

4.2.1.3 Project Specification

 The project specification page of the code generator shown in figure 4.1, requires a

user to provide a name, description and choose the platform of choice for the application

he/she wishes to build. The application name and description provided by a user are included

in the metadata for generating the Android application. Currently, the available options for

the desired mobile platforms are Android, iOS and Windows, although only Android has

been implemented.

Figure 4.1 Project specification page.

4.2.1.4 Application Design

 On the application design page, a user designs the interface of the application that

he/she wishes to build. The left sidebar contains elements used in building an Android

mobile interface. Currently, the available UI elements are label, textbox, radio button,

spinner, checkbox and a text area. The main section of the application has a single screen

resembling a mobile interface with two buttons underneath. The button labelled “Add New

28

Screen” adds an extra mobile interface to the default one in instances where the user wants

to build multiple screens.

Figure 4.2 Builder page.

4.2.1.4.1 Drag and Drop

With the use of a mouse, a user drags the various elements from the sidebar unto the

phone screen. A unique ID is automatically generated and assigned to every dropped

element to avoid elements being assigned the same ID. This step is needed to avoid the

generated Android application failing during the build stage.

4.2.1.4.2 Edit UI Element Properties

 A user is given the ability to edit the default values of each UI element. Figure 4.3

is a modal that pops up when a user clicks on a UI element to be edited. The editable values

29

include the id, name, the display text and if the element calls another activity in the

application, the name of the activity.

Figure 4.3 Edit UI element properties modal.

4.2.1.4.3 Adding More Screens

 The code generator provides a user the ability to add extra screens to the default one.

More screens can be added by clicking on the “Add New Screen” button.

4.2.1.4.3 Metadata Extraction

 In generating the Android application, the HTML elements on the web application

must be extracted and translated into actual Android UI elements. The extraction of

metadata is done by counting the number of screens a user has built. Using this count and

the unique IDs of each screen, the HTML elements are extracted and converted into JSON

to be saved in the code generator database. The metadata is passed to the backend and

translated into Android UI elements. Figure 4.5 is a sample metadata formatted as JSON for

an Android application to be generated.

30

Figure 4.5 Metadata structure.

31

4.2.2 Android Code Generation

 The JSON passed to the backend is deserialized to generate the Android folder

structure and code. The steps involved in the creating the Android source code are:

1. Generating Android folder structure

2. Generating Android manifest file

3. Generating layout XML files

4. Generating Java code

The Android folder specifies where all files go. For instance, the Java codes are in

the src folder while the layout XML files are in the res folder. Replicating the Android folder

structure enhances an easy location of files by developers who wish to customize the

generated code. Figure 4.6 is a screenshot of the folder structure automatically generated by

the code generator for a sample Android project.

Figure 4.6 Generated application folder structure.

32

The manifest file contains various permissions that the generated Android

application requires to execute. It also contains a list of all activities that make up the

application and libraries that will help the Android code execute.

The layout XML file specifies the user interface of the generated Android

application. It also specifies the orientation and position of each element making up the

application.

The Java code contains the logic of the application. All computational tasks are done

here.

4.2.3 Android APK Generation

To build an Android APK, gradle.build and local.properties files are added to the

generated Android source code. The local.properties file contains the path to the Android

sdk while the gradle.build is “based on a Domain Specific Language that supports the

automatic download and configuration of dependencies or other libraries”(Vogel & Scholz,

2016). Running gradle build in the terminal downloads all the necessary libraries needed by

the Android application and chooses a target sdk for which the application should be built.

Running this command also generates an APK file that can be installed on a device or an

emulator. Figure 4.7 is a screenshot of a sample gradle script automatically generated by the

code generator. It is required by each Android source code to generate an APK.

33

Figure 4.7 Gradle file structure.

 A user is redirected to the download page on a successful Android

application build. When “Click to download” in figure 4.8 is clicked, a zipped folder

containing the Android source code and APK is downloaded onto a user’s device.

Figure 4.8 Application creation success.

34

Figure 4.9 Sample generated application.

Figure 4.9 is a screenshot of an application generated by the code generator. The

APK in the downloaded zipped folder was installed on an Android emulator and tested.

The sample Android application in figure 4.9 above was generated using two labels,

two textboxes and a button. The labels were renamed from their default names to name and

license number as illustrated in the output above. The default name of the button was also

35

changed to Save. This was done via the builder page of the code generator. Additional

controls for building applications using the code generator include radio buttons,

checkboxes, a spinner and datetime widget.

4.2.4 Code Generator Database

 The code generator database stores the details of a user and the projects he/she

builds. It is made up of three tables; the user table, the project table and the userProject table.

ID, name and password are the attributes of the user while the project table has ID and

metadata as attributes. The userProject serves as the link table allowing inter-operation

between the user and the project tables has ID, userID and projectID as its attributes.

4.3 Implementation Tools

 The front end of the application was built using Hypertext Mark-up Language

(HTML) and Bootstrap. HTML is a standard mark-up language for creating webpages and

applications. Bootstrap was used to style the frontend of the code generator. The various

interactions and validations on the various pages including the drag and drop and cloning

features were all implemented using JavaScript and jQuery. Cloning was necessary because

the UI elements had to be dragged and dropped multiple times in order to build the user

interface of the Android application to be generated. As such, the duplication of UI elements

was achieved using JavaScript cloning. jQuery is a JavaScript framework that simplifies

writing code in JavaScript by using concise methods. Hypertext Preprocessor is a server-

side scripting language that handles all the backend logic of the code generator. Java and

XML were the main languages with which the Android application was built and the

gradle.build file was written in Groovy, a language based on the Java.

36

Chapter 5: Testing

5.1 Overview

Tests were conducted during the development of the code generator. These tests

were conducted to ensure and validate that the requirement specification of the project has

been met. The tests covered in this chapter are component, unit and system testing. Unit

tests are conducted to ensure that individual functions of the code generator work as

expected whereas in component testing, each component is tested to ensure all components

work as expected. System testing was done on the complete code generator with all parts

integrated. This section presents the test cases, results and analysis.

5.2 Development Testing

 This section of the chapter focuses on the tests that were conducted by the developer

of the Code Generator during development.

5.2.1 Unit Testing

 Unit tests are conducted to ensure that individual functions perform the tasks that

they are supposed to and return the appropriate results. PHPUnit was used for all unit tests

discussed in this chapter. Figure 5.1 is a screenshot of the registration test.

Figure 5.1 Sample PHP unit test code.

37

 5.2.1.1 Testing Registration

 Password Match Test

This test was done to verify the password provided in the password field matches;

the password in the confirm password field. This test yielded the desired output as different

passwords returned an error message. This test was done to make sure that the intended

password of the user is saved in the database and not one that was entered in error.

Number Test Response Status

1 Different password and confirm

password values

Passwords do not match Fail

2 Password and confirm password

values left blank

Please provide password

values

Fail

3 Same password and confirm

password values

Passwords match Success

 Existing Email

 In this test, the developer tried registering with an existing email. The test returned

an error since the email of a user is unique and can only be used by an individual. The test

yielded the desired result of returning an error message. A new email that hasn’t been

previously registered was used in registration. This process succeeded.

Number Test Response Status

1 Existing email Email already exists Fail

2 New email Registration successful Success

38

5.2.1.2 Testing Login

 Unregistered User

In this test, an email and password that had not being registered was used to login

into the Code Generator. The login failed returning an error message indicating the email

was not registered.

 Wrong Password

In this test, a valid email was provided but with an incorrect password to log in to

the Code Generator. The login failed returning an error message validating that an incorrect

password with a correct email combination could not be used to log into the system.

Number Test Response Status

1 Non-existent email Email does not exist Fail

2 Non-existent email and password Email and password

combination not found

Fail

3 Correct email and password Login successful Success

5.2.1.2 Testing Project Specification

 In this test, the developer started building an application using the code generator

without specifying the name, description and the platform for the desired application. The

developer was not routed to the builder page as the he/she was asked to provide the missing

information about the application.

Number Test Response Status

1 No project name Provide project name Fail

2 No project description Provide project description Fail

3 No platform selected Please choose a platform Fail

39

4 Project name, description and

platform specified

Redirected to builder page Success

5.2.1.3 Testing Project Specification

 Incomplete Screen Details

 In this test, some details needed by an activity were omitted. For instance, the activity

name was not filled, and the user clicked on “Create”. The code generator responded

appropriately by asking the user to fill in the name of the activity before proceeding.

 Same IDs

 In this test, two elements on the same screen or activity were given the same ID and

the user clicked on the “Create” button. The code generator responded by asking the user to

change one of the IDs.

5.2 Component Testing

 This section describes the tests that were done to ensure the various components of

the code generator worked as desired.

Testing Android Folder Generation Module

This test was done to make sure that the folder generation module of the Code

Generator created the appropriate Android folders. This test was done by providing the Code

Generator with the name of the application to be created. This yielded the desired results as

the folder structure was created using the application name provided.

 Testing Android Code Generation Module

 This test was done to ensure that given the appropriate description of all the screen

elements, an appropriate Android code was generated. This was done by passing a JSON

40

containing the description of the application to the code generation module. This test yielded

the appropriate result as the appropriate Android code was created based on the description

in the JSON.

Figure 5.2 PHP unit test result.

5.3 System Testing

 System test was performed on the fully functional code generator platform. In this

test, all the various components and modules of the code generator were integrated to enable

communication between them. The test yielded varying results as sometimes the data passed

from one component to the other was slightly modified or was not in the appropriate format

as per the design of the recipient module.

41

Chapter 6: Conclusion and Recommendation

 This paper describes how a code generator for building Android applications through

drag and drop was implemented. With this application, both software programmers and

novices will build Android applications without having to write any code. The process of

creating the application using this code generator is also very intuitive and simple.

Currently, the code generator meets the following functional requirements:

1. A user should be able to sign onto the code generator platform.

2. A user should be able to log into the code generator platform.

3. A user of the application can select his/her preferred mobile platform.

4. A user can drag and drop the various UI elements onto a phone screen interface, so

he/she can visualize the application as he/she builds along.

5. The extracted metadata is saved into a database.

To improve this project and make it more effective, the following tasks are outlined as future

works:

1. Ability to do real time code edit: Although this project seeks to eliminate writing of

code completely, some experienced developers would like to further tweak the code

to perform more complicated tasks. The current setup is that such users will have to

download the project folder before loading it in their IDE of choice to make edits.

To eliminate this, users can be given the ability to edit the codebase in the code

generator.

2. Addition of more UI elements: The current implementation of the code generator

has just a few UI elements. To make the application more useful, more elements

must be added to what is currently present. The current elements available on the

code generator tool are textview, button, radio button, spinner and checkbox.

42

3. Addition of sample projects: A user should be able to build upon a sample project.

This will reduce development time as the user will not be required to build the entire

application by drag and drop.

4. Building for other mobile platforms: The current implementation of the code

generator supports only Android code generation. To make the code generator more

useful, more mobile platforms such as Windows, Cross platform and iOS can be

added.

In conclusion, this project has an enormous potential to be the code generator of

choice among programmers and novices worldwide and will no doubt be a pain reliever to

all programmers across the world.

43

References

Barnett, S., Vasa, R., & Grundy, J. (2015). Bootstrapping Mobile App Development.

Proceedings - International Conference on Software Engineering, 2, 657–660.

https://doi.org/10.1109/ICSE.2015.216

Franky, M. C., & Pavlich-mariscal, J. A. (2012). Improving implementation of code

generators: Regular-Expression Approach.

Mbogo, C., Blake, E., & Suleman, H. (2013). A mobile scaffolding application to support

novice learners of computer programming. ACM International Conference Proceeding

Series. https://doi.org/10.1145/2517899.2517941

Schlee, M., & Vanderdonckt, J. (2004). Generative Programming of Graphical User

Interfaces. Proceedings of the Working Conference on Advanced Visual Interfaces AVI

04, 4. https://doi.org/10.1145/989863.989936

Shinde, K., & Sun, Y. (2016). Template-Based Code Generation Framework for Data-

Driven Software Development, 55–60. https://doi.org/10.1109/ACIT-CSII-

BCD.2016.22

Sommervile, I. (2011). Software engineering (9th ed.). Boston: Pearson Education, Inc.,.

Vogel, L., & Scholz, S. (2016). The gradle build system- tutorial. Retrieved March 16, 2018,

from http://www.vogella.com/tutorials/Gradle/article.html

Wilkins, B. (n.d.). Sketching interfaces; Generating code from low fidelity wireframes.

Retrieved March 24, 2018, from https://airbnb.design/sketching-interfaces/

44

Appendix

A. Requirements Gathering

A.1 Interview Questions

In gathering requirements for this project, the following interview questions were

asked.

1. Do you have any experience with Android programming? If answer is no,

proceed to question 10.

2. What is your first reaction to Android application programming?

3. Overall, how satisfied or dissatisfied are you with tools for creating Android

applications?

4. What do you like most about Android Studio?

5. What about Android Studio are you dissatisfied with?

6. What other IDEs do you consider when programming Android applications?

7. How would you rate the quality of Android Studio substitutes?

8. What changes would most improve competing IDEs from other companies?

9. When you’re considering integrated development environments (IDEs),

what are the top two things you generally consider?

10. What do you think of a platform that builds Android applications without

having to write any code?

Interview Insights

 In total, twenty-two people were interviewed out of which 13 had programmed an

Android application while the other 9 had never. The insights gathered from the interview

are summarized below.

45

1. From the interviews, it was evident that interviewees who had no exposure to

programming were enthusiastic about a platform that will easily help them

create applications without having to memorize syntax or be proficient in a

programming language.

2. Most users also wanted to see only the things of major concern to them. For

example, the interviewees who had used Android studio before complained

about how complex the interface was and the difficulty in locating some

important tabs. As such they opted for a platform with minimal user interface

design where only the most useful tabs are displayed.

3. Users also wanted a platform where they did not have to install the software

for each of their operating systems. If they had three different computers all

running different operating systems, they did not want the situation where they

had to install the application on all three of them. Hence most of the

interviewees opted for a platform independent system.

Summary and charts of responses

Question: Do you have any experience with Android programming?

Responses Number Percentage

Yes 13 59.09%

No 9 40.91%

46

Chart showing respondents with Android programming experience and those

without.

Question: Overall, how satisfied or dissatisfied are you with tools for creating Android

applications?

Responses Number Percentage

Very satisfied 1 7.69%

Somewhat satisfied 7 53.85%

Neither satisfied nor

dissatisfied

1 7.69%

Somewhat dissatisfied 4 30.77%

Very dissatisfied 0 0%

47

Diagram showing Android Studio satisfaction level.

Question: How would you rate the quality of Android Studio substitutes?

Responses Number Percentage

Very high quality 1 7.69%

High quality 4 30.77%

Neither high nor low quality 7 53.85%

Low quality 1 7.69%

Very low quality 0 0%

48

Diagram showing rating of Android Studio substitutes.

Question: When you’re considering integrated development environments (IDEs), what are

the top two things you generally consider?

Responses Number Percentage

Intuitive design 8 61.54%

Code completion 8 61.54%

Multiple language support 7 53.84%

Ease of use 9 69.23%

Lightweight 5 38.46%

Other 1 7.69%

49

B. Class Diagram

 Figure showing class diagram for five classes of the code generator.

