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Abstract 
 

Road navigation applications such as Google Maps and Apple Maps provide routing 

information to their continuously increasing number of users, enabling them to get from one 

destination to another. These applications provide information such as routes and traffic 

conditions which influence the time taken to travel by the user of the information. However, 

these navigation services are lacking in providing road surface quality information. Road 

surface quality information of a route not only influences the time taken to travel the route, but 

also provide salient information on the comfort of travel for the passenger and the effect the 

terrain will have on the vehicle. 

This work builds on previous work by further developing and characterizing a Logistic 

Regression (LR) algorithm for classifying road surface quality using accelerometer data 

sourced from mobile devices in moving vehicles along four different types of roads: very good, 

good, bad, and very bad roads. 
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Chapter 1: Introduction 
 

1.1 Background 

Road travel is the most popular mode of transportation, accounting for approximately 80% 

of passenger-kilometres, traveled on the vast network of roads all over the world [17]. Roads 

enable the secure transport of people, goods, and ideas, affecting quality and equity in 

products and service distribution and, ultimately, human outcomes [6].  

In vehicular transport, the feeling of travelling over a smooth paved road is different from 

that of a bumpy dirt road. A road passenger’s concern as they travel includes the comfort 

they feel in the vehicle, aside from arriving at their destination. The decision to travel on a 

road or not is limited if there is no alternative mode of transportation. The comfort of 

travelling on the road is influenced by the road surface quality, making up the travel 

experience of the passenger. Road surface quality is also a concern for government officials 

in road construction and maintenance for prolonging the service life of roads for commuters 

and their vehicles. Road surface quality monitoring is essential for passengers in informing 

their travel and for government officials in advancing road transport development.  

Road surface quality relates to the roughness of a road. The American Society for Testing 

and Materials (ASTM) defines road roughness as “the deviation of a surface with 

characteristic dimensions that affect the vehicle dynamics and ride quality” [13]. Improving 

road surface quality must start with measurement.  Recent technology has made possible 

inexpensive sensors embedded in smartphones that can enable the collection of data for road 

surface quality monitoring. These inexpensive sensors include 3-axis accelerometers, 

gyroscopes, and GPS that can aid in collecting, processing, and classifying data for road 

surface quality monitoring.  

The use of passenger’s smartphones to collect road surface data through participatory 

sensing [5] provides a cost-effective means of aggregating a dataset for characteristics of 
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roads travelled. The dataset can then be used by classification algorithms to classify the 

dataset to identify different classes of road. Providing road conditions gives routing insight 

to passengers and drivers as an indication of their ride quality. Providing road condition 

information also aids government departments to improve the assessment for road 

construction and maintenance. 

1.2 Prior work 

This thesis builds on prior work done ar Ashesi University. Vorgbe [18], Boohene [5], Abeo 

[1], and Maxwell Aladago have explored the collection of accelerometer and GPS data from 

smartphones to classify road surface quality using Android devices. Vorgbe’s initial work 

focused on collecting accelerometer and GPS data, and then implementing and training a 

logistic regression classifier to classify the data on the road surfaces recorded into one of 

three classes: bad, fair, and good. Boohene’s work focused on building a mobile application 

to allow individuals to collect data about the quality of roads they travel on and view the 

data on a map interface. Abeo’s work explored other machine learning algorithms to 

improve the classification results; the best resulting algorithm was of decision trees. . The 

difficulty in distinguishing between fair roads from other roads was an issue identified and 

this was key in driving subsequent work. Maxwell Aladago explored the classification 

algorithms: logistic regression, support vector machines and a multilayer perceptron using 

a newly curated dataset to classify road surfaces into one of four classes: very bad, bad, 

good, and very good Increasing the number of classes from three to four seeks to improve 

the precision of classification [2], allowing weaker significant features to strongly contribute 

to the classification in the increased classes. Prior work of linear and non-linear approaches 

has performed better on binary classification, but these approaches have been unable to 

classify well beyond two classes. 

1.3 Purpose of research 
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The purpose of this research is to characterize the behaviour of the logistic regression 

classification algorithm to understand how the classification algorithm translates into a 

realistic situation. The classification algorithm is expected to give the intended users of road 

condition information a better sense of roads and not wrong information to frustrate them. 

1.4 Problem statement 

Despite the improvement in classification results from classification algorithms in prior 

work, there has not been a study into how the classification translates into real world 

situations for use. The gap in the precision of the road condition classification still lingers. 

1.5 Research approach 

The approach of this research will use the dataset by Maxwell Aladago and a Logistic 

Regression algorithm to describe the behaviour of the classification algorithm. Logistic 

regression is used in this study because its gives unbiased, low-varianced results, and its 

better performance on linearly seperable data as the different types of roads are linearly 

seperable. This is sought to improve the precision of classification by increasing the number 

of classes from three (bad, fair and good) to four (very bad, bad, good and very good). 

1.6 Research questions 

This research seeks to answer the following research questions: 

1. What are the best set of features to extract for the algorithm? 

2. What is the effect of device orientation on the algorithm’s performance? 

3. What is the effect of vehicle type on the algorithm’s performance? 

1.7 Structure of research paper 

This thesis is structured as follows: Chapter 1 introduces the research project and provides 

background information on prior research done which this thesis furthers. Chapter 2 

discusses related work to the research on road surface quality classification. Chapter 3 

describes the methodology used in this research. Chapter 4 discloses and analyses the results 
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of this research, and Chapter 5 summarizes the study conducted, concludes the thesis paper, 

and provides recommendations. 
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Chapter 2: Related Work 
2.1 Prior work 

Much research has gone into the problem of road quality classification and its subsequent 

monitoring. These research have followed varied approaches and explored different 

vehicles, leaving much to be learnt and strategies to build on. Some of these approaches 

have measured up to the international roughness index (IRI), and other studies have 

validated these approaches. 

Vorgbe [18] using the logistic regression algorithm in his work with a held-out test was able 

to reliably distinguish between good and bad roads at a true positive rate of 92% as well as 

good and fair roads at a true positive rate of 83%. The logistic regression algorithm was, 

however, unable to reliably distinguish between bad and fair roads, fair roads from good 

and bad roads combined as well as bad roads from good and fair roads. 

Abeo [1] explored a logistic regression, decision tree, random forest, K Nearest Neighbors, 

and Support Vector Machine algorithms. The performance of the algorithms was evaluated 

using 10-fold cross-validation. The decision tree had the best accuracy for classifying a road 

as good, fair, or bad producing true positives of 97% accuracy for bad roads, 81% accuracy 

for fair roads, and 93% accuracy for good roads. The other algorithms were reliably able to 

classify data belonging to good or bad however were unable to reliably classify roads as 

fair, being more likely to classify them as good. The decision tree was proposed in place of 

Vorgbe’s algorithm for its best overall accuracy of 92% with a precision of 92% and recall 

of 90% as more likely to accurately predict a new data point to its true class. 

Maxwell Aladago presents a study seeking to develop a method to detect and classify road 

surfaces using a newly automatically was curated dataset. The classification considered four 

classes of roads: very good, good, bad, and very bad. A multinomial logistic regression 

performed for all the four road types obtained an F1-score of 0.59. A binary logistic 

regression between very good roads and very bad roads obtained an F1-score of 0.96 and 
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an accuracy of 96%. Very good and good roads versus very bad and bad roads recorded an 

f1-score of 0.87. Good roads only versus very bad roads obtained an f1-score of 0.89. 

Maxwell Aladago  developed a method that reliably distinguished between very good and 

very bad roads and good roads from very bad roads. These results are like Vorgbe’s initial 

results using a logistic regression algorithm. 

This paper seeks understand the behaviour of the logistic regression algorithm on how it 

will translate into realistic situations of use. This can help to determine a model that can best 

be applied to the road surface quality classification problem. 

2.2 Similar projects 

Neural Networks. 

Neural Networks architectures have improved approaches to object character recognition 

by varying the depth and breadth of the network. Convolutional Neural Networks (CNNs) 

make reliable and correct assumptions about the nature of images. The ImageNet 

classification with a deep convolutional neural network variant developed by Krizhevsky et 

al. [10] has been the most effective neural network at image classification. It comes as no 

surprise that deep CNNs are used in image classification tasks such as large-scale image 

recognition [16], and identifying patterns in urban environments [3]. CNNs have also been 

used in detecting roads in high-resolution aerial images [9] and deep learning on road 

satellite imagery for road quality classification [6].  

Cadamuro, Muhebwa, and Taneja [6] in their work develop a model for monitoring road 

infrastructure quality using satellite imagery and relate the quality of intercity roads to 

economic activity. CNNs and an auto-encoder network structure were trained on the satellite 

images to compare which structure performed better. All the CNNs were trained over ten 

epochs of the data, augmented by random flips vertically and horizontally to prevent 

overfitting on the data. The auto-encoder was also trained overnight on the data for 20 
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epochs and subsequently regressed with an L2 penalty to enable the network to extract 

features for any road. The results show a better performance achieved by the auto-encoder 

on the key regression metric due to its superior generalization performance on unseen data. 

The best-case results of 0.79 R2 value for the regression of a standard train-test split instance 

and 0.35 R2 value for a harder held-out regression serve a good potential to generalize, the 

importance for real-world application. 

The International Roughness Index (IRI) [14] established in 1986 has been the world metric 

for calculating the roughness of a road from a measured longitudinal road profile, yielding 

an index that classifies a road as one type or another. 

An approach that has been used for road surface quality monitoring is signal processing. 

Forslöf and Jones [11] classified roads by collecting accelerometer amplitude levels and 

vehicle speed from smartphones in a moving vehicle. Regression analysis was performed 

on the data on two options for roughness. The first option was an eIRI (estimated IRI) based 

on a peak and root mean square (RMS) vibration analysis correlated to Swedish laser 

measurements on paved roads for classification of single points and stretches of road. The 

second option was a CIRI (calculated IRI) based on the quarter-car simulation (QCS) for 

sampling where the sensitivity of the device is calibrated by the owner to their reference to 

implement the IRI. The Roadroid [11] software bundle was passed the information from the 

smartphones as a cloud-based web geographical information systems (GIS). This use of a 

smartphone is demonstrated as an efficient, scalable, and cost-effective way of classifying 

and monitoring road surfaces. 

The use of smartphones as a tool for measuring road surface quality has been tested for its 

efficiency and scalability. Yehaneh et al. [7], in their work, sought to validate the use of 

smartphones for measuring roughness along roads. By calculating an equilibrium between 

the (RMS) and the IRI from a sample of accelerometer outputs for a route with different 
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pavement conditions, they discovered a correlation that allowed for the use of the 

inexpensive, easy to implement, and widely accessible tools of smartphones as a viable tool 

for measuring road quality. They conclude that smartphones can be deployed to estimate 

pavement roughness at an adequate level of precision and accuracy. This validation has 

encouraged this approach in other studies [8,13,15]. 

2.3 Research gap 

Based on the literature reviewed, a knowledge gap is identified on the effect of orientation 

of the device at data collection and the vehicle used in data collection, on the performance 

of the classification algorithm. Also, there is a lack of clear objective distinction between 

data points to help distinguish between classes. 
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Chapter 3: Methodology 
 

3.1 Machine learning 

Machine learning is a branch of artificial intelligence where computer systems can learn 

from collected data, identify patterns in the data, and be able to make decisions with little 

or no human intervention. Machine learning uses data analysis methods to automate 

analytical model building. Machine learning algorithms are domain biased, given the 

available data to be effective at solving problems and evaluating their performance. 

This paper explores a machine learning algorithm as an approach to solve the road surface 

quality classification problem. Vorgbe and Abeo evaluated Linear Regression, Logistic 

Regression, Support Vector Machines (SVM), K Nearest Neighbor (KNN), Decision Tree 

(DT) and Random Forests (RF) algorithms for classifying road surface quality. 

The machine learning algorithm explored in this paper is the Logistic Regression 

classification algorithms to improve the four-type road classification, i.e., Very Bad, Bad, 

Good, and Very Good. 

3.2 Data Collection 

This study used the raw, cleaned, and labelled data collected by Maxwell Aladago. Three 

vehicles: a Toyota pickup truck (referred to as Pick up), a minivan (referred to as Minivan) 

and a green Hyundai Sports Utility Vehicle (SUV) (referred to as Green car) were each 

fitted with three Samsung Galaxy tablets and an Infinix Note 3 phone for collecting data. 

The tablets and a smartphone equipped with a tri-axial accelerometer and GPS sensors ran 

a custom-built Android application that recorded data from the accelerometer and GPS 

sensors of the devices. The tablets were fitted at fixed orientations, one vertically, a second 

horizontally (with the screen facing up), and the third diagonally (slanted) relative to the 

vehicle's bonnet. The phone was held by a data collector, roaming freely (free roam) during 

the data collection process. The data collector annotated the segments of road driven on with 
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a semantic label representing the quality of the road as one of the four road types.  

The data collection application was initialized to start recording when the vehicle was 

moving. The application recorded simultaneously on all four devices accelerometer and 

GPS readings at a frequency of 5Hz (i.e., five data point readings in a second). The features 

recorded by the application were: 

1. Timestamp 

2. GPS coordinates: Longitude and Latitude 

3. Speed of the vehicle in m/s 

4. The tri-axial accelerations along the X, Y and Z axes 

5. A flag of presence or absence of an anomaly at that point, e.g., a speed ramp 

6. A categorical label of the road quality by the data collector’s annotation 

The road circuit used for the data collection was within the Greater Accra and Eastern region 

of Ghana. 

3.3 Road Types 

The classification of roads for use in this study are defined below: 

1. Very good road: Paved roads which cause little to no vibrations on the 

vehicle 

2. Good road: Roads which cause minimal amounts of vibrations on the vehicle 

3. Bad road: Roads that are rough and cause large vibrations on the vehicle 

4. Very bad roads: Roads that are barely motorable and roads with large 

potholes. 

The discrepancy of overlapping road types, which leads to noisy labels was addressed by 

considering data segments, data points that can be traversed in 10 seconds as windows for 

feature extraction. 

3.4 Labelling and Cleaning 
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Every data point was associated with a road type label as recorded by the data collector. The 

tablets recorded accelerometer, and GPS data of the vehicle without labels in their fixed 

orientations. The labels for road segments, as annotated by the data collector was associated 

with all other data points via the closest timestamp. To enforce timestamp on all data points, 

time was sourced from the GSM network provider used by all the four devices, MTN. 

Cleaning after labelling removed all data points with vehicle speed values of less than 

0.001m/s before further processing. These points are characteristic of when the vehicle is 

either at a standstill or slow-moving. Additional cleaning removed data points that remained 

unlabeled. These points are indicative of the beginning of the data collection when a road 

type is not initially assigned. 

3.5 Data Distribution 

The distribution of the data points for all road types to each vehicle is shown in Table 3.1 

below. The distribution of the data points for each vehicle on all orientations including the 

free roam device is shown in Table 3.2 below. 

 Road Type (%) 

Vehicle Very 

Bad 

Bad Good Very 

Good 

Green 

car 

32 14 31 23 

Pickup 36 13 15 36 

Minivan 32 12 30 26 

 

Table 3.1: Distribution of road types across each vehicle 

Vehicle 

Type 

Orientation Road Type (%) 

  Very 

Bad 

Bad Good Very 

Good 

Green 

car 

Free roam 32 14 31 23 

Horizontal 32 15 31 23 

Slanting 31 14 31 24 

Vertical 32 14 31 24 

      

Pickup Free roam 36 12 16 36 
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Horizontal 36 13 15 37 

Slanting 36 13 15 36 

Vertical 36 13 15 36 

      

Minivan Free roam 34 13 27 26 

Horizontal 32 12 31 26 

Slanting 31 12 31 26 

Vertical 31 11 31 27 

 

Table 3.2: Distribution of road types for all orientations across each vehicle 

3.6 Feature Extraction 

The features extracted in this study were data segments of data points collected in 10 second 

windows as the vehicle moved. Each data segment consisted of 50 data points. Three sets 

of features, each from Francis Vorgbe, Anthony Abeo and Maxwell Aladago, were extracted 

on the data and considered in this study. These sets of features were to be compared to see 

which set gives the best performance of the logistic regression algorithm. A data segment is 

also referred to as a window in this study. 

Feature set 1: Vorgbe’s Features 

1. Z-Mean: the mean of all z-axial reading in a window 

2. Z-Var: the variance of the z values in a window  

3. Z-SD: the standard deviation of all z values in a window  

4. Z-HPeak: the highest z-axial value recorded in a window  

5. Z-LTrough: the lowest z-axial value recorded in each window  

6. Z-DiffMean: the mean difference between successive peaks and troughs of z-axial 

readings in a window  

7. Z-DiffVar: the variance of the difference between successive peaks and troughs of 

z-axial readings in a window  

8. Z-DiffSD: the standard deviation of the difference between successive peaks and 

troughs of z-axial readings in a window  
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9. X-Var: the variance of the x-axial values in a window 

10. X-SD: the standard deviation of all x-axial values in a window 

11. X-HPeak: the highest x-axial value recorded in a window  

12. X-LTrough: the lowest x-axial value recorded in a window  

13. Y-Var: the variance of the y-axial values in a window 

14. Y-SD: the standard deviation of all y-axial values in a window 

Feature set 2: Abeo’s Features 

1. Z-Mean: the mean of all z-axial reading in a window 

2. Z-Var: the variance of the z values in a window  

3. Z-SD: the standard deviation of all z values in a window  

4. Z-HPeak: the highest z-axial value recorded in a window  

5. Z-LTrough: the lowest z-axial value recorded in each window  

Feature set 3: Maxwell Aladago’ Features 

1. X-Peak: the highest accelerometer reading along the X-coordinate 

2. Y-Peak: the highest accelerometer reading along the Y-coordinate  

3. Z-Peak: the highest accelerometer reading along the Z-coordinate  

4. X-Var: the variance of the accelerometer readings along the X-coordinate  

5. Y-Var: the variance of the accelerometer readings along the Y-coordinate  

6. Z-Var: the variance of the accelerometer readings along the Z-coordinate  

7. X-Trough: the lowest accelerometer reading along the X-coordinate  

8. Y-Trough: the lowest accelerometer reading along the Y-coordinate  

9. Z-Trough: the lowest accelerometer reading along the Z-coordinate  

10. The highest speed recorded in the segment  

11. The lowest speed recorded in the segment  

12. The variation of the speed values within the segment 
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3.7 Accelerometer reorientation 

The tri-axial accelerometer sensor detects linear accelerations in a 3-dimensional frame of 

ax, ay, az by measuring the inertial forces in the longitudinal direction along the x-axis, the 

transverse direction along the y-axis and the z-axis which is perpendicular to the xy-plane 

directions [2]. In a real-world scenario, the orientation of a mobile device in a vehicle can 

vary. To resolve the orientation of the tri-axial directions of the data collecting device and 

the vehicle,  the accelerometer data can be reoriented through Euler Angles as used in [2]. 

This reorientation transforms the accelerometer axial orientation to match the orientation of 

the vehicle [4]. 

A vehicle in a stationary position will have only the acceleration of gravity recorded along 

the z-axis. 

ax = 0 m / s 2;   

ay = 0 m / s 2; 

az = 9.81 m / s 2 = 1g (1) 

Given the XYZ sequence, a rotation around the x-axis by an angle α (roll angle), and one 

around the y-axis by β (pitch angle) is done. Where  

α = tan-1(ay, / az,) in the range [-π: π] ;  

β = tan-1( -ax, /( (ay,)
2 + (az,)

2) ) in the range [-π/2; π/2]   (2) 

The reoriented accelerometer values are estimated using equations 3, 4, and 5 where c and 

s represent cosine and sine respectively of the angles. 

axreor = cβ ax' + sβ sα ay' +cα sβ az’;          (3) 

ayreor = cα ay' −sα az’;          (4) 

azreor = − sβ ax' +cβ sα ay' +cβ cα az'         (5) 

The reorientation is done to compare performance of the classification algorithm between 

the data points in their primarily collected orientations and their reoriented orientations. 
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3.8 Classification Algorithm 

The Logistic Regression algorithm used was implemented using Scikit-learn [3]. Logistic 

Regression is a linear classification algorithm that utilizes a sigmoid function to quell the 

value generated by the classification algorithm into a value in the range 0 to 1[1]. The output 

value represents the probability of the input data belonging to a class. Thus, given two 

classes A and B, the output for the of the Logistic Regression algorithm will be a probability 

of a test data point belonging to A, and the compliment of the probability is the probability 

of the test data belonging to class B. 

The implementation of Scikit-learn Logistic Regression algorithm used in this study used 

the Limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm (LBFGS) solver, the 

one-vs.-rest approach, and L2 regularization to minimize the following optimization cost 

function: 

minw,c ||w||1 C ∑ 𝑙𝑜𝑔𝑛
𝑖=1 (exp(-yi(XT iw + c)) + 1) 

Through trials, best parameters for implementing the Logistic Regression algorithm in 

Scikit-Learn were as follows: 

penalty = l2, C = 0.1, max_itera = 1e6, 

class_weight = balanced, multi_class = ovr and 

solver = ‘lbfgs’ 

3.9 Classification Scenarios 

The performance of the classification algorithm was tested using two binary scenarios and 

a multiclass classification scenario. 

Binary classification: 

I. Very Good (VG) vs. Very Bad (VB): Only data windows labelled as very good roads 

and very bad roads were considered for the binary classification. 

II. Very Good & Good (VGG) vs. Very Bad & Bad (VBB): Data windows labelled as 

very good were combined with windows labelled as good for one class and data 
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windows labelled as very bad were combined with windows labelled as bad for the 

second class in the binary classification. 

Multiclass classification: 

I. Very Bad (VG) vs. Bad (B) vs. Good (G) vs. Very Good (VG): Data windows 

labelled for each road type was considered as a separate class in multiclass 

classification. 

3.10 Experiments 

Experiments were grouped to answer each research question in this study, with each 

experiment done by the classification scenarios. The experiments to answer each question 

are outlined below. 

I. To determine what set of features works best for the algorithm, each fixed orientation 

along each vehicle was used to train and test the classification algorithm for the 

classification scenarios varying each set of features. 

II. To determine the effect of device orientation on algorithm performance, the best 

performing set of features from I above and the green car were considered for the 

classification scenarios varying data by each orientation. Data by each orientation 

was used to train the classification algorithm and tested on the same orientation and 

every other orientation.  

Also, two datasets, one of primary orientations and a second of reoriented data points 

from the green car were split to train and test on respectively for comparison to see 

the change in performance of the algorithm when data points are oriented to match 

the orientation of the car. 

III. To determine the effect of vehicle type on the algorithm performance, the best 

performing set of features from I above and data for the slanting orientation by each 

vehicle were considered for the classification scenarios varying the vehicle type. 
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Data collected in the slanting orientation for each vehicle was used to train the 

classification algorithm and tested on the same slanting orientation of the same 

vehicle and every other vehicle’s data for the slanting orientation. 

IV. To determine the accuracy of the algorithm on all the dataset, the best set of features 

from I are used to train and test primary oriented and reoriented data points. To 

further gain an objective distinction between data points, the probability of test data 

being predicted to their ground truth label and their predicted label was visualized 

for analysis. 
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Chapter 4: Results 
 

This section shows the results obtained from conducting the four groups of experiments 

described in the methodologyand the findings thereof. It describes each experiment 

conducted with the logistic regression algorithm, a table of the results of the experiment and 

narrative explanations of the results. It goes on to analyze and attempt to explain findings 

of the group of experiments. 

4.1 Group I Experiment Results 

Experiments in this group trained and tested for each of the three vehicles, for each of the 

four orientations, each of the three sets of features in the binary classification scenario of 

Very Good (VG) vs. Very Bad (VB) and Very Good & Good (VGG) vs. Very Bad & Bad (VBB) 

and multiclass classification of Very Bad (VG) vs. Bad (B) vs. Good (G) vs. Very Good (VG). The 

set of features that gave the most occurrences of the best performance is adjudicated as the 

best set of features.  

Green car – Free roam orientation 

 

Green car - Free roam orientation 

Vorgbe 

 Binary - VG vs. VB 

Accuracy 95.5%  
F1-score 95.4%  

 Confusion matrix 

 Predicted class 

True class VB VG 

VB 52.2% 1.5% 

VG 3.0% 43.3% 

   
Abeo 

 Binary - VG vs. VB 

Accuracy 89.6%  
F1-score 89.4%  

 Confusion matrix 

 Predicted class 

True class VB VG 
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VB 50.0% 3.7% 

VG 6.7% 39.6% 

   
Maxwell Aladago 

 Binary - VG vs. VB 

Accuracy 94.0%  
F1-score 94.0%  

 Confusion matrix 

 Predicted class 

True class VB VG 

VB 50.0% 3.7% 

VG 2.2% 44.0% 

Number of test data = 134 

Table 4.1: Test results for all feature sets on Green car - Free roam orientation data in 

Very Good vs. Very Bad classification 

1. In binary VG v VB, Francis’ features were best forming by a slight margin with 

the LR algorithm, in terms of accuracy (95.5%) and f1-score (95.4%), followed 

by Maxwell Aladago features (accuracy = 94%, f1-score = 94%) then Anthony’s 

features (accuracy = 89.6%, f1-score = 89.4%). Further analysis of the confusion 

matrices shows that Francis’ features enabled the LR algorithm better to classify 

VB data points than VG data points. In contrast, Maxwell Aladago’s features 

enabled the algorithm better classify VG data points than VB data points. 

 

Green car - Free roam orientation 

Vorgbe 

 

Binary - VGG vs. 

VBB 

Accuracy 84.6%  
F1-score 84.5%  

 Confusion matrix 

 Predicted class 

True class VBB VGG 

VBB 39.6% 5.8% 

VGG 9.6% 45.0% 
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Abeo 

 

Binary - VGG vs. 

VBB 

Accuracy 81.3%  
F1-score 81.2%  

 Confusion matrix 

 Predicted class 

True class VBB VGG 

VBB 37.9% 7.5% 

VGG 11.3% 43.3% 

   
Maxwell Aladago’s 

 

Binary - VGG vs. 

VBB 

Accuracy 84.6%  
F1-score 84.5%  

 Confusion matrix 

 Predicted class 

True class VBB VGG 

VBB 37.9% 7.5% 

VGG 7.9% 46.7% 

Number of test data = 240 

Table 4.2: Test results for all feature sets on Green car - Free roam orientation data in 

Very Good and Good vs. Very Bad and Bad classification 

2. In binary VGG vs. VBB, both Francis’ and Maxwell Aladago’s features achieved 

the same level of accuracy (84.6%), and f1-score (84.5%) and Anthony’s features 

were achieving the lower performance (accuracy = 81.3%, f1-score = 81.2%). An 

analysis of the confusion matrices shows Francis’ features better at classifying 

VBB data points, and Maxwell Aladago’s features better at classifying VGG data 

points. 

 

Green car - Free roam orientation 

Vorgbe   

 Multiclass   
Accuracy 57.9%    
F1-score 53.6%    
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 Confusion matrix   

 Predicted class 

True 

class VB B G VG 

VB 26.3% 2.9% 0.8% 0.0% 

B 6.3% 4.2% 5.0% 0.0% 

G 4.2% 5.0% 12.9% 8.8% 

VG 0.0% 2.5% 6.7% 14.6% 

     
Abeo   

 Multiclass   
Accuracy 52.1%    
F1-score 47.4%    

 

Confusion 

matrix    

 Predicted class 

True 

class VB B G VG 

VB 23.3% 3.8% 2.5% 0.4% 

B 7.9% 2.5% 4.6% 0.4% 

G 5.0% 4.2% 12.5% 9.2% 

VG 0.4% 4.6% 5.0% 13.8% 

     
Maxwell Aladago’s   

 Multiclass    
Accuracy 55.0%    
F1-score 50.1%    

 

Confusion 

matrix    

 Predicted class 

True 

class VB B G VG 

VB 23.3% 5.0% 1.3% 0.4% 

B 7.1% 2.9% 4.6% 0.8% 

G 3.8% 3.8% 11.3% 12.1% 

VG 0.0% 3.3% 2.9% 17.5% 

Number of test data = 240 

Table 4.3: Test results for all feature sets on Green car - Free roam orientation data in 

multiclass classification 

3. In multiclass classification, Francis’ features achieved the best performance 

(accuracy = 57.9%, f1-score = 53.6%) among the three sets of features with the 

LR algorithm. Maxwell Aladago’s features had better performance (accuracy = 
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55%, f1-score = 50.1%) followed by Anthony’s features performance (accuracy = 

52.1%, f1-score = 47.4%). The confusion matrix gives additional insight on 

Francis’ features being better suited at classifying VB and B roads, whereas 

Maxwell Aladago’s features better suited at classifying G and VG roads. It is also 

worth adding that Francis’s features did not misclassify any VG road as either VB 

or B. 

Green car – Vertical orientation 

 

Green car - Vertical orientation 

Vorgbe 

 Binary - VG vs. VB 

Accuracy 91.3%  
F1-score 91.2%  

 Confusion matrix 

 Predicted class 

True class VB VG 

VB 49.3% 4.3% 

VG 4.3% 42.0% 

   
Abeo 

 Binary - VG vs. VB 

Accuracy 74.6%  
F1-score 74.4%  

 Confusion matrix 

 Predicted class 

True class VB VG 

VB 42.0% 11.6% 

VG 13.8% 32.6% 

   
Maxwell Aladago’s 

 Binary - VG vs. VB 

Accuracy 96.4%  
F1-score 96.4%  

 Confusion matrix 

 Predicted class 

True class VB VG 

VB 51.4% 2.2% 

VG 1.4% 44.9% 

Number of test data = 138 
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Table 4.4: Test results for all feature sets on Green car - Vertical orientation data in Very 

Good vs. Very Bad classification 

4. In binary VG v VB, Maxwell Aladago’s features were best performing with 

accuracy and f1-score of 96.4%. Francis’ features had the better performance with 

an accuracy of 91.3% and f1-score of 91.2%. Anthony’s features followed with 

the lowest performance of accuracy 74.6% and f1-score of 74.4%. 

 

Green car - Vertical orientation 

Vorgbe 

 

Binary - VGG vs. 

VBB 

Accuracy 86.2%  
F1-score 86.1%  

 Confusion matrix 

 Predicted class 

True class VBB VGG 

VBB 40.5% 6.1% 

VGG 7.7% 45.7% 

   
Abeo 

 

Binary - VGG vs. 

VBB 

Accuracy 68.8%  
F1-score 68.8%  

 Confusion matrix 

 Predicted class 

True class VBB VGG 

VBB 34.4% 12.1% 

VGG 19.0% 34.4% 

   
Maxwell Aladago’s 

 

Binary - VGG vs. 

VBB 

Accuracy 88.7%  
F1-score 88.7%  

 Confusion matrix 

 Predicted class 

True class VBB VGG 

VBB 40.9% 5.7% 
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VGG 5.7% 47.8% 

Number of test data = 247 

Table 4.5: Test results for all feature sets on Green car – Vertical orientation data in Very 

Good and Good vs. Very Bad and Bad classification 

5. In binary VGG v VBB, Maxwell Aladago’s features were best performing with an 

accuracy and f1-score of 88.7%. Francis’ features gave a slightly lower 

performance of accuracy 86.2% and f1-score of 86.1%. Anthony’s features gave 

the lowest performance with accuracy and f1-score of 68.8%. 

 

Green car - Vertical orientation 

Vorgbe   

 Multiclass   
Accuracy 63.6%    
F1-score 57.4%    

 Confusion matrix   

 Predicted class 

True 

class VB B G VG 

VB 30.0% 2.0% 2.0% 0.0% 

B 5.7% 4.0% 2.4% 0.4% 

G 3.2% 4.5% 11.7% 9.7% 

VG 0.8% 2.4% 3.2% 17.8% 

     
Abeo   

 Multiclass   
Accuracy 43.3%    
F1-score 36.1%    

 

Confusion 

matrix    

 Predicted class 

True 

class VB B G VG 

VB 25.1% 4.5% 3.2% 1.2% 

B 5.7% 1.6% 4.0% 1.2% 

G 8.1% 5.3% 11.3% 4.5% 

VG 4.9% 4.5% 9.7% 5.3% 

     
Maxwell Aladago’s   

 Multiclass    
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Accuracy 59.5%    
F1-score 53.3%    

 

Confusion 

matrix    

 Predicted class 

True 

class VB B G VG 

VB 27.5% 4.0% 0.8% 1.6% 

B 5.7% 3.2% 3.2% 0.4% 

G 1.2% 3.6% 11.3% 13.0% 

VG 0.0% 0.8% 6.1% 17.4% 

Number of test data = 247 

Table 4.6: Test results for all feature sets on Green car - Vertical orientation data in 

multiclass classification 

6. In multiclass classification, Francis’ features produced the best performance 

(accuracy = 63.6%, f1-score = 57.4%) followed by Maxwell Aladago’s features 

(accuracy = 59.5%, f1-score = 53.3%) and then Anthony’s features with the 

poorest performance (accuracy = 43.3%, f1-score = 36.1%). 

Green car – Horizontal orientation 

 

Green car - Horizontal orientation 

Vorgbe 

 Binary - VG vs. VB 

Accuracy 91.2%  
F1-score 90.9%  

 Confusion matrix 

 Predicted class 

True class VB VG 

VB 53.7% 3.7% 

VG 5.1% 37.5% 

   
Abeo 

 Binary - VG vs. VB 

Accuracy 91.2%  
F1-score 91.0%  

 Confusion matrix 

 Predicted class 

True class VB VG 
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VB 52.2% 5.1% 

VG 3.7% 39.0% 

   
Maxwell Aladago’s 

 Binary - VG vs. VB 

Accuracy 97.8%  
F1-score 97.8%  

 Confusion matrix 

 Predicted class 

True class VB VG 

VB 55.9% 1.5% 

VG 0.7% 41.9% 

Number of test data = 136 

Table 4.7: Test results for all feature sets on Green car - Horizontal orientation data in 

Very Good vs. Very Bad classification 

7. In binary VG v VB, Maxwell Aladago’s features were best performing with 

performance and f1-score of 97.8%, Francis’ and Anthony’s features both 

achieved 91.2% accuracy and f1-score of 91%. 

 

Green car - Horizontal orientation 

Vorgbe 

 

Binary - VGG vs. 

VBB 

Accuracy 82.6%  
F1-score 82.4%  

 Confusion matrix 

 Predicted class 

True class VBB VGG 

VBB 36.4% 9.3% 

VGG 8.1% 46.2% 

   
Abeo 

 

Binary - VGG vs. 

VBB 

Accuracy 81.4%  
F1-score 81.2%  

 Confusion matrix 

 Predicted class 

True class VBB VGG 



27 

 

VBB 35.2% 10.5% 

VGG 8.1% 46.2% 

   
Maxwell Aladago’s 

 

Binary - VGG vs. 

VBB 

Accuracy 91.9%  
F1-score 91.8%  

 Confusion matrix 

 Predicted class 

True class VBB VGG 

VBB 41.3% 4.5% 

VGG 3.6% 50.6% 

Number of test data = 247 

Table 4.8: Test results for all feature sets on Green car – Horizontal orientation data in 

Very Good and Good vs. Very Bad and Bad classification 

8. In binary VGG vs. VBB, Maxwell Aladago’s features produced the best 

performance with accuracy 91.9% and f1-score of 91.8%. Francis’ features were 

better performing with accuracy of 82.6% and f1-score 82.4%. Anthony’s features 

were least performing with accuracy of 81.4% and f1-score of 81.2%. 

 

Green car - Horizontal orientation 

Vorgbe   

 Multiclass   
Accuracy 54.7%    
F1-score 48.2%    

 Confusion matrix   

 Predicted class 

True 

class VB B G VG 

VB 25.1% 3.2% 2.0% 2.4% 

B 6.1% 2.0% 4.5% 0.4% 

G 3.6% 3.6% 12.1% 10.9% 

VG 0.4% 0.8% 7.3% 15.4% 

     
Abeo   

 Multiclass   
Accuracy 54.3%    
F1-score 49.1%    
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Confusion 

matrix    

 Predicted class 

True 

class VB B G VG 

VB 25.5% 3.2% 3.2% 0.8% 

B 5.7% 3.2% 1.6% 2.4% 

G 4.0% 3.6% 11.3% 11.3% 

VG 0.8% 0.8% 8.1% 14.2% 

     
Maxwell Aladago’s   

 Multiclass    
Accuracy 62.3%    
F1-score 55.9%    

 

Confusion 

matrix    

 Predicted class 

True 

class VB B G VG 

VB 29.1% 2.4% 0.8% 0.4% 

B 5.7% 3.2% 4.0% 0.0% 

G 0.0% 5.3% 12.6% 12.6% 

VG 0.0% 0.4% 6.1% 17.4% 

Number of test data = 247 

Table 4.9: Test results for all feature sets on Green car - Horizontal orientation data in 

multiclass classification 

9. In multiclass classification, Maxwell Aladago’s features produced the best 

performance of 62.3% accuracy and 55.9% f1-score. Francis’ features produced 

better results with the performance of 54.7% accuracy and 48.2% f1-score. 

Anthony’s features produced the lowest performance of 54.3% accuracy and 

49.1% f1-score. 

Green car – Slanting orientation 

Green car - Slanting orientation 

Vorgbe 

 Binary - VG vs. VB 

Accuracy 87.0%  
F1-score 87.0%  

 Confusion matrix 

 Predicted class 
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True class VB VG 

VB 46.3% 7.4% 

VG 5.9% 41.9% 

   
Abeo 

 Binary - VG vs. VB 

Accuracy 83.3%  
F1-score 83.2%  

 Confusion matrix 

 Predicted class 

True class VB VG 

VB 46.3% 7.4% 

VG 9.6% 38.2% 

   
Maxwell Aladago’s 

 Binary - VG vs. VB 

Accuracy 95.0%  
F1-score 95.0%  

 Confusion matrix 

 Predicted class 

True class VB VG 

VB 49.3% 4.4% 

VG 0.7% 47.1% 

Number of test data = 138 

Table 4.10: Test results for all feature sets on Green car - Slanting orientation data in Very 

Good vs. Very Bad classification 

10. In binary VG vs. VB, Maxwell Aladago’s features produced the best performance 

with accuracy and f1-score of 95%. Francis’ features produced the next best 

performance with accuracy and f1-score of 87%. Anthony’s features produced the 

lowest performance with accuracy and f1-score of 83%. 

 

Green car - Slanting orientation 

Vorgbe 

 

Binary - VGG vs. 

VBB 

Accuracy 81.5%  
F1-score 81.1%  

 Confusion matrix 

 Predicted class 
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True class VBB VGG 

VBB 33.6% 8.5% 

VGG 10.1% 48.2% 

   
Abeo 

 

Binary - VGG vs. 

VBB 

Accuracy 75.0%  
F1-score 75.0%  

 Confusion matrix 

 Predicted class 

True class VBB VGG 

VBB 35.6% 6.5% 

VGG 18.6% 39.7% 

   
Maxwell Aladago’s 

 

Binary - VGG vs. 

VBB 

Accuracy 88.7%  
F1-score 88.3%  

 Confusion matrix 

 Predicted class 

True class VBB VGG 

VBB 35.6% 6.5% 

VGG 4.9% 53.4% 

Number of test data = 248 

Table 4.11: Test results for all feature sets on Green car – Slanting orientation data in Very 

Good and Good vs. Very Bad and Bad classification 

11. In binary VGG vs. VBB, Maxwell Aladago’s features produced the best 

performance of accuracy and f1-score of 88%. Francis’s features produced the 

next best performance with an accuracy of 82% and f1-score of 81.1%. The lowest 

performance was from Anthony’s features, which had an accuracy and f1-score of 

75%. 

 

Green car - Slanting orientation 

Vorgbe   

 Multiclass   
Accuracy 56.0%    
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F1-score 51.2%    

 Confusion matrix   

 Predicted class 

True 

class VB B G VG 

VB 23.9% 2.0% 1.6% 2.4% 

B 4.9% 3.2% 3.2% 0.8% 

G 3.6% 4.0% 15.0% 10.5% 

VG 1.2% 4.9% 4.9% 14.2% 

     
Abeo   

 Multiclass   
Accuracy 48.8%    
F1-score 41.2%    

 

Confusion 

matrix    

 Predicted class 

True 

class VB B G VG 

VB 25.1% 3.6% 1.2% 0.0% 

B 5.7% 2.8% 2.0% 1.6% 

G 6.9% 4.5% 17.0% 4.9% 

VG 6.1% 4.9% 10.1% 4.0% 

     
Maxwell Aladago’s   

 Multiclass    
Accuracy 62.1%    
F1-score 55.9%    

 

Confusion 

matrix    

 Predicted class 

True 

class VB B G VG 

VB 25.5% 1.6% 0.4% 2.4% 

B 6.1% 2.8% 2.0% 1.2% 

G 2.8% 3.2% 14.6% 12.6% 

VG 0.4% 0.4% 4.9% 19.4% 

Number of test data = 248 

Table 4.12: Test results for all feature sets on Green car - Slanting orientation data in 

multiclass classification 

12. In multiclass classification, Maxwell Aladago’s features produced the best 

performance with an accuracy of 62.1% and f1-score of 55.9%. Francis’ features 

were the next best performing with an accuracy of 56% and f1-score of 51.2%. 
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Anthony’s features had the lowest performance with an accuracy of 48.8% and f1-

score of 41.2%. 

Pickup – Free roam orientation 

 

Pickup – Free roam orientation 

Vorgbe 

 Binary - VG vs. VB 

Accuracy 90.7%  
F1-score 90.7%  

 Confusion matrix 

 Predicted class 

True class VB VG 

VB 44.8% 2.6% 

VG 6.7% 45.9% 

   
Abeo 

 Binary - VG vs. VB 

Accuracy 90.2%  
F1-score 90.2%  

 Confusion matrix 

 Predicted class 

True class VB VG 

VB 44.8% 2.6% 

VG 7.2% 45.4% 

   
Maxwell Aladago’s 

 Binary - VG vs. VB 

Accuracy 89.7%  
F1-score 89.7%  

 Confusion matrix 

 Predicted class 

True class VB VG 

VB 44.3% 3.1% 

VG 7.2% 45.4% 

Number of test data = 194 

Table 4.13: Test results for all feature sets on Pickup – Free roam orientation data in Very 

Good vs. Very Bad classification 

13. In binary VG vs. VB, Francis’ features were best performing with accuracy and 

f1-score of 90.7%. Anthony’s features were the next best performing with 
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accuracy and f1-score of 90.2%. Maxwell Aladago’s features produced the lowest 

performance with accuracy and f1-score of 89.7%. 

 

Pickup – Free roam orientation 

Vorgbe 

 

Binary - VGG vs. 

VBB 

Accuracy 83.7%  
F1-score 83.7%  

 Confusion matrix 

 Predicted class 

True class VBB VGG 

VBB 42.8% 8.3% 

VGG 8.0% 40.9% 

   
Abeo 

 

Binary - VGG vs. 

VBB 

Accuracy 83.0%  
F1-score 83.0%  

 Confusion matrix 

 Predicted class 

True class VBB VGG 

VBB 42.4% 8.7% 

VGG 8.3% 40.5% 

   
Maxwell Aladago’s 

 

Binary - VGG vs. 

VBB 

Accuracy 86.7%  
F1-score 86.7%  

 Confusion matrix 

 Predicted class 

True class VBB VGG 

VBB 45.1% 6.1% 

VGG 7.2% 41.7% 

Number of test data = 264 

Table 4.14: Test results for all feature sets on Pickup – Free roam orientation data in Very 

Good and Good vs. Very Bad and Bad classification 
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14. In binary VGG vs. VBB, Maxwell Aladago’s features produced the best 

performance with accuracy and f1-score of 86.7%. Francis’ features were the next 

best performing features with accuracy and f1-score of 83.7%. Anthony’s features 

produced the lowest performance with accuracy and f1-score of 83%. 

 

Pickup – Free roam orientation 

Vorgbe   

 Multiclass   
Accuracy 67.4%    
F1-score 56.2%    

 Confusion matrix   

 Predicted class 

True 

class VB B G VG 

VB 31.8% 4.2% 0.4% 1.9% 

B 3.0% 6.1% 1.9% 1.9% 

G 1.9% 4.5% 3.0% 4.5% 

VG 1.9% 3.4% 3.0% 26.5% 

     
Abeo   

 Multiclass   
Accuracy 64.4%    
F1-score 52.3%    

 

Confusion 

matrix    

 Predicted class 

True 

class VB B G VG 

VB 33.0% 2.7% 1.5% 1.1% 

B 4.5% 3.4% 2.3% 2.7% 

G 1.9% 3.4% 3.8% 4.9% 

VG 2.7% 2.3% 5.7% 24.2% 

     
Maxwell Aladago’s   

 Multiclass    
Accuracy 66.7%    
F1-score 53.7%    

 

Confusion 

matrix    

 Predicted class 

True 

class VB B G VG 
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VB 31.8% 3.4% 0.8% 2.3% 

B 6.8% 3.8% 1.1% 1.1% 

G 1.5% 1.9% 3.0% 7.6% 

VG 2.7% 1.1% 3.0% 28.0% 

Number of test data = 264 

Table 4.15: Test results for all feature sets on Pickup – Free roam orientation data in 

multiclass classification 

15. In multiclass classification, Francis’s features were best performing with an 

accuracy of 67.4% and f1-score of 56.2%. Maxwell Aladago’s features were next 

best performing with accuracy of 66.7% and f1-score 53.7%. Anthony’s features 

were the least performing with accuracy of 64.4% and f1-score of 52.3%. 

Pickup – Vertical orientation 

 

Pickup – Vertical orientation 

Vorgbe 

 Binary - VG vs. VB 

Accuracy 92.0%  
F1-score 92.0%  

 Confusion matrix 

 Predicted class 

True class VB VG 

VB 49.8% 2.5% 

VG 5.5% 42.3% 

   
Abeo 

 Binary - VG vs. VB 

Accuracy 87.1%  
F1-score 87.0%  

 Confusion matrix 

 Predicted class 

True class VB VG 

VB 47.8% 4.5% 

VG 8.5% 39.3% 

   
Maxwell Aladago’s 

 Binary - VG vs. VB 

Accuracy 92.0%  
F1-score 92.0%  
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 Confusion matrix 

 Predicted class 

True class VB VG 

VB 48.3% 4.0% 

VG 4.0% 43.8% 

Number of test data = 201 

Table 4.16: Test results for all feature sets on Pickup – Vertical orientation data in Very 

Good vs. Very Bad classification 

16. In binary VG vs. VB, Maxwell and Francis’ features produced equal performance 

of accuracy and f1-score of 92%. Francis’ features had a better classification for 

VB road segments whereas Maxwell Aladago’s features had a better classification 

for VG road segments. Anthony’s features gave the lowest performance of 87% 

for accuracy and f1-score. 

 

Pickup – Vertical orientation 

Vorgbe 

 

Binary - VGG vs. 

VBB 

Accuracy 86.8%  
F1-score 86.8%  

 Confusion matrix 

 Predicted class 

True class VBB VGG 

VBB 46.5% 5.5% 

VGG 7.7% 40.3% 

   
Abeo 

 

Binary - VGG vs. 

VBB 

Accuracy 76.2%  
F1-score 76.1%  

 Confusion matrix 

 Predicted class 

True class VBB VGG 

VBB 40.7% 11.4% 

VGG 12.5% 35.5% 
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Maxwell Aladago’s 

 

Binary - VGG vs. 

VBB 

Accuracy 89.7%  
F1-score 89.7%  

 Confusion matrix 

 Predicted class 

True class VBB VGG 

VBB 48.4% 3.7% 

VGG 6.6% 41.4% 

Number of test data = 273 

Table 4.17: Test results for all feature sets on Pickup – Vertical orientation data in Very 

Good and Good vs. Very Bad and Bad classification 

17. In binary VGG vs. VBB Maxwell Aladago’s features gave the best performance 

with accuracy and f1-score of 89.7%, followed by Francis’ features with accuracy 

and f1-score of 86.8% and trailed by Anthony’s features with accuracy and f1-

score of 76%. 

 

Pickup – Vertical orientation 

Vorgbe   

 Multiclass   
Accuracy 62.3%    
F1-score 48.8%    

 Confusion matrix   

 Predicted class 

True 

class VB B G VG 

VB 31.9% 6.2% 1.1% 0.7% 

B 5.5% 3.3% 2.2% 1.1% 

G 2.2% 4.4% 2.2% 4.8% 

VG 2.2% 4.0% 3.3% 24.9% 

     
Abeo   

 Multiclass   
Accuracy 56.4%    
F1-score 43.9%    

 

Confusion 

matrix    

 Predicted class 
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True 

class VB B G VG 

VB 32.2% 4.0% 2.2% 1.5% 

B 5.5% 2.6% 1.8% 2.2% 

G 4.4% 1.5% 2.6% 5.1% 

VG 5.1% 5.1% 5.1% 19.0% 

     
Maxwell Aladago’s   

 Multiclass    
Accuracy 67.4%    
F1-score 52.5%    

 

Confusion 

matrix    

 Predicted class 

True 

class VB B G VG 

VB 34.8% 2.6% 0.7% 1.8% 

B 6.6% 3.7% 1.1% 0.7% 

G 2.6% 2.2% 2.2% 6.6% 

VG 1.5% 2.6% 3.7% 26.7% 

Number of test data = 273 

Table 4.18: Test results for all feature sets on Pickup – Vertical orientation data in 

multiclass classification 

18. In multiclass classification, Maxwell Aladago’s features were best performing 

with accuracy of 67.4% and f1-score 52.5%. Followed by Francis’ features which 

gave an accuracy of 62.3% and 48.8% f1-score. Anthony’s features gave the 

lowest performance of 56.4% accuracy and f1-score of 43.9%. 

Pickup – Horizontal orientation 

 

Pickup – Horizontal orientation 

Vorgbe 

 Binary - VG vs. VB 

Accuracy 91.6%  
F1-score 91.6%  

 Confusion matrix 

 Predicted class 

True class VB VG 

VB 45.3% 1.0% 
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VG 7.4% 46.3% 

   
Abeo 

 Binary - VG vs. VB 

Accuracy 86.7%  
F1-score 86.7%  

 Confusion matrix 

 Predicted class 

True class VB VG 

VB 43.8% 2.5% 

VG 10.8% 42.9% 

   
Maxwell Aladago’s 

 Binary - VG vs. VB 

Accuracy 94.6%  
F1-score 94.6%  

 Confusion matrix 

 Predicted class 

True class VB VG 

VB 44.3% 2.0% 

VG 3.4% 50.2% 

Number of test data = 203 

Table 4.19: Test results for all feature sets on Pickup – Horizontal orientation data in Very 

Good vs. Very Bad classification 

19. In binary VG vs. VB Maxwell Aladago’s features produced the best performance 

with an accuracy and f1-xore of 94.6%. This was followed by Francis’ features 

which produced performance accuracy and f1-score of 91.6% and then by 

Anthony's features which produced an accuracy and f1-score of 86.7%. 

 

Pickup – Horizontal orientation 

Vorgbe 

 

Binary - VGG vs. 

VBB 

Accuracy 83.3%  
F1-score 83.3%  

 Confusion matrix 

 Predicted class 

True class VBB VGG 
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VBB 41.1% 6.9% 

VGG 9.8% 42.2% 

   
Abeo 

 

Binary - VGG vs. 

VBB 

Accuracy 80.0%  
F1-score 80.0%  

 Confusion matrix 

 Predicted class 

True class VBB VGG 

VBB 41.1% 6.9% 

VGG 13.1% 38.9% 

   
Maxwell Aladago’s 

 

Binary - VGG vs. 

VBB 

Accuracy 89.1%  
F1-score 89.1%  

 Confusion matrix 

 Predicted class 

True class VBB VGG 

VBB 42.2% 5.8% 

VGG 5.1% 46.9% 

Number of test data = 275 

Table 4.20: Test results for all feature sets on Pickup – Horizontal orientation data in Very 

Good and Good vs. Very Bad and Bad classification 

20. In binary VGG vs. VBB Maxwell Aladago’s features produced the best 

performance of accuracy and f1-score of 89.1%. This was followed by Francis’ 

features which produced accuracy and f1-score of 83.3% and then with Anthony's 

features which produce accuracy and f1-score of 80%. 

 

Pickup – Horizontal orientation 

Vorgbe   

 Multiclass   
Accuracy 59.3%    
F1-score 48.1%    

 Confusion matrix   
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 Predicted class 

True 

class VB B G VG 

VB 29.1% 2.5% 0.4% 2.2% 

B 6.5% 3.6% 0.7% 2.9% 

G 2.9% 2.9% 2.9% 8.0% 

VG 4.0% 3.6% 4.0% 23.6% 

     
Abeo   

 Multiclass   
Accuracy 55.3%    
F1-score 42.1%    

 

Confusion 

matrix    

 Predicted class 

True 

class VB B G VG 

VB 28.7% 4.4% 0.0% 1.1% 

B 7.6% 2.2% 0.4% 3.6% 

G 3.6% 2.5% 1.8% 8.7% 

VG 5.8% 5.1% 1.8% 22.5% 

     
Maxwell Aladago’s   

 Multiclass    
Accuracy 68.7%    
F1-score 57.6%    

 

Confusion 

matrix    

 Predicted class 

True 

class VB B G VG 

VB 29.8% 1.8% 0.7% 1.8% 

B 6.9% 4.0% 1.8% 1.1% 

G 1.5% 1.1% 4.7% 9.5% 

VG 1.1% 1.5% 2.5% 30.2% 

Number of test data = 275 

Table 4.21: Test results for all feature sets on Pickup – Horizontal orientation data in 

multiclass classification 

21. In multiclass classification, Maxwell Aladago’s features were best performing 

with accuracy of 68.7% and f1-score of 57.6%. This was followed by Francis’ 

features which gave an accuracy of 59.3% and f1-score of 48.1%. Anthony's 

features gave the lowest performance of 55.3% accuracy and f-score of 42.1%. 
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Pickup – Slanting orientation 

 

Pickup – Slanting orientation 

Vorgbe 

 Binary - VG vs. VB 

Accuracy 90.1%  
F1-score 90.1%  

 Confusion matrix 

 Predicted class 

True class VB VG 

VB 45.8% 1.5% 

VG 8.4% 44.3% 

   
Abeo 

 Binary - VG vs. VB 

Accuracy 89.2%  
F1-score 89.2%  

 Confusion matrix 

 Predicted class 

True class VB VG 

VB 45.3% 2.0% 

VG 8.9% 43.8% 

   
Maxwell Aladago’s 

 Binary - VG vs. VB 

Accuracy 95.1%  
F1-score 95.1%  

 Confusion matrix 

 Predicted class 

True class VB VG 

VB 46.3% 1.0% 

VG 3.9% 48.8% 

Number of test data = 203 

Table 4.22: Test results for all feature sets on Pickup – Slanting orientation data in Very 

Good vs. Very Bad classification 

22. In binary VG vs. VB, Maxwell Aladago’s features produced the best results with 

accuracy and f1-score of 95.1%. Followed by Francis’ features with the next best 

results of accuracy and f1-score of 90.1%. Anthony’s features gave the lowest 

performance with accuracy and f1-score of 89.2%. 
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Pickup – Slanting orientation 

Vorgbe 

 

Binary - VGG vs. 

VBB 

Accuracy 82.5%  
F1-score 82.5%  

 Confusion matrix 

 Predicted class 

True class VBB VGG 

VBB 38.9% 10.5% 

VGG 6.9% 43.6% 

   
Abeo 

 

Binary - VGG vs. 

VBB 

Accuracy 82.9%  
F1-score 82.9%  

 Confusion matrix 

 Predicted class 

True class VBB VGG 

VBB 40.0% 9.5% 

VGG 7.6% 42.9% 

   
Maxwell Aladago’s 

 

Binary - VGG vs. 

VBB 

Accuracy 89.8%  
F1-score 89.8%  

 Confusion matrix 

 Predicted class 

True class VBB VGG 

VBB 44.7% 4.7% 

VGG 5.5% 45.1% 

Number of test data = 275 

Table 4.23: Test results for all feature sets on Pickup – Slanting orientation data in Very 

Good and Good vs. Very Bad and Bad classification 

23. In binary VGG vs. VBB, Maxwell Aladago’s features produced the best results 

with accuracy and f1-score of 89.8%. Anthony’s features produced the nest best 
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results with accuracy and f1-score of 82.9% whereas Francis’ features produced 

the lowest results with accuracy and f1-score of 82.5%. 

 

Pickup – Slanting orientation 

Vorgbe   

 Multiclass   
Accuracy 58.2%    
F1-score 47.0%    

 Confusion matrix   

 Predicted class 

True 

class VB B G VG 

VB 26.9% 4.0% 1.5% 2.2% 

B 8.0% 2.5% 0.7% 3.6% 

G 1.5% 2.5% 3.6% 8.0% 

VG 4.4% 1.5% 4.0% 25.1% 

     
Abeo   

 Multiclass   
Accuracy 60.0%    
F1-score 42.9%    

 

Confusion 

matrix    

 Predicted class 

True 

class VB B G VG 

VB 29.8% 1.8% 0.4% 2.5% 

B 8.0% 1.8% 0.7% 4.4% 

G 1.8% 1.1% 1.1% 11.6% 

VG 5.1% 1.1% 1.5% 27.3% 

     
Maxwell Aladago’s   

 Multiclass    
Accuracy 67.6%    
F1-score 56.4%    

 

Confusion 

matrix    

 Predicted class 

True 

class VB B G VG 

VB 29.8% 3.3% 0.7% 0.7% 

B 7.3% 5.5% 1.5% 0.7% 

G 0.4% 2.2% 3.3% 9.8% 

VG 2.2% 2.2% 1.5% 29.1% 
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Number of test data = 275 

Table 4.24: Test results for all feature sets on Pickup – Slanting orientation data in 

multiclass classification 

24. In multiclass classification, Maxwell Aladago’s features produced the best results 

with accuracy of 67.6% and f1-score of 56.4%. Anthony’s features produced the 

next best results with accuracy of 60% and f1-score of 42.9%. Francis’ featured 

produced the lowest performance with accuracy of 58.2% and f1-score of 47%. 

White van – Free roam orientation 

 

White van – Free roam orientation 

Vorgbe 

 Binary - VG vs. VB 

Accuracy 95.8%  
F1-score 95.8%  

 Confusion matrix 

 Predicted class 

True class VB VG 

VB 51.9% 1.4% 

VG 2.8% 44.0% 

   
Abeo 

 Binary - VG vs. VB 

Accuracy 90.3%  
F1-score 90.2%  

 Confusion matrix 

 Predicted class 

True class VB VG 

VB 49.5% 3.7% 

VG 6.0% 40.7% 

   
Maxwell Aladago’s 

 Binary - VG vs. VB 

Accuracy 94.4%  
F1-score 94.4%  

 Confusion matrix 

 Predicted class 

True class VB VG 

VB 50.0% 3.2% 
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VG 2.3% 44.4% 

Number of test data = 216 

Table 4.25: Test results for all feature sets on White van – Free roam orientation data in 

Very Good vs. Very Bad classification 

25. In binary VG vs. VB, Maxwell Aladago’s features produced the best results with 

accuracy and f1-score of 94.4%. Followed by Francis’ features with the next best 

results of accuracy and f1-score of 95.8%. Anthony’s features gave the lowest 

performance with accuracy of 90.3% and f1-score of 90.2%. 

 

White van – Free roam orientation 

Vorgbe 

 

Binary - VGG vs. 

VBB 

Accuracy 84.3%  
F1-score 84.2%  

 Confusion matrix 

 Predicted class 

True class VBB VGG 

VBB 37.9% 5.4% 

VGG 10.3% 46.3% 

   
Abeo 

 

Binary - VGG vs. 

VBB 

Accuracy 79.9%  
F1-score 79.8%  

 Confusion matrix 

 Predicted class 

True class VBB VGG 

VBB 36.0% 7.3% 

VGG 12.7% 43.9% 

   
Maxwell Aladago’s 

 

Binary - VGG vs. 

VBB 

Accuracy 83.2%  
F1-score 83.1%  

 Confusion matrix 
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 Predicted class 

True class VBB VGG 

VBB 37.1% 6.2% 

VGG 10.6% 46.1% 

Number of test data = 369 

Table 4.26: Test results for all feature sets on White van – Free roam orientation data in 

Very Good and Good vs. Very Bad and Bad classification 

26. In binary VGG vs. VBB, Francis’ features produced the best results with accuracy 

of 84.3% and f1-score of 84.2%. Followed by Maxwell Aladago’s features with 

the next best results of accuracy of 83.2% and f1-score of 83.1%. Anthony’s 

features gave the lowest performance with accuracy of 79.9% and f1-score of 

79.8%. 

 

White van – Free roam orientation 

Vorgbe   

 Multiclass   
Accuracy 60.2%    
F1-score 55.8%    

 Confusion matrix   

 Predicted class 

True 

class VB B G VG 

VB 25.2% 5.7% 2.2% 0.5% 

B 2.4% 4.1% 2.7% 0.5% 

G 3.3% 6.0% 15.4% 7.9% 

VG 0.8% 1.9% 6.0% 15.4% 

     
Abeo   

 Multiclass   
Accuracy 55.0%    
F1-score 49.9%    

 

Confusion 

matrix    

 Predicted class 

True 

class VB B G VG 

VB 26.3% 5.1% 1.1% 1.1% 

B 2.7% 3.5% 2.7% 0.8% 
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G 4.1% 6.5% 11.1% 10.8% 

VG 1.9% 2.4% 5.7% 14.1% 

     
Maxwell Aladago’s   

 Multiclass    
Accuracy 59.9%    
F1-score 55.5%    

 

Confusion 

matrix    

 Predicted class 

True 

class VB B G VG 

VB 24.4% 7.0% 1.6% 0.5% 

B 3.0% 4.1% 2.2% 0.5% 

G 3.3% 6.2% 13.6% 9.5% 

VG 0.3% 2.7% 3.3% 17.9% 

Number of test data = 369 

Table 4.27: Test results for all feature sets on White van – Free roam orientation data in 

multiclass classification 

27. In multiclass classification, Francis’ features produced the best results with 

accuracy of 60.2% and f1-score of 55.8%. Followed by Maxwell Aladago’s 

features with the next best results of accuracy of 59.9% and f1-score of 55.5%. 

Anthony’s features gave the lowest performance with accuracy of 55% and f1-

score of 49.9%. 

White van – Vertical orientation  

White van – Vertical orientation 

Vorgbe 

 Binary - VG vs. VB 

Accuracy 87.4%  
F1-score 87.4%  

 Confusion matrix 

 Predicted class 

True class VB VG 

VB 43.4% 5.6% 

VG 7.0% 44.1% 

   
Abeo 

 Binary - VG vs. VB 
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Accuracy 70.6%  
F1-score 70.6%  

 Confusion matrix 

 Predicted class 

True class VB VG 

VB 34.3% 14.7% 

VG 14.7% 36.4% 

   
Maxwell Aladago’s 

 Binary - VG vs. VB 

Accuracy 94.4%  
F1-score 94.4%  

 Confusion matrix 

 Predicted class 

True class VB VG 

VB 44.8% 4.2% 

VG 1.4% 49.7% 

Number of test data = 143 

Table 4.28: Test results for all feature sets on White van – Vertical orientation data in 

Very Good vs. Very Bad classification 

28. In binary VG vs. VB, Maxwell Aladago’s features produced the best results with 

accuracy and f1-score of 94.4%. Followed by Francis’ features with the next best 

results of accuracy of and f1-score of 87.4%. Anthony’s features gave the lowest 

performance with accuracy and f1-score of 70.6%. 

 

White van – Vertical orientation 

Vorgbe 

 

Binary - VGG vs. 

VBB 

Accuracy 83.3%  

F1-score 83.1%  

 Confusion matrix 

 Predicted class 

True class VBB VGG 

VBB 35.4% 6.9% 

VGG 9.8% 48.0% 

   
Abeo 
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Binary - VGG vs. 

VBB 

Accuracy 70.3%  
F1-score 70.2%  

 Confusion matrix 

 Predicted class 

True class VBB VGG 

VBB 32.1% 10.2% 

VGG 19.5% 38.2% 

   
Maxwell Aladago’s 

 

Binary - VGG vs. 

VBB 

Accuracy 90.2%  
F1-score 89.9%  

 Confusion matrix 

 Predicted class 

True class VBB VGG 

VBB 35.4% 6.9% 

VGG 2.8% 54.9% 

Number of test data = 246 

Table 4.29: Test results for all feature sets on White van – Vertical orientation data in 

Very Good and Good vs. Very Bad and Bad classification 

29. In binary VGG vs. VBB, Maxwell Aladago’s features produced the best results 

with accuracy of 90.2% and f1-score of 89.9%. Followed by Francis’ features with 

the next best results of accuracy of 83.3% and f1-score of 83.1%. Anthony’s 

features gave the lowest performance with accuracy of 70.3% and f1-score of 

70.2%. 

 

White van – Vertical orientation 

Vorgbe   

 Multiclass   
Accuracy 62.2%    
F1-score 57.8%    

 Confusion matrix   

 Predicted class 

True 

class VB B G VG 
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VB 24.8% 2.4% 1.6% 0.4% 

B 4.9% 4.1% 2.4% 1.6% 

G 4.5% 2.0% 15.9% 8.1% 

VG 3.3% 0.4% 6.1% 17.5% 

     
Abeo   

 Multiclass   
Accuracy 52.8%    
F1-score 48.0%    

 

Confusion 

matrix    

 Predicted class 

True 

class VB B G VG 

VB 22.4% 2.8% 0.8% 3.3% 

B 4.9% 2.8% 2.0% 3.3% 

G 7.7% 3.3% 13.0% 6.5% 

VG 6.9% 2.0% 3.7% 14.6% 

     
Maxwell Aladago’s   

 Multiclass    
Accuracy 62.2%    
F1-score 58.4%    

 

Confusion 

matrix    

 Predicted class 

True 

class VB B G VG 

VB 21.5% 5.3% 0.4% 2.0% 

B 4.5% 4.5% 3.3% 0.8% 

G 1.2% 2.8% 16.3% 10.2% 

VG 0.0% 0.8% 6.5% 19.9% 

Number of test data = 246 

Table 4.30: Test results for all feature sets on White van – Vertical orientation data in 

multiclass classification 

30. In multiclass classification, Maxwell Aladago’s features produced the best results 

with accuracy of 62.2% and f1-score of 58.4%. Followed by Maxwell Aladago’s 

features with the next best results of accuracy of 62.2% and f1-score of 57.8%. 

Anthony’s features gave the lowest performance with accuracy of 52.8% and f1-

score of 48%. 
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White van – Horizontal orientation 

 

White van – Horizontal orientation 

Vorgbe 

 Binary - VG vs. VB 

Accuracy 86.7%  
F1-score 86.3%  

 Confusion matrix 

 Predicted class 

True class VB VG 

VB 52.4% 7.7% 

VG 5.6% 34.3% 

   
Abeo 

 Binary - VG vs. VB 

Accuracy 85.7%  
F1-score 85.2%  

 Confusion matrix 

 Predicted class 

True class VB VG 

VB 52.1% 8.0% 

VG 6.3% 33.6% 

   
Maxwell Aladago’s 

 Binary - VG vs. VB 

Accuracy 92.7%  
F1-score 92.4%  

 Confusion matrix 

 Predicted class 

True class VB VG 

VB 54.9% 5.2% 

VG 2.1% 37.8% 

Number of test data = 286 

Table 4.31: Test results for all feature sets on White van – Horizontal orientation data in 

Very Good vs. Very Bad classification 

31. In binary VG vs. VB, Maxwell Aladago’s features produced the best results with 

accuracy of 92.7% and f1-score of 92.4%. Followed by Francis’ features with the 

next best results of accuracy of 86.7% and f1-score of 86.3%. Anthony’s features 

gave the lowest performance with accuracy of 85.7% and f1-score of 85.2%. 
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White van – Horizontal orientation 

Vorgbe 

 

Binary - VGG vs. 

VBB 

Accuracy 80.3%  
F1-score 80.3%  

 Confusion matrix 

 Predicted class 

True class VBB VGG 

VBB 39.4% 7.8% 

VGG 11.9% 40.9% 

   
Abeo 

 

Binary - VGG vs. 

VBB 

Accuracy 78.2%  
F1-score 78.2%  

 Confusion matrix 

 Predicted class 

True class VBB VGG 

VBB 40.7% 6.5% 

VGG 15.3% 37.5% 

   
Maxwell Aladago’s 

 

Binary - VGG vs. 

VBB 

Accuracy 90.1%  
F1-score 90.1%  

 Confusion matrix 

 Predicted class 

True class VBB VGG 

VBB 42.8% 4.4% 

VGG 5.5% 47.4% 

Number of test data = 477 

Table 4.32: Test results for all feature sets on White van – Horizontal orientation data in 

Very Good and Good vs. Very Bad and Bad classification 

32. In binary VGG vs. VBB, Maxwell Aladago’s features produced the best results 

with accuracy and f1-score of 90.1%. Followed by Francis’ features with the next 

best results of accuracy and f1-score of 80.3% Anthony’s features gave the lowest 

performance with accuracy and f1-score of 78.2%. 
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White van – Horizontal orientation 

Vorgbe   

 Multiclass   
Accuracy 53.2%    
F1-score 45.7%    

 Confusion matrix   

 Predicted class 

True 

class VB B G VG 

VB 28.1% 3.6% 0.6% 2.9% 

B 6.1% 1.9% 1.0% 2.9% 

G 4.4% 3.8% 10.9% 9.4% 

VG 2.3% 2.9% 6.7% 12.4% 

     
Abeo   

 Multiclass   
Accuracy 51.2%    
F1-score 43.7%    

 

Confusion 

matrix    

 Predicted class 

True 

class VB B G VG 

VB 28.9% 4.0% 1.3% 1.0% 

B 6.9% 2.1% 1.5% 1.5% 

G 4.4% 5.9% 9.6% 8.6% 

VG 2.9% 3.8% 7.1% 10.5% 

     
Maxwell Aladago’s   

 Multiclass    
Accuracy 65.8%    
F1-score 57.7%    

 

Confusion 

matrix    

 Predicted class 

True 

class VB B G VG 

VB 31.2% 1.9% 0.6% 1.5% 

B 6.7% 2.7% 1.9% 0.6% 

G 1.3% 5.0% 12.8% 9.4% 

VG 0.6% 1.0% 3.6% 19.1% 

Number of test data = 477 

Table 4.33: Test results for all feature sets on White van – Horizontal orientation data in 
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multiclass classification 

33. In multiclass classification, Maxwell Aladago’s features produced the best results 

with accuracy of 65.8% and f1-score of 57.7%. Followed by Francis’ features with 

the next best results of accuracy of 53.2% and f1-score of 45.7%. Anthony’s 

features gave the lowest performance with accuracy of 51.2% and f1-score of 

43.7%. 

White van – Slanting orientation 

 

White van – Slanting orientation 

Vorgbe 

 Binary - VG vs. VB 

Accuracy 93.0%  
F1-score 93.0%  

 Confusion matrix 

 Predicted class 

True class VB VG 

VB 45.1% 3.5% 

VG 3.5% 47.9% 

   
Abeo 

 Binary - VG vs. VB 

Accuracy 90.8%  
F1-score 90.8%  

 Confusion matrix 

 Predicted class 

True class VB VG 

VB 43.7% 4.9% 

VG 4.2% 47.2% 

   
Maxwell Aladago’s 

 Binary - VG vs. VB 

Accuracy 94.4%  
F1-score 94.3%  

 Confusion matrix 

 Predicted class 

True class VB VG 

VB 43.7% 4.9% 

VG 0.7% 50.7% 

Number of test data = 142 
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Table 4.34: Test results for all feature sets on White van – Slanting orientation data in 

Very Good vs. Very Bad classification 

34. In binary VG vs. VB, Maxwell Aladago’s features produced the best results with 

accuracy of 94.4% and f1-score of 94.3%. Followed by Francis’ features with the 

next best results of accuracy and f1-score of 93%. Anthony’s features gave the 

lowest performance with accuracy and f1-score of 90.8%. 

 

White van – Slanting orientation 

Vorgbe 

 

Binary - VGG vs. 

VBB 

Accuracy 82.0%  
F1-score 81.5%  

 Confusion matrix 

 Predicted class 

True class VBB VGG 

VBB 32.7% 6.9% 

VGG 11.0% 49.4% 

   
Abeo 

 

Binary - VGG vs. 

VBB 

Accuracy 80.8%  
F1-score 80.3%  

 Confusion matrix 

 Predicted class 

True class VBB VGG 

VBB 32.7% 6.9% 

VGG 12.2% 48.2% 

   
Maxwell Aladago’s 

 

Binary - VGG vs. 

VBB 

Accuracy 91.0%  
F1-score 90.5%  

 Confusion matrix 

 Predicted class 

True class VBB VGG 

VBB 33.9% 5.7% 
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VGG 3.3% 57.1% 

Number of test data = 245 

Table 4.35: Test results for all feature sets on White van – Slanting orientation data in 

Very Good and Good vs. Very Bad and Bad classification 

35. In binary VGG vs. VBB, Maxwell Aladago’s features produced the best results 

with accuracy of 91% and f1-score of 90.5%. Followed by Francis’ features with 

the next best results of accuracy of 82% and f1-score of 81.5%. Anthony’s features 

gave the lowest performance with accuracy of 80.8% and f1-score of 80.3%. 

White van – Slanting orientation 

Vorgbe   

 Multiclass   
Accuracy 60.4%    
F1-score 55.9%    

 Confusion matrix   

 Predicted class 

True 

class VB B G VG 

VB 22.9% 2.9% 0.8% 2.4% 

B 3.7% 3.7% 2.4% 0.8% 

G 4.1% 5.7% 15.1% 8.6% 

VG 0.4% 1.6% 6.1% 18.8% 

     
Abeo   

 Multiclass   
Accuracy 55.5%    
F1-score 49.6%    

 

Confusion 

matrix    

 Predicted class 

True 

class VB B G VG 

VB 25.3% 2.0% 1.2% 0.4% 

B 4.5% 2.4% 2.0% 1.6% 

G 4.1% 5.7% 16.3% 7.3% 

VG 1.2% 5.3% 9.0% 11.4% 

     
Maxwell Aladago’s   

 Multiclass    
Accuracy 61.6%    
F1-score 55.5%    
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Confusion 

matrix    

 Predicted class 

True 

class VB B G VG 

VB 24.1% 2.9% 0.8% 1.2% 

B 2.9% 2.4% 3.3% 2.0% 

G 1.2% 4.1% 13.9% 14.3% 

VG 0.0% 0.4% 5.3% 21.2% 

Number of test data = 245 

Table 4.36: Test results for all feature sets on White van – Slanting orientation data in 

multiclass classification 

36. In multiclass classification, Maxwell Aladago’s features produced the best results 

with accuracy of 61.6% and f1-score of 55.5%. Followed by Francis’ features with 

the next best results of accuracy of 60.4% and f1-score of 55.9%. Anthony’s 

features gave the lowest performance with accuracy of 55.5% and f1-score of 

49.6%. 

Findings 

1. Maxwell Aladago’s features maintain the highest level of performance among most 

of the orientations across the different vehicles in the exception of the free roam 

orientation where Francis’ features perform better. However, the better performance 

of Francis’ features is by a small margin of no more than 2% 

2. The free roam orientation is the closest to reality orientation a user will have their 

device in for collecting data. This raises the question on whether a prescribed 

orientation must be given for the collection of data. 

3. From the results observed, given a relative fixed point, Maxwell Aladago’s features 

outperform the other set of features. 
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4. From the results obtained along primary oriented data, Maxwell Aladago’s features 

transfer best across all the orientations along all three vehicles. Making Maxwell 

Aladago’s features the best set of features to use. 

5. This enables the conclusion of Maxwell Aladago’s features as the best set of features 

to use. 

4.2 Group II Experiment Results 

In experiments for this group, for the green car, for each of the four orientations, data from 

each each of the orientations was trained and tested on a hold out dataset from the same 

orientation and dataset of everyother orientation. the binary classification scenario of Very 

Good (VG) vs. Very Bad (VB) and Very Good & Good (VGG) vs. Very Bad & Bad (VBB) and 

multiclass classification of Very Bad (VG) vs. Bad (B) vs. Good (G) vs. Very Good (VG). Also, 

the dataset of all primary orientations combined and the dataset of reoriented data points all 

from the green car were each trained and tested on a hold-out dataset. The changes in the 

performance of the algorithm was assessed to understand the effect of orientation on the 

algorithm’s performance.  

Free roam 

Free roam vs. Free roam 

 Binary classification - VG vs. VB  

Accuracy 94%    
F1-score 94%    

 

Confusion 

matrix   

 Predicted class 

True 

class VB VG   
VB 50.0% 3.7%   
VG 2.2% 44.0%        
 Binary classification - VGG vs. VBB  

Accuracy 85%    
F1-score 84%    

 

Confusion 

matrix   

 Predicted class 
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True 

class VBB VGG   
VBB 37.9% 7.5%   
VGG 7.9% 46.7%        
 Multiclass classification  

Accuracy 55%    
F1-score 50%    

 

Confusion 

matrix   

 Predicted class 

True 

class VB B G VG 

VB 23.3% 5.0% 1.3% 0.4% 

B 7.1% 2.9% 4.6% 0.8% 

G 3.8% 3.8% 11.3% 12.1% 

VG 0.0% 3.3% 2.9% 17.5% 

Number of test data: VG vs. VB = 134; VBB vs. VGG and Multiclass = 240 

Table 3.37: Test results for training on Free roam orientation data and testing on Free 

roam orientation data 

1. In the Free roam vs. Free roam for the LR algorithm, binary VG vs. VB achieved an 

accuracy and f1-score of 94%. The binary VGG vs. VBB achieved accuracy of 85% 

and f1-score of 84% and the multiclass classification achieved accuracy of 55% and 

f1-score of 50%.  

 

Free roam vs. Vertical 

 Binary classification - VG vs. VB  

Accuracy 88%    
F1-score 87%    

 

Confusion 

matrix   

 Predicted class 

True 

class VB VG   
VB 58.2% 0.7%   
VG 11.1% 29.9%        
 Binary classification - VGG vs. VBB  

Accuracy 73%    
F1-score 72%    

 Confusion   
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matrix 

 Predicted class 

True 

class VBB VGG   
VBB 46.2% 1.2%   
VGG 26.1% 26.5%        
 Multiclass classification  

Accuracy 45%    
F1-score 37%    

 

Confusion 

matrix   

 Predicted class 

True 

class VB B G VG 

VB 30.8% 1.4% 0.0% 0.2% 

B 12.5% 2.0% 0.2% 0.3% 

G 8.2% 14.9% 2.1% 4.8% 

VG 1.3% 9.0% 1.9% 10.3% 

Number of test data: VG vs. VB = 541; VBB vs. VGG and Multiclass = 985 

Table 4.38: Test results for training on all Free roam orientation data and testing on 

Vertical orientation data 

2. In the Free roam vs. Vertical for the LR algorithm, the binary VG vs. VB achieved 

an accuracy of 88% and f1-score of 87%. The binary VGG vs. VBB achieved 

accuracy of 73% and f1-score of 72% and the multiclass classification achieved 

accuracy of 45% and f1-score of 37%. 

 

Free roam vs. Horizontal 

 Binary classification - VG vs. VB  

Accuracy 94%    
F1-score 94%    

 

Confusion 

matrix   

 Predicted class 

True 

class VB VG   
VB 55.6% 2.2%   
VG 3.6% 38.6%        
 Binary classification - VGG vs. VBB  

Accuracy 86%    
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F1-score 86%    

 

Confusion 

matrix   

 Predicted class 

True 

class VBB VGG   
VBB 42.0% 4.6%   
VGG 9.8% 43.7%        
 Multiclass classification  

Accuracy 59%    
F1-score 54%    

 

Confusion 

matrix   

 Predicted class 

True 

class VB B G VG 

VB 29.0% 1.7% 1.1% 0.4% 

B 7.2% 4.0% 2.5% 0.5% 

G 2.0% 8.7% 11.1% 8.1% 

VG 0.5% 3.0% 5.3% 14.8% 

Number of test data: VG vs. VB = 552; VBB vs. VGG and Multiclass = 985 

Table 4.39: Test results for training on all Free roam orientation data and testing on 

Horizontal orientation data 

3. In the Free roam vs. Horizontal for the LR algorithm, the binary VG vs. VB achieved 

an accuracy of 94% and f1-score of 94%. The binary VGG vs. VBB achieved 

accuracy of 86% and f1-score of 86% and the multiclass classification achieved 

accuracy of 59% and f1-score of 54%. 

 

Free roam vs. Slanting 

 Binary classification - VG vs. VB  

Accuracy 93%    
F1-score 93%    

 

Confusion 

matrix   

 Predicted class 

True class VB VG   
VB 57.5% 0.7%   
VG 6.4% 35.5%        
 Binary classification - VGG vs. VBB  
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Accuracy 81%    
F1-score 81%    

 

Confusion 

matrix   

 Predicted class 

True class VBB VGG   
VBB 44.9% 1.7%   
VGG 16.9% 36.4%        
 Multiclass classification  

Accuracy 51%    
F1-score 44%    

 

Confusion 

matrix   

 Predicted class 

True class VB B G VG 

VB 30.3% 1.5% 0.0% 0.6% 

B 10.8% 2.5% 0.6% 0.3% 

G 5.4% 11.8% 6.2% 6.7% 

VG 1.1% 5.8% 4.1% 12.2% 

Number of test data: VG vs. VB = 550; VBB vs. VGG and Multiclass = 988 

Table 4.40: Test results for training on all Free roam orientation data and testing on 

Slanting orientation data 

4. In the Free roam vs. Slanting for the LR algorithm, the binary VG vs. VB achieved 

an accuracy of 93% and f1-score of 93%. The binary VGG vs. VBB achieved 

accuracy of 81% and f1-score of 81% and the multiclass classification achieved 

accuracy of 51% and f1-score of 44%. 

 

Vertical 

 

Vertical vs. Vertical 

 Binary classification - VG vs. VB  

Accuracy 98%    
F1-score 98%    

 

Confusion 

matrix   

 Predicted class 

True class VB VG   
VB 55.9% 1.5%   
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VG 0.7% 41.9%        
 Binary classification - VGG vs. VBB  

Accuracy 92%    
F1-score 92%    

 

Confusion 

matrix   

 Predicted class 

True class VBB VGG   
VBB 41.3% 4.5%   
VGG 3.6% 50.6%        
 Multiclass classification  

Accuracy 62%    
F1-score 56%    

 

Confusion 

matrix   

 Predicted class 

True class VB B G VG 

VB 29.1% 2.4% 0.8% 0.4% 

B 5.7% 3.2% 4.0% 0.0% 

G 0.0% 5.3% 12.6% 12.6% 

VG 0.0% 0.4% 6.1% 17.4% 

Number of test data: VG vs. VB = 136; VBB vs. VGG and Multiclass = 247 

Table 4.41: Test results for training on Vertical orientation data and testing on Vertical 

orientation data 

5. In the Vertical vs. Vertical for the LR algorithm, binary VG vs. VB achieved an 

accuracy and f1-score of 98%. The binary VGG vs. VBB achieved accuracy of 92% 

and f1-score of 92% and the multiclass classification achieved accuracy of 63% and 

f1-score of 56%.  

Vertical vs. Free roam 

 Binary classification - VG vs. VB  

Accuracy 84%    
F1-score 84%    

 

Confusion 

matrix   

 Predicted class 

True 

class VB VG   
VB 42.6% 16.1%   
VG 0.2% 41.1%        
 Binary classification - VGG vs. VBB  



65 

 

Accuracy 80%    
F1-score 79%    

 

Confusion 

matrix   

 Predicted class 

True 

class VBB VGG   
VBB 27.9% 19.0%   
VGG 1.0% 52.0%        
 Multiclass classification  

Accuracy 48%    
F1-score 41%    

 

Confusion 

matrix   

 Predicted class 

True 

class VB B G VG 

VB 19.2% 4.0% 5.5% 4.0% 

B 2.6% 1.7% 5.9% 4.1% 

G 0.4% 0.6% 4.8% 24.2% 

VG 0.1% 0.0% 0.7% 22.2% 

Number of test data: VG vs. VB = 533; VBB vs. VGG and Multiclass = 957 

Table 4.42: Test results for training on all Vertical orientation data and testing on Free 

roam orientation data 

6. In the Vertical vs. Free roam for the LR algorithm, the binary VG vs. VB achieved 

an accuracy of 84% and f1-score of 84%. The binary VGG vs. VBB achieved 

accuracy of 80% and f1-score of 79% and the multiclass classification achieved 

accuracy of 48% and f1-score of 41%. 

 

Vertical vs. Horizontal 

 Binary classification - VG vs. VB  

Accuracy 93%    
F1-score 93%    

 

Confusion 

matrix   

 Predicted class 

True 

class VB VG   
VB 82.6% 9.9%   
VG 0.9% 6.7%   
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 Binary classification - VGG vs. VBB  

Accuracy 86%    
F1-score 85%    

 

Confusion 

matrix   

 Predicted class 

True 

class VBB VGG   
VBB 33.3% 13.2%   
VGG 0.9% 52.6%        
 Multiclass classification  

Accuracy 53%    
F1-score 46%    

 

Confusion 

matrix   

 Predicted class 

True 

class VB B G VG 

VB 23.1% 4.1% 3.7% 1.3% 

B 2.8% 2.0% 6.8% 2.6% 

G 0.0% 0.4% 6.5% 23.1% 

VG 0.2% 0.3% 1.3% 21.7% 

Number of test data: VG vs. VB = 345; VBB vs. VGG and Multiclass = 989 

Table 4.43: Test results for training on all Vertical orientation data and testing on 

Horizontal orientation data 

7. In the Vertical vs. Horizontal for the LR algorithm, the binary VG vs. VB achieved 

an accuracy of 93% and f1-score of 93%. The binary VGG vs. VBB achieved 

accuracy of 86% and f1-score of 85% and the multiclass classification achieved 

accuracy of 53% and f1-score of 46%. 

 

Vertical vs. Slanting 

 Binary classification - VG vs. VB  

Accuracy 95%    
F1-score 95%    

 

Confusion 

matrix   

 Predicted class 

True 

class VB VG   



67 

 

VB 53.5% 4.7%   
VG 0.2% 41.6%        
 Binary classification - VGG vs. VBB  

Accuracy 89%    
F1-score 89%    

 

Confusion 

matrix   

 Predicted class 

True 

class VBB VGG   
VBB 37.8% 8.9%   
VGG 2.3% 51.0%        
 Multiclass classification  

Accuracy 59%    
F1-score 53%    

 

Confusion 

matrix   

 Predicted class 

True 

class VB B G VG 

VB 25.4% 3.8% 1.4% 1.7% 

B 4.9% 3.4% 4.5% 1.5% 

G 0.6% 2.1% 10.6% 16.7% 

VG 0.1% 0.1% 3.7% 19.3% 

Number of test data: VG vs. VB = 550; VBB vs. VGG and Multiclass = 988 

Table 4.44: Test results for training on all Vertical orientation data and testing on Slanting 

orientation data 

8. In the Vertical vs. Slanting for the LR algorithm, the binary VG vs. VB achieved an 

accuracy of 95% and f1-score of 95%. The binary VGG vs. VBB achieved accuracy 

of 89% and f1-score of 89% and the multiclass classification achieved accuracy of 

59% and f1-score of 53%. 

Horizontal  

 

Horizontal vs. Horizontal 

 Binary classification - VG vs. VB  

Accuracy 95%    
F1-score 95%    

 

Confusion 

matrix   
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 Predicted class 

True class VB VG   
VB 48.6% 4.3%   
VG 0.7% 46.4%        
 Binary classification - VGG vs. VBB  

Accuracy 89%    

F1-score 88%    

 

Confusion 

matrix   

 Predicted class 

True class VBB VGG   
VBB 35.5% 6.5%   
VGG 4.8% 53.2%        
 Multiclass classification  

Accuracy 62%    
F1-score 56%    

 

Confusion 

matrix   

 Predicted class 

True class VB B G VG 

VB 25.4% 1.6% 0.4% 2.4% 

B 6.0% 2.8% 2.0% 1.2% 

G 2.8% 3.2% 14.5% 12.5% 

VG 0.4% 0.4% 4.8% 19.4% 

Number of test data: VG vs. VB = 138; VBB vs. VGG and Multiclass = 248 

Table 4.45: Test results for training on Horizontal orientation data and testing on 

Horizontal orientation data 

9. In the Horizontal vs. Horizontal for the LR algorithm, binary VG vs. VB achieved 

an accuracy and f1-score of 95%. The binary VGG vs. VBB achieved accuracy of 

89% and f1-score of 88% and the multiclass classification achieved accuracy of 62% 

and f1-score of 56%.  

 

Horizontal vs. Vertical 

 Binary classification - VG vs. VB  

Accuracy 92%    
F1-score 92%    

 

Confusion 

matrix   

 Predicted class 
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True 

class VB VG   
VB 56.0% 3.0%   
VG 5.2% 35.9%        
 Binary classification - VGG vs. VBB  

Accuracy 79%    
F1-score 79%    

 

Confusion 

matrix   

 Predicted class 

True 

class VBB VGG   
VBB 44.8% 2.6%   
VGG 18.5% 34.1%        
 Multiclass classification  

Accuracy 51%    
F1-score 42%    

 

Confusion 

matrix   

 Predicted class 

True 

class VB B G VG 

VB 30.1% 0.4% 0.1% 1.8% 

B 11.6% 2.6% 0.2% 0.6% 

G 6.4% 11.0% 2.7% 9.9% 

VG 0.9% 3.5% 2.2% 15.9% 

Number of test data: VG vs. VB = 541; VBB vs. VGG and Multiclass = 985 

Table 4.46: Test results for training on all Horizontal orientation data and testing on 

Vertical orientation data 

10. In the Horizontal vs. Vertical for the LR algorithm, the binary VG vs. VB achieved 

an accuracy of 92% and f1-score of 92%. The binary VGG vs. VBB achieved 

accuracy of 79% and f1-score of 79% and the multiclass classification achieved 

accuracy of 51% and f1-score of 42%. 

 

Horizontal vs. Free roam 

 Binary classification - VG vs. VB  

Accuracy 84%    
F1-score 84%    

 Confusion   
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matrix 

 Predicted class 

True 

class VB VG   
VB 43.2% 15.6%   
VG 0.8% 40.5%        
 Binary classification - VGG vs. VBB  

Accuracy 82%    
F1-score 81%    

 

Confusion 

matrix   

 Predicted class 

True 

class VBB VGG   
VBB 32.1% 14.8%   
VGG 3.4% 49.6%        
 Multiclass classification  

Accuracy 57%    
F1-score 53%    

 

Confusion 

matrix   

 Predicted class 

True 

class VB B G VG 

VB 23.3% 0.7% 6.2% 2.5% 

B 5.1% 3.1% 5.3% 0.6% 

G 1.5% 2.3% 14.7% 11.6% 

VG 0.2% 0.5% 6.4% 15.9% 

Number of test data: VG vs. VB = 533; VBB vs. VGG and Multiclass = 957 

Table 4.47: Test results for training on all Horizontal orientation data and testing on Free 

roam orientation data 

11. In the Horizontal vs. Free roam for the LR algorithm, the binary VG vs. VB achieved 

an accuracy of 84% and f1-score of 84%. The binary VGG vs. VBB achieved 

accuracy of 82% and f1-score of 81% and the multiclass classification achieved 

accuracy of 57% and f1-score of 53%. 

 

Horizontal vs. Slanting 

 Binary classification - VG vs. VB  

Accuracy 93%    
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F1-score 93%    

 

Confusion 

matrix   

 Predicted class 

True 

class VB VG   
VB 53.1% 5.1%   
VG 1.5% 40.4%        
 Binary classification - VGG vs. VBB  

Accuracy 86%    
F1-score 86%    

 

Confusion 

matrix   

 Predicted class 

True 

class VBB VGG   
VBB 40.7% 6.0%   
VGG 8.5% 44.8%        
 Multiclass classification  

Accuracy 57%    
F1-score 50%    

 

Confusion 

matrix   

 Predicted class 

True 

class VB B G VG 

VB 28.4% 0.6% 1.4% 1.9% 

B 9.1% 2.4% 2.1% 0.6% 

G 3.1% 6.9% 9.6% 10.4% 

VG 0.2% 1.9% 4.6% 16.6% 

Number of test data: VG vs. VB = 550; VBB vs. VGG and Multiclass = 988 

Table 4.48: Test results for training on all Horizontal orientation data and testing on 

Slanting orientation data 

12. In the Horizontal vs. Slanting for the LR algorithm, the binary VG vs. VB achieved 

an accuracy of 93% and f1-score of 93%. The binary VGG vs. VBB achieved 

accuracy of 86% and f1-score of 86% and the multiclass classification achieved 

accuracy of 57% and f1-score of 50%. 

Slanting  

Slanting vs. Slanting 

 Binary classification - VG vs. VB  
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Accuracy 96%    
F1-score 96%    

 

Confusion 

matrix   

 Predicted class 

True 

class VB VG   
VB 51.4% 2.2%   
VG 1.4% 44.9%        
 Binary classification - VGG vs. VBB  

Accuracy 89%    
F1-score 89%    

 

Confusion 

matrix   

 Predicted class 

True 

class VBB VGG   
VBB 40.9% 5.7%   
VGG 5.7% 47.8%        
 Multiclass classification  

Accuracy 60%    
F1-score 53%    

 

Confusion 

matrix   

 Predicted class 

True 

class VB B G VG 

VB 27.5% 4.0% 0.8% 1.6% 

B 5.7% 3.2% 3.2% 0.4% 

G 1.2% 3.6% 11.3% 13.0% 

VG 0.0% 0.8% 6.1% 17.4% 

Number of test data: VG vs. VB = 138; VBB vs. VGG and Multiclass = 247 

Table 4.49: Test results for training on Slanting orientation data and testing on Slanting 

orientation data 

13. In the Slanting vs. Slanting for the LR algorithm, binary VG vs. VB achieved an 

accuracy and f1-score of 96%. The binary VGG vs. VBB achieved accuracy of 89% 

and f1-score of 89% and the multiclass classification achieved accuracy of 60% and 

f1-score of 53%.  

Slanting vs. Horizontal 

 Binary classification - VG vs. VB  

Accuracy 93%    
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F1-score 93%    

 

Confusion 

matrix   

 Predicted class 

True 

class VB VG   
VB 52.4% 5.4%   
VG 1.1% 41.1%        
 Binary classification - VGG vs. VBB  

Accuracy 87%    
F1-score 87%    

 

Confusion 

matrix   

 Predicted class 

True 

class VBB VGG   
VBB 36.7% 9.8%   
VGG 3.1% 50.4%        
 Multiclass classification  

Accuracy 63%    
F1-score 57%    

 

Confusion 

matrix   

 Predicted class 

True 

class VB B G VG 

VB 26.0% 2.0% 2.2% 2.0% 

B 4.5% 3.2% 5.7% 0.9% 

G 0.5% 1.8% 16.6% 11.0% 

VG 0.1% 0.4% 5.6% 17.5% 

Number of test data: VG vs. VB = 552; VBB vs. VGG and Multiclass = 989 

Table 4.50: Test results for training on all Slanting orientation data and testing on 

Horizontal orientation data 

14. In the Slanting vs. Horizontal for the LR algorithm, the binary VG vs. VB achieved 

an accuracy of 93% and f1-score of 93%. The binary VGG vs. VBB achieved 

accuracy of 87% and f1-score of 87% and the multiclass classification achieved 

accuracy of 63% and f1-score of 57%. 

 

Slanting vs. Vertical 

 Binary classification - VG vs. VB  
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Accuracy 94%    
F1-score 94%    

 

Confusion 

matrix   

 Predicted class 

True 

class VB VG   
VB 56.2% 2.8%   
VG 3.1% 37.9%        
 Binary classification - VGG vs. VBB  

Accuracy 85%    
F1-score 85%    

 

Confusion 

matrix   

 Predicted class 

True 

class VBB VGG   
VBB 43.2% 4.2%   
VGG 10.6% 42.0%        
 Multiclass classification  

Accuracy 56%    
F1-score 49%    

 

Confusion 

matrix   

 Predicted class 

True 

class VB B G VG 

VB 28.2% 1.8% 0.5% 1.8% 

B 9.8% 2.7% 1.8% 0.6% 

G 3.6% 6.6% 10.3% 9.6% 

VG 0.3% 1.9% 5.7% 14.6% 

Number of test data: VG vs. VB = 541; VBB vs. VGG and Multiclass = 985 

Table 4.51: Test results for training on all Slanting orientation data and testing on Vertical 

orientation data 

15. In the Slanting vs. Vertical for the LR algorithm, the binary VG vs. VB achieved an 

accuracy of 94% and f1-score of 94%. The binary VGG vs. VBB achieved accuracy of 

85% and f1-score of 85% and the multiclass classification achieved accuracy of 56% 

and f1-score of 49%. 

Slanting vs. Free roam 

 Binary classification - VG vs. VB  

Accuracy 87%    
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F1-score 87%    

 

Confusion 

matrix   

 Predicted class 

True 

class VB VG   
VB 73.6% 19.3%   
VG 0.9% 6.2%        
 Binary classification - VGG vs. VBB  

Accuracy 85%    
F1-score 84%    

 

Confusion 

matrix   

 Predicted class 

True 

class VBB VGG   
VBB 34.0% 13.0%   
VGG 2.5% 50.6%        
 Multiclass classification  

Accuracy 58%    
F1-score 54%    

 

Confusion 

matrix   

 Predicted class 

True 

class VB B G VG 

VB 21.8% 5.3% 2.8% 2.7% 

B 3.3% 3.9% 6.2% 0.8% 

G 0.9% 1.8% 14.3% 13.1% 

VG 0.1% 0.1% 4.4% 18.4% 

Number of test data: VG vs. VB = 337; VBB vs. VGG and Multiclass = 957 

Table 4.52: Test results for training on all Slanting orientation data and testing on Free 

roam orientation data 

16. In the Slanting vs. Free roam for the LR algorithm, the binary VG vs. VB achieved 

an accuracy of 87% and f1-score of 87%. The binary VGG vs. VBB achieved 

accuracy of 85% and f1-score of 84% and the multiclass classification achieved 

accuracy of 58% and f1-score of 54%. 

Reoriented and Primary oriented Green car data 

Reoriented data – Green car vs. Green car  

 Binary classification - VG vs. VB  
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Accuracy 92%    
F1-score 92%    

 

Confusion 

matrix   

 Predicted class 

True 

class VB VG   
VB 50.2% 5.9%   
VG 2.4% 41.5%        
 Binary classification - VGG vs. VBB  

Accuracy 85%    
F1-score 85%    

 

Confusion 

matrix   

 Predicted class 

True 

class VBB VGG   
VBB 39.2% 9.6%   
VGG 5.7% 45.5%        
 Multiclass classification  

Accuracy 60%    
F1-score 53%    

 

Confusion 

matrix   

 Predicted class 

True 

class VB B G VG 

VB 27.7% 2.0% 1.3% 2.9% 

B 6.7% 3.3% 3.4% 1.5% 

G 1.8% 3.9% 10.4% 12.0% 

VG 0.2% 1.1% 3.6% 18.2% 

Number of test data: VG vs. VB = 544; VBB vs. VGG and Multiclass = 980 

Table 4.53: Test results for training on reoriented data and testing on reoriented data from 

the Green car 

17. Using reoriented data points, the logistic regression algorithm achieved a 

performance of 92% accuracy and 91% f-score for the VG vs. VB binary 

classification. The performance of the algorithm was 85% for accuracy and 85% for 

f1-score in the VGG vs. VBB binary classification. In the multiclass classification, 

the logistic regression algorithm achieved a performance of 59% accuracy and 53% 

f1-score. 
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Primary oriented data – Green car vs. Green 

car 

 Binary classification - VG vs. VB  

Accuracy 96%    
F1-score 96%    

 

Confusion 

matrix   

 Predicted class 

True 

class VB VG   
VB 53.7% 2.4%   
VG 1.1% 42.8%        
 Binary classification - VGG vs. VBB  

Accuracy 89%    
F1-score 89%    

 

Confusion 

matrix   

 Predicted class 

True 

class VBB VGG   
VBB 42.1% 6.6%   
VGG 4.8% 46.4%        
 Multiclass classification  

Accuracy 65%    
F1-score 59%    

 

Confusion 

matrix   

 Predicted class 

True 

class VB B G VG 

VB 29.7% 2.2% 1.2% 0.7% 

B 6.4% 4.2% 3.5% 0.8% 

G 1.4% 2.9% 13.4% 10.5% 

VG 0.4% 0.5% 4.6% 17.6% 

Number of test data: VG vs. VB = 544; VBB vs. VGG and Multiclass = 980 

Table 4.54: Test results for training on primary oriented data and testing on primary 

oriented data from the Green car 

18. Using primary oriented data points, the logistic regression algorithm achieved a 

performance of 97% accuracy and 96% f1-score for the VG vs. VB binary 

classification. The performance of the algorithm was 86% for accuracy and 86% for 

f1-score in the VGG vs. VBB binary classification. In the multiclass classification, 
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the logistic regression algorithm achieved a performance of 65% accuracy and 59% 

f1-score. 

Findings 

1. In the Free roam orientation, the LR algorithm performs best against the Free roam 

orientation itself and the Horizontal orientation. Performance reduces slightly 

against the slanting orientation and then reduces much further against the Vertical 

orientation. Holding the device in free roam orientation during data collection is a 

possible explanation to the better performance among all orientations except the 

Vertical orientation. Holding the mobile phone in the palm during data collection 

will have most likely been in a horizontal or slanted position at the time of 

annotation. This positioning in hand will have allowed for data points collected in 

the Free roam orientation to liken that of data points collected in the Free roam 

orientation. 

2. In the Vertical orientation, the LR algorithm performs best against the Vertical 

orientation itself, the Horizontal orientation and the Slanting orientation. 

Performance however reduces against the Free roam orientation. 

3. In the Horizontal orientation, the LR algorithm performs best against the Horizontal 

orientation itself, the Vertical orientation and the Slanting orientation. The 

performance of the algorithm however reduces against the Free roam orientation. 

4. In the Slanting orientation, the LR algorithm performs best against the Slanting 

orientation itself, the Horizontal orientation and the Vertical orientation. 

Performance of the algorithm however reduces against the Free roam orientation. 

5. In the Binary classifications (i.e. VG vs. VB and VGG vs. VBB) and Multiclass 

classifications, even though the performance of the algorithm reduces when a given 
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orientation is tested along some other orientation, the performance of the algorithm 

does not reduce beyond an appreciable amount on the level of performance. Each 

orientation able to generalize well along other orientations.  

6. The confusion matrix of the Multiclass classifications shows continually a difficulty 

of in distinguishing between Very Bad and Bad labelled data as well as 

distinguishing between Very Good and Good labelled data. 

7. Using the reoriented and primary oriented data points, the performance of the 

algorithm does not reduce beyond an appreciable amount when compared to the 

pairwise orientation test results. Given that the reorientation algorithm resolves the 

orientation of a data point to a fixed point, and the performance of the logistic 

regression algorithm does not reduce by a significant amount, the reorientation of 

data points is a good decision to be done on collected data. 

8. This shows that the effect of orientation on the performance of the algorithm is not 

very significant. 

4.3 Group III Experiment Results 

Experiments in this group trained and tested for each of the three vehicles, a hold-out dataset 

from the vehicle itself and dataset from each other vehicle in the binary classification 

scenario of Very Good (VG) vs. Very Bad (VB) and Very Good & Good (VGG) vs. Very Bad & 

Bad (VBB) and multiclass classification of Very Bad (VG) vs. Bad (B) vs. Good (G) vs. Very Good 

(VG). The changes in the performance of the algorithm was assessed to understand the effect 

of vehicle type on the algorithm’s performance.  

Green car 

Green car vs. Green car 

 Binary classification - VG vs. VB  

Accuracy 95%    
F1-score 95%    



80 

 

 

Confusion 

matrix   

 Predicted class 

True 

class VB VG   
VB 48.6% 4.3%   
VG 0.7% 46.4%        
 Binary classification - VGG vs. VBB  

Accuracy 89%    
F1-score 89%    

 

Confusion 

matrix   

 Predicted class 

True 

class VBB VGG   
VBB 35.5% 6.5%   
VGG 4.8% 53.2%        
 Multiclass classification  

Accuracy 62%    
F1-score 56%    

 

Confusion 

matrix   

 Predicted class 

True 

class VB B G VG 

VB 25.4% 1.6% 0.4% 2.4% 

B 6.0% 2.8% 2.0% 1.2% 

G 2.8% 3.2% 14.5% 12.5% 

VG 0.4% 0.4% 4.8% 19.4% 

Number of test data: VG vs. VB = 138; VBB vs. VGG and Multiclass = 248 

Table 4.55: Test results for training on Green car data and testing on Green car data 

1. In the Green car vs. Green car for the LR algorithm, binary VG vs. VB achieved an 

accuracy and f1-score of 95%. The binary VGG vs. VBB achieved accuracy of 89% 

and f1-score of 89% and the multiclass classification achieved accuracy of 62% and 

f1-score of 56%. 

 

Green car vs. Pickup 

 Binary classification - VG vs. VB  

Accuracy 90%    
F1-score 90%    
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Confusion 

matrix   

 Predicted class 

True 

class VB VG   
VB 42.8% 7.4%   
VG 2.6% 47.2%        
 Binary classification - VGG vs. VBB  

Accuracy 86%    
F1-score 86%    

 

Confusion 

matrix   

 Predicted class 

True 

class VBB VGG   
VBB 41.0% 8.7%   
VGG 4.9% 45.3%        
 Multiclass classification  

Accuracy 61%    
F1-score 54%    

 

Confusion 

matrix   

 Predicted class 

True 

class VB B G VG 

VB 28.6% 2.4% 0.3% 5.8% 

B 4.5% 4.7% 2.1% 1.4% 

G 0.5% 2.7% 6.6% 3.6% 

VG 0.3% 1.6% 14.0% 20.8% 

Number of test data: VG vs. VB = 811; VBB vs. VGG and Multiclass = 1099 

Table 4.56: Test results for training on Green car data and testing on Pick up data 

2. In the Green car vs. Pickup for the LR algorithm, binary VG vs. VB achieved an 

accuracy and f1-score of 90%. The binary VGG vs. VBB achieved accuracy of 86% 

and f1-score of 86% and the multiclass classification achieved accuracy of 61% and 

f1-score of 54%. 

  

Green car vs. White van 

 Binary classification - VG vs. VB  

Accuracy 93%    
F1-score 93%    
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Confusion 

matrix   

 Predicted class 

True 

class VB VG   
VB 52.8% 3.2%   
VG 3.7% 40.3%        
 Binary classification - VGG vs. VBB  

Accuracy 87%    
F1-score 87%    

 

Confusion 

matrix   

 Predicted class 

True 

class VBB VGG   
VBB 39.6% 4.9%   
VGG 7.9% 47.7%        
 Multiclass classification  

Accuracy 63%    
F1-score 56%    

 

Confusion 

matrix   

 Predicted class 

True 

class VB B G VG 

VB 29.0% 1.4% 0.4% 1.6% 

B 6.6% 2.7% 1.4% 1.3% 

G 1.8% 4.2% 15.8% 8.2% 

VG 0.4% 1.8% 8.0% 15.3% 

Number of test data: VG vs. VB = 568; VBB vs. VGG and Multiclass = 980 

Table 4.57: Test results for training on Green car data and testing on White van data 

3. In the Green car vs. White van for the LR algorithm, binary VG vs. VB achieved an 

accuracy and f1-score of 93%. The binary VGG vs. VBB achieved accuracy of 87% 

and f1-score of 87% and the multiclass classification achieved accuracy of 63% and 

f1-score of 56%.  

Pickup 

 

Pickup vs. Green car 

 Binary classification - VG vs. VB  

Accuracy 95%    
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F1-score 95%    

 

Confusion 

matrix   

 Predicted class 

True 

class VB VG   
VB 55.6% 2.2%   
VG 2.7% 39.5%        
 Binary classification - VGG vs. VBB  

Accuracy 88%    
F1-score 88%    

 

Confusion 

matrix   

 Predicted class 

True 

class VBB VGG   
VBB 41.1% 5.5%   
VGG 6.1% 47.4%        
 Multiclass classification  

Accuracy 55%    
F1-score 46%    

 

Confusion 

matrix   

 Predicted class 

True 

class VB B G VG 

VB 28.3% 2.7% 0.9% 0.3% 

B 7.0% 3.0% 2.1% 2.1% 

G 2.1% 4.7% 3.4% 19.7% 

VG 1.1% 1.2% 0.7% 20.5% 

Number of test data: VG vs. VB = 552; VBB vs. VGG and Multiclass = 989 

Table 4.58: Test results for training on Pickup data and testing on Green car data 

4. In the Pickup vs. Green car for the LR algorithm, binary VG vs. VB achieved an 

accuracy and f1-score of 95%. The binary VGG vs. VBB achieved accuracy of 88% 

and f1-score of 88% and the multiclass classification achieved accuracy of 55% and 

f1-score of 46%.  

 

Pickup vs. Pickup 

 Binary classification - VG vs. VB  

Accuracy 95%    
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F1-score 95%    

 

Confusion 

matrix   

 Predicted class 

True 

class VB VG   
VB 46.3% 1.0%   
VG 3.9% 48.8%        
 Binary classification - VGG vs. VBB  

Accuracy 90%    
F1-score 90%    

 

Confusion 

matrix   

 Predicted class 

True 

class VBB VGG   
VBB 44.7% 4.7%   
VGG 5.5% 45.1%        
 Multiclass classification  

Accuracy 68%    
F1-score 56%    

 

Confusion 

matrix   

 Predicted class 

True 

class VB B G VG 

VB 29.8% 3.3% 0.7% 0.7% 

B 7.3% 5.5% 1.5% 0.7% 

G 0.4% 2.2% 3.3% 9.8% 

VG 2.2% 2.2% 1.5% 29.1% 

Number of test data: VG vs. VB = 203; VBB vs. VGG and Multiclass = 275 

Table 4.59: Test results for training on Pickup data and testing on Pickup data 

5. In the Pickup vs. Pickup for the LR algorithm, binary VG vs. VB achieved an 

accuracy and f1-score of 95%. The binary VGG vs. VBB achieved accuracy of 90% 

and f1-score of 90% and the multiclass classification achieved accuracy of 68% and 

f1-score of 56%. 

 

Pickup vs. White van 

 Binary classification - VG vs. VB  

Accuracy 94%    
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F1-score 94%    

 

Confusion 

matrix   

 Predicted class 

True 

class VB VG   
VB 53.9% 2.1%   
VG 4.2% 39.8%        
 Binary classification - VGG vs. VBB  

Accuracy 88%    
F1-score 88%    

 

Confusion 

matrix   

 Predicted class 

True 

class VBB VGG   
VBB 40.1% 3.9%   
VGG 8.5% 47.5%        
 Multiclass classification  

Accuracy 58%    
F1-score 49%    

 

Confusion 

matrix   

 Predicted class 

True 

class VB B G VG 

VB 29.1% 2.2% 0.5% 0.6% 

B 6.7% 3.1% 1.5% 0.7% 

G 3.0% 6.3% 4.9% 15.8% 

VG 0.7% 3.1% 1.0% 20.7% 

Number of test data: VG vs. VB = 568; VBB vs. VGG and Multiclass = 971 

Table 4.60: Test results for training on Pickup data and testing on White van data 

6. In the Pickup vs. White van for the LR algorithm, binary VG vs. VB achieved an 

accuracy and f1-score of 94%. The binary VGG vs. VBB achieved accuracy of 88% 

and f1-score of 88% and the multiclass classification achieved accuracy of 58% and 

f1-score of 49%. 

 

White van 

White van vs. Green car 

 Binary classification - VG vs. VB  
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Accuracy 95%    
F1-score 95%    

 

Confusion 

matrix   

 Predicted class 

True 

class VB VG   
VB 54.2% 3.6%   
VG 1.1% 41.1%        
 Binary classification - VGG vs. VBB  

Accuracy 89%    
F1-score 89%    

 

Confusion 

matrix   

 Predicted class 

True 

class VBB VGG   
VBB 39.1% 7.4%   
VGG 3.8% 49.6%        
 Multiclass classification  

Accuracy 61%    
F1-score 58%    

 

Confusion 

matrix   

 Predicted class 

True 

class VB B G VG 

VB 25.1% 3.9% 1.2% 2.0% 

B 4.6% 5.1% 3.4% 1.2% 

G 0.7% 2.6% 12.8% 13.8% 

VG 0.1% 0.8% 4.1% 18.5% 

Number of test data: VG vs. VB = 552; VBB vs. VGG and Multiclass = 989 

Table 4.61: Test results for training on White van data and testing on Green car data 

7. In the White van vs. Green car for the LR algorithm, binary VG vs. VB achieved an 

accuracy and f1-score of 95%. The binary VGG vs. VBB achieved accuracy of 89% 

and f1-score of 88% and the multiclass classification achieved accuracy of 61% and 

f1-score of 58%.  

 

White van vs. Pickup 

 Binary classification - VG vs. VB  
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Accuracy 93%    
F1-score 93%    

 

Confusion 

matrix   

 Predicted class 

True 

class VB VG   
VB 43.9% 6.3%   
VG 0.9% 49.0%        
 Binary classification - VGG vs. VBB  

Accuracy 88%    
F1-score 88%    

 

Confusion 

matrix   

 Predicted class 

True 

class VBB VGG   
VBB 39.7% 10.1%   
VGG 1.7% 48.5%        
 Multiclass classification  

Accuracy 57%    
F1-score 51%    

 

Confusion 

matrix   

 Predicted class 

True 

class VB B G VG 

VB 24.3% 5.6% 0.8% 6.4% 

B 3.0% 4.0% 4.3% 1.5% 

G 0.3% 1.5% 6.9% 4.7% 

VG 0.1% 0.9% 14.5% 21.3% 

Number of test data: VG vs. VB = 811; VBB vs. VGG and Multiclass = 1099 

Table 4.62: Test results for training on White van data and testing on Pickup data 

8. In the White van vs. Pickup for the LR algorithm, binary VG vs. VB achieved an 

accuracy and f1-score of 93%. The binary VGG vs. VBB achieved accuracy of 88% 

and f1-score of 88% and the multiclass classification achieved accuracy of 57% and 

f1-score of 51%.  

 

White van vs. White van 

 Binary classification - VG vs. VB  
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Accuracy 94%    
F1-score 94%    

 

Confusion 

matrix   

 Predicted class 

True 

class VB VG   
VB 43.7% 4.9%   
VG 0.7% 50.7%        
 Binary classification - VGG vs. VBB  

Accuracy 91%    
F1-score 91%    

 

Confusion 

matrix   

 Predicted class 

True 

class VBB VGG   
VBB 33.9% 5.7%   
VGG 3.3% 57.1%        
 Multiclass classification  

Accuracy 62%    
F1-score 55%    

 

Confusion 

matrix   

 Predicted class 

True 

class VB B G VG 

VB 24.1% 2.9% 0.8% 1.2% 

B 2.9% 2.4% 3.3% 2.0% 

G 1.2% 4.1% 13.9% 14.3% 

VG 0.0% 0.4% 5.3% 21.2% 

Number of test data: VG vs. VB = 142; VBB vs. VGG and Multiclass = 245 

Table 4.63: Test results for training on White van data and testing on White van data 

9. In the White van vs. White van for the LR algorithm, binary VG vs. VB achieved an 

accuracy and f1-score of 94%. The binary VGG vs. VBB achieved accuracy of 91% 

and f1-score of 91% and the multiclass classification achieved accuracy of 62% and 

f1-score of 55%. 

 

Findings 
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1. Training the LR algorithm on data from the Green car, the LR algorithm performs 

best against data from the Green car itself in the binary VG vs. VB classification. 

Performance of the algorithm reduced slightly against data from the White van and 

reduced further, testing against data from the Pickup. 

2. In the binary VGG vs. VBB, the algorithm performs best against data from the Green 

car, reducing in performance slightly against data from the White van and further 

against the Pickup. 

3. In the multiclass classification, the algorithm achieves the best performance testing 

against data from the White van, reducing in performance slightly against data from 

the Green car and the Pickup. 

4. Training the LR algorithm on data from the Pickup, the LR algorithm performs best 

against data from the Green car and the Pickup itself in the binary VG vs. VB 

classification. Performance of the algorithm however reduced slightly against data 

from the White van. 

5. In the binary VGG vs. VBB, the algorithm performs best against data from the 

Pickup, reducing in performance slightly to be same against data from the White van 

and further against the Green car. 

6. In the multiclass classification, the algorithm achieves the best performance testing 

against data from the Pickup itself, reducing in performance greatly against data 

from the White van. Performance reduced further testing against data from the Green 

car. 

7. Training the LR algorithm on data from the White van, the LR algorithm performs 

best against data from the Green car in the binary VG vs. VB classification. 
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Performance of the algorithm reduced slightly against data from the White van itself 

and reduced slightly, testing against data from the Pickup. 

8. In the multiclass classification, the algorithm achieves the best performance testing 

against data from the Green car, reducing in performance slightly against data from 

the White van itself and further against data from the Pickup. 

9. The findings above allow for the conclusion that the type of vehicle for collecting 

data has a minimal effect on the algorithm’s performance. 

 

4.4 Group IV Experiment Results 

Experiments in this group trained and tested on in their primary and reoriented forms. A 

hold-out dataset from each of the primary and reoriented data was used to test the 

classification algorithm in the multiclass classification of Very Bad (VG) vs. Bad (B) vs. Good 

(G) vs. Very Good (VG). The changes in the performance of the algorithm was assessed to 

understand the behaviour of the classification algorithm when datapoints are of mixed 

orientations or a relative fixed point. 

Primary oriented data 

Primary oriented data 

     
Number of test data 1361  
Accuracy 65%    
f1-score 56%    

     
Confusion matrix 

 Predicted class 

True 

class VB B G VG 

VB 29.2% 2.1% 0.6% 1.2% 

B 5.4% 2.5% 2.4% 1.5% 

G 2.2% 4.4% 9.4% 9.0% 

VG 0.5% 2.4% 3.5% 23.7% 
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Table 4.64: Test results for training and testing on all primary oriented data 

Using the primary oriented data for a multiclass classification, the algorithm achieved an 

accuracy of 65% and f1-score of 56% testing on 1361 road segments after being trained on 

12,244 primary oriented data points. 

 

 

Figure 4.1: Distribution of primary oriented test data probability of being predicted as 

predicted class label 

Visualizing the probability of the test data points being predicted as their predicted class 

label, all predictions had at least a probability of 0.25 chance of belonging to their predicted 

class. Majority of the predictions remain below a 0.5 probability of belonging to their 

predicted class. A very small proportion of test data had chances above 0.8 to belong to their 

predicted class. 
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Figure 4.2: Distribution of primary oriented test data probability of being predicted as 

ground truth class label 

Visualizing the probability of the test data being predicted as its ground truth, majority of 

test data had at least 0.25 chance at being predicted as their ground truth. Some data points 

however have had zero or near zero chance at being predicted as its ground truth. A very 

small proportion of test data had chances above 0.8 to belong to their ground truth class. 
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Figure 4.3: Distribution of primary oriented test data probability of being predicted as 

ground truth class label given predicted class label 

Visualizing the probability of a point being predicted as its ground truth given its predicted 

class label, each data point is graphed at the probability of its ground truth colored with the 

label of its predicted class. Majority of data points with less than 0.25 chance of belonging 

to their ground truth labels of Very bad or Bad were predicted as belonging to the Very good 

class. Majority of data points with less than 0.25 belonging to their ground truth label of 

Good were predicted as belonging to the Very bad road class. Majority of data points with 

less than 0.25 chance of belonging their ground truth class of Very good road were classified 

as Bad roads. Lastly, when the confidence level is above 0.45, the classification algorithm 

correctly predicts the classification of a data point. 

 

Reoriented data 

Reoriented data 

     
Number of test data 1361  
Accuracy 60%    
f1-score 51%    
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Confusion matrix 

 Predicted class 

True 

class VB B G VG 

VB 26.3% 3.5% 0.7% 2.6% 

B 5.6% 2.6% 1.8% 1.8% 

G 3.1% 4.2% 6.9% 10.8% 

VG 0.6% 1.8% 3.1% 24.6% 

 

Table 4.65: Test results for training and testing on all reoriented data 

Using the reoriented data for a multiclass classification, the algorithm achieved an accuracy 

of 60% and f1-score of 51% testing on 1361 road segments after being trained on 12,244 

primary oriented data points. 

 

 

Figure 4.4: Distribution of reoriented test data probability of being predicted as predicted 

class label 

Visualizing the probability of the test data points being predicted as their predicted class 

label, all predictions had at more than a probability of 0.25 chance of belonging to their 
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predicted class. Majority of the predictions remain below a 0.5 probability of belonging to 

their predicted class. 

 

 

 

Figure 4.5: Distribution of reoriented test data probability of being predicted as ground 

truth class label 

Visualizing the probability of the test data being predicted as its ground truth, majority of 

test data had at least 0.25 chance at being predicted as their ground truth. Some data points 

however have had zero or near zero chance at being predicted as its ground truth. 
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Figure 4.6: Distribution of reoriented test data probability of being predicted as ground 

truth class label given predicted class label 

Visualizing the probability of a point being predicted as its ground truth given its predicted 

class label, each data point is graphed at the probability of its ground truth colored with the 

label of its predicted class. Majority of data points with less than 0.25 chance of belonging 

to their ground truth labels of Very bad or Bad were predicted as belonging to the Very good 

class. Majority of data points with less than 0.25 belonging to their ground truth label of 

Good or Very good were predicted as belonging to the Very bad road class. Majority of data 

points with chances above 0.25 belonging to their ground truth label of Bad were predicted 

as Very bad roads. When a confidence level is above 0.41, the classification algorithm 

correctly predicts the class of the data point. 

 

Findings 

1. Training and testing the algorithm with the primary oriented data compared to the 

reoriented data points reduced the performance of the classification algorithm. 
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2. From the visualization of the probability of the test data points being predicted as 

their predicted class label, the reoriented data points increased the probability of 

test data predicted as their predicted class to all be above a 0.25 chance. 

3. From the visualization of the probability of the test data being predicted as its 

ground truth, the reoriented data points keeps the probability of test data to be 

predicted as its ground truth to not go above a 0.8 chance.  
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Chapter 5: Conclusion and Recommendations 
 

5.1 Summary 

This study aimed at developing a Logistic Regression algorithm to classify stretches of road 

travelled along in a moving vehicle into different qualities using mobile phone 

accelerometer sensors data. The stretches of roads were labelled by segments of stretches 

travelled in 10 second time frames, referred to as road segments/windows. 

The study used Scikit-Learn Logistic Regression, three sets of features, and data collected 

along four different orientations from three different vehicles to attempt a four-class 

classification: very bad, bad, good and very good. These classifications represented different 

qualities of road surfaces travelled. 

An evaluation for the best set of features was done, the third of which by Maxwell Aladago 

was learnt as the best set of features among the three considered.  An examination into the 

effect of device orientation during data collection on the algorithm’s performance showed 

an insignificant effect. Findings from experiments also show that the type of vehicle used 

in data collections has a minimal effect on the classification algorithm’s performance. 

The Logistic Regression algorithm trained and tested on the combined dataset of four 

orientations from each vehicle in a four-class multiclass classification achieved an accuracy 

of 65% and f1-score of 56% using the primary oriented data. Using Euler’s Angles to 

reorient data points, training and testing the combined dataset on the Logistic Regression 

algorithm achieved an accuracy of 60% and f1-score of 51%. 

The algorithm is unreliable at distinguishing between Bad and Good road segments. Also, 

the algorithm has a sometimes classifies very good roads as very bad roads and vice versa. 
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The findings of this study align with the findings from prior work that the multiclass 

classification problem is difficult. The data sourcing has significant amount or errors with 

mislabeled data and poorly distinguishable characteristics for bad from very bad roads and 

very good from good roads. 

5.2 Limitations 

This study was limited by the similarity of data points among very bad and bad as well as 

very good and good. This could have resulted from the methodology of data collection 

where the stretch of road was continuously changing. A way to eliminate this phenomenon 

will be to select long distances of road for each road surface quality and collect data solely 

along each stretch. This will give proper definitions to each class of road, improving the 

taxonomy of road quality for classification. 

5.4 Further Work 

Logistic Regression algorithm is domain biased to linearly separable data. The mislabeling 

of the dataset has reduced the ability to linearly separate the dataset into the four distinct 

classes, hence the classifier in this study not being very robust. 

The robustness of the classifier can be improved by compiling a new dataset and 

transforming the axial orientation of the accelerometer data to match the vehicle. 

 A new dataset should be compiled by using long-distance stretches for each type of road 

surface quality. This will give each type of road surface quality linearly distinguishable 

characteristics from the others. With proper definitions to each road type, a better taxonomy 

for road quality will be available for the classifier.  

Transforming the axial orientation of the accelerometer data using the formula mentioned 

in this study will make the data match the axial orientation of the vehicle. With 

corresponding orientations, feature sets which have greater focus on the z-axis such as those 

used by Vorgbe will improve the performance of the classification algorithm. 
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A new data set should be compiled by using long-distance stretches for each type of road 

surface quality. Each road surface quality will yield linearly distinguishable characteristics 

from the others with appropriate definitions to each road type; for a better taxonomy to a 

road quality will be available for the classifier. 

 Transforming the axial orientation of the accelerometer data (using the formula mentioned 

in this study) will be equivalent to the axial orientation of the vehicle. With corresponding 

orientations, feature sets with greater focus on the z-axis including those used by Vorgbe 

could improve the performance of the classification algorithm. 
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