
i

ASHESI UNIVERSITY COLLEGE

GUI-BASED FLEET PLANNING VISUALISATION TOOL

By

FRANK ANAMUAH-KOUFIE

Applied Project Report submitted to the Department of Computer Science

Ashesi University College

In partial fulfilment of Bachelor of Science degree in Computer Science

APRIL 2013

ii

Declaration

I hereby declare that this the Applied Project Report is the result of my

own original work and that no part of it has been presented for another

degree in this university or elsewhere.

Candidate’s Signature:…………………………………………………

Candidate’s Name:…………………………………………………………………….

Date:…………………………

I hereby declare that the preparation and presentation of the Applied

Project Report were supervised in accordance with the guidelines on

supervision of Applied Projects laid down by Ashesi University College.

Supervisor’s Signature:…………………………………………

Supervisor’s Name:………………………………………………………………

Date:…………………………………

iii

Acknowledgement

My sincerest thanks and gratitude go to Dr. Ayorkor Korsah, who has

guided me through this project. I would also like to thank my mother,

brother and friends – Elysia Amarteifio, Edem Diaba and Daniel Botchway

for the myriad help and support they offered me throughout the project.

iv

Abstract

Visualising data and interpreting it is a common activity we do on a daily

basis. The human mind is able to identify patterns easily and extract

information from visual contents much faster than it does from raw data.

For this reason, visualisation tools of any kind serve to facilitate

understanding of otherwise complex information or situations.

Visualisation serves as a very useful tool for planning routes and

scheduling tasks. In this project, visualisation is employed to increase the

usefulness of a fleet planning application. The purpose of visualisation

here is to provide a platform for easy formulation of problems and also for

easy representation of solutions to these problems.

v

Table of Contents

1 Chapter 1: Introduction .. 1

1.1 Background ... 1

1.2 Objectives ... 2

1.3 Motivation ... 3

1.4 Mathematical Problem Visualisation .. 3

1.5 Linear Programming and Optimization Problems 4

1.6 Outline of Dissertation .. 4

2 Literature Review ... 6

2.1 Introduction .. 6

2.2 Uses of Visualisation .. 6

2.3 Scientific visualisation vs. Information Visualisation. 7

2.4 The Science and Art of Visualisation ... 9

2.5 Challenges of Complex Visualisation Tools................................. 9

2.6 Summary .. 10

3 Design .. 12

3.1 Understanding the application*.. 12

3.2 Programming Language .. 12

3.3 Operating System Platform ... 17

3.4 User Considerations ... 18

3.5 Performance vs. Aesthetics ... 18

3.6 Software Requirements .. 19

3.6.1 Functional Requirements ... 19

3.6.2 Non-Functional Requirements .. 20

3.6.3 General Requirements .. 20

3.7 Context of Use .. 20

3.8 Application Classes .. 22

3.8.1 Problem .. 22

3.8.2 Problem World ... 23

3.8.3 Agent ... 23

3.8.4 Task ... 23

3.8.5 Subtask .. 24

vi

3.8.6 Attribute ... 24

3.8.7 Location .. 24

3.8.8 Constraint ... 25

3.8.9 Solution .. 26

3.8.10 Solution Graph .. 27

4 Implementation ... 28

4.1 Technology and Development Tools 28

4.2 How It Works .. 29

4.2.1 Problem Definition .. 29

4.2.2 Solving the problem ... 33

4.2.3 Visualising the solution ... 34

4.2.4 Customizability .. 35

4.2.5 Mapping Points .. 36

5 Tests and Results ... 38

5.1 Application Testing ... 38

5.1.1 Unit Testing ... 38

5.1.2 User Testing .. 38

5.2 Focus Group Discussions ... 39

6 Conclusion and Recommendations ... 41

6.1 Limitations .. 41

6.2 Further Works ... 41

6.3 Conclusion .. 41

7 Bibliography .. i

1

1 Chapter 1: Introduction

1.1 Background

Fleet planning problems are problems that involve planning the activities

of a number of actors that work together at varied collaborative levels.

These actors may be a group of paramedics and ambulances at the scene

of an emergency or a set of fire trucks fighting a bush fire. The activities

performed by the actors may be performed individually or together by any

number of actors as required. Several tools exist for defining and solving

fleet planning problems. However, most of the available tools are highly

customized to specific problems and therefore are not of much use in

general situations. Another downside of fleet planning applications is the

absence in many of the planners, of good visualisation tools for defining

the problem to be solved.

Problem solving is an everyday activity we perform without knowing most

of the time. While most problems are extremely easy and are solved

unconsciously by the brain some are more advanced and require

mathematics or programming to solve them. As problems increase in

complexity, it becomes increasingly difficult to solve them using regular

programming or mathematical techniques. Depending on the level of

complexity, problems have to be defined using complex mathematical

models to allow them to be solved with complex algorithms. For example,

while 1+3(5-2) can be easily evaluated to 10 even without a calculator,

finding the total surface area of a hollow octagonal pyramid cannot be

2

solved that easily. It requires a formula to be given and a careful

methodology followed in order to arrive at the solution. Mathematics helps

to solve several problems because most problems can be defined

mathematically regardless of the complexity. A number of everyday

problems such as the amount of money to invest in order to receive a

certain yield at the end of the year or the right quantities of a product to

manufacture in order to maximize profit and make efficient use of

machinery can be solved by defining mathematical models for the

problems. There are however a number of drawbacks of mathematical

problem solving which leaves it to become a preserve of experts and

enthusiasts only. One such drawback is the complex nature of the models

themselves, making it difficult for users to understand the way in which

they work and thus prevents users from defining their problems with

those models.

1.2 Objectives

The objective of this project is to explore the usefulness of visualisation as

a tool for simplifying problem definition and viewing the process of solving

problems. It is aimed at developing insight in the field of complex problem

visualisation, fleet planning and optimization problems. It is aimed at

studying the benefits visualisation brings to complex problem solving and

to evaluate how applications can be developed that derive from these

benefits to create easy problem solvers for both industry-specific and

everyday problems. It is the hope of this project that in the not too

distant future, there will be a good number of visual problem-solving tools

with significant patronage from ordinary individuals because they abstract

3

the mathematical models from users and only present an easy to

understand interface for defining problems.

Particularly, this project is about creating a graphical user interface for a

fleet planning program developed by Dr. Ayorkor Korsah for her PhD

thesis. The application runs by taking file inputs and generating outputs to

file. The objective of this project is to create visual tools for defining

problems and viewing the solution. It is hoped that this will enhance the

application’s usability as it will open it up to a larger user base.

1.3 Motivation

My drive for undertaking this project stems from my interests in user

interface and experience design. I believe that software of any form

should be easy to use and have a large visual component. This makes it

more interactive and fun to use. However, I do not believe that

functionality should be sacrificed for aesthetics nor should aesthetics be

sacrificed for functionality. For any good software a good balance of

aesthetics and functionality must be present. With this project I hope to

achieve exactly this by providing a graphical user interface for the fleet

planner without causing any problems to the functionality.

1.4 Mathematical Problem Visualisation

As stated above, mathematics is of immense importance in everyday life

because of the powerful tools it presents for solving both very basic and

also very complex problems. Mathematical visualisation is a field of

mathematics that allows one to understand and explore mathematical

problems using graphical models. Originally, these models were plaster

casts and paper drawings but owing to advancements in computer

4

graphics, visualisation is now done using computers. The field takes

advantage of the human brain’s ability to easily derive meaning from

images. The need for visualization arose from the immense volumes of

data that were becoming available as information technology advanced.

1.5 Linear Programming and Optimization Problems

Linear programming and optimization is a branch of mathematics that

uses mathematical modelling in solving complex problems with varied

solutions. The objective is to identify the best fit solution for the problem

given all the constraints that are on it. In particular, the core application

on which this project is being done is a fleet planning optimization

programme. The application is aimed at optimizing the efficiency and

usefulness of a group of robotic agents that perform a set of complex

tasks. These tasks are of varying natures as some require independent

execution, some shared execution and some bound by certain precedence

and synchronization constraints. For this application two scenarios will be

used – an emergency rescue situation and a farm harvest situation. These

will be discussed in greater detail in chapter 3.

1.6 Outline of Dissertation

The chapters that follow outline in detail how the project is to be carried

out. Chapter 2 reviews works done in the field of visualisation and

provides scope for the project. Chapter 3 discusses the design stages of

the project which addresses conceptual frameworks, design considerations

and the general considerations that are made before any code is written.

Chapter 4 discusses the actual implementation of the application and

covers the technology platforms and the programming that was involved

5

in the process. The remaining chapters, 5 and 6, discuss testing and

evaluation, and conclusions and recommendation respectively.

6

2 Literature Review

2.1 Introduction

Visualisation is a widely used tool in problem solving. It is used by

teachers to aid teaching and learning, by scientists and researchers in

interpreting data and generally to make concepts clearer. Despite its

significance in this regard, it is mainly employed for the purposes of

making sense of already solved problems. This chapter analyses a number

of papers on visualisation aimed at gaining a deeper understanding of how

visualisation as a tool is used, its advantages and disadvantages and why

it is used mainly in as a tool for interpretation of results and not for

defining problems.

2.2 Uses of Visualisation

“Visualization links the two most powerful information processing systems

known—the human mind and the modern computer. A process, it

transforms data, information, and knowledge into a visual form exploiting

people’s natural strengths in rapid visual pattern recognition” (Gershon &

Eick, 1997). While it is true that we interact with large amounts of data all

the time, it is also true that the raw data itself is of very little importance

to us. Before any of this is useful it must be processed and some

information extracted from it. Yet, even the refined information itself may

be difficult to understand or make good use of because it is generally not

easy to identify patterns in mathematical or statistical information.

7

Visualisation serves as that bridge that enables us to make sense of the

vast amounts of data that engulf us at all times. Visualisation is used in a

variety of industries including scientific research, finance and investment,

healthcare, agriculture and education. In research, visualisation helps

scientists to make sense of abstract concepts such as fluid dynamics and

activities of volcanoes and earthquakes. It is used in healthcare for

medical imaging and diagnostic purposes and in chemistry for

investigating the behaviour of chemicals under certain conditions. In

mathematics especially, visualisation has been useful from primary school

applications such as Venn Diagrams to applications of higher education as

in polynomials and complex number problems.

Without visualisation it would be impossible to extract as much

information from data as we do (van Wijk, 2005). In all of these areas a

general pattern seems to emerge – that visualisation is used after some

data or information has been processed and needs to be analysed.

2.3 Scientific visualisation vs. Information Visualisation.

Computer visualisation has a myriad of applications in both scientific and

industry research and in real-world applications. It is used in visualising

traffic flow, task scheduling, medical imaging and natural disaster

simulation among others. In “The Value of Visualisation” by Jarke van

Wijk (van Wijk, 2005), he retraces the history of scientific visualisation

and makes a case for how the needs of the scientific community have

been key determinants in the kinds of visualisation technologies that are

developed. He also argues that visualisation as a maturing field has

transcended the bounds of scientific applications only, to become a

8

general tool and thus has led to a drive for user-centred visualisation tools

(van Wijk, 2005). According to him, all visualisation is scientific at the

core and develops through similar processes.

This is contrary to the notion presented by Eick and Gershon (Gershon &

Eick, 1997)who argue that recent advances have led to the field of

information visualisation which is unique in its development and approach.

While scientific visualisation like all forms of emerging technologies

develops in a four-stage process, the same cannot be said of information

visualisation. “An emerging discipline progresses through four stages. It

starts as a craft, practiced by artisans using heuristics. Later, researchers

formulate scientific principles and theories to gain insights about the

processes. Eventually, engineers refine these principles and insights into

production rules. Finally, the technology becomes widely available. For

information visualization, however, these stages are happening in

parallel…” (Gershon & Eick, 1997). It is the belief of these writers that the

parallel nature of development presents a challenge to the visualisation

industry in meeting the needs of this fast paced development. As a

consequence, some stages of the process are not thoroughly covered

during the implementation of the tool and ends in low user satisfaction.

The need to recognize information visualisation as a unique field from

scientific visualisation is of immense importance as it determines how the

industry will be able to meet user needs. Without this understanding, it

will be impossible to produce visualisation tools that appeal to the user

community. This ties back in with van Wijk’s assessment of effective

visualisation which states that the quality of a visualisation tool lies more

9

in its usability and user acceptance than in its efficiency in performing its

tasks (van Wijk, 2005).

2.4 The Science and Art of Visualisation

Historically, science and art have remained two very distinct fields with

very distinct interests and modes of operation. Science is about data,

research, facts, methodology and structure. Art on the other hand leaves

room for creativity, adaptability and unconstrained experimentation.

Regardless of their differences, both fields have major roles to play in

developing visualisation tools (Sorensen, 1989). Sorensen mentions that it

may not after all be true that arts and science are distinct fields

considering that some of the best known scientists have doubled as

artists. Leonardo da Vinci, Archimedes and Benjamin Franklin are but a

few of these scientist-artists. He believes that the success of these in both

fields of endeavour is proof of the importance of the collaboration between

arts and science especially in the field of visualisation.

Popper (Popper, 1994) extends this argument by adding a cultural and

psychological context to visualisation. He observes that neither the

scientific accuracy and efficacy nor the usability and aesthetics of a tool

completely determine its acceptability by users. It is important to

understand the user and the context of use of an application in order to

design an application that meets that need (Popper, 1994).

2.5 Challenges of Complex Visualisation Tools

Visualisation as a tool, like all others, has a number of drawbacks despite

its immense proven benefits. Firstly, having developed from a scientific

and research background and having initially been a preserve of

10

specialists, visualisation tools tend to be quite cumbersome and difficult to

understand and use. Most of these tools remain as tools for experts and

do not draw the attention of the ordinary person due to their complexity.

Another challenge with visualisation is concerned with its parallel nature of

growth described in (Gershon & Eick, 1997). According to this analysis, it

is more difficult to standardise visualisation principles or guidelines

because all the sectors involved are constantly modifying their views on

how things are to be done thereby reshaping how visualisation is to be

perceived. This also means that any visualisation tools developed are only

reliable over a short time period as they may be subject to both minor

and major changes in design and even engineering. In the absence of any

regulations on standard processes to follow, it is difficult to provide any

visualisation solution that will satisfy user needs. Another problem with

visualisation is the cost involved. Graphical processes are CPU-intensive

systems and as such use significantly high percentages of the computer’s

memory and processing power. This makes the visualisation tool slow and

also slows down the entire system, preventing other system tasks from

being performed (van Wijk, 2005).

2.6 Summary

From the works discussed above it is evident that visualisation is a young

and very diverse field. It is impossible to define it within any particular

field of study as its use covers several fields. Scientific visualisation is the

parent of all visualisation but it must be recognised that other quite

distinct forms of visualisation, especially information visualisation, have

emerged from this field and are quite unique from each other. Also

visualisation must be understood as embodying both arts and science and

11

must reflect in how works relating to this field are done. Another

observation made is the strain that visualisation tools have on a system’s

memory and processing power.

To develop an effective visualisation tool the above considerations have to

be made. Disregard for any of the issues discussed here can cause the

tool to become difficult to use or even render the tool entirely useless.

12

3 Design

This chapter addresses the major design considerations made in the

development of the application. It discusses the technologies and methods

used in development and the reason for those choices. It also discusses

the target users, platforms and limitations to the design process.

3.1 Understanding the application

Before designing the application and throughout the implementation, the

expert knowledge and opinions of Dr. Korsah, the developer of the fleet

planning component were sought. The purpose of these consultations was

to gain as much insight as possible into the problem the application is

designed to solve. It was to understand fleet planning and optimization in

the given context of the project and to ensure that the developed solution

meets the identified needs.

3.2 Programming Language

The first design consideration made was the choice of programming

language. The criteria for selecting an appropriate language include

robustness, speed, portability, development time, support, aesthetics and

performance. I began by shortlisting 5 languages that are popular choices

for visualisation and graphical interface programming – Adobe

Flash/Action Script1, HTML52, C++, Java and Python. These languages are

compared below based on their performance with the above criteria.

1 Adobe Flash and Action Script (the scripting language for Flash) are used

interchangeably in this paper.

13

1. Robustness:

Robustness as used here refers to the ability of programmes written in a

language to withstand excessive pressure and perform even with low

system resources such as CPU time and memory. HTML5 and Flash do not

perform well on robustness because they are not used for standalone

applications and depend solely on the performance of the browser or

program in which they run to perform. C++ and Java on the other hand

have a long history in being very robust and adaptable in performance.

Python’s robustness is good but does not compare to Java or C++.

2. Speed:

Speed measures the rate at which instructions are converted from the

high level language to low level languages for the computer’s use. C++ is

the fastest because of its closeness to machine language and is the best

option for programming where speedy execution is required. Java is

slower than C++ because it has a virtual machine layer that first converts

the code to platform-dependent bytecode before being translated to

machine language. HTML5 (Javascript), Python and Action Script are

much slower because they are scripting languages and have to be

compiled by the underlying language platform before execution.

3. Portability:

Portability measures the ease of developing applications for multiple

platforms and environments with the selected language. Java is the most

portable language because it runs in the Java Virtual Machine model which

makes it possible to run the same code on different platforms without any

2 HTML5 as used in this paper refers to the group of web technologies – HTML5,

CSS3 and JavaScript, commonly referred to as HTML5. Where reference to a

particular feature is being made, it is placed in a parenthesis next to HTML5.

14

modifications. This portability is extended even to web and mobile

platforms with Java Play and Java ME respectively. HTML5 is also highly

portable but is limited to web and mobile platforms except for Windows 8,

on which native HTML5 applications can run. Python is also platform

independent and can run on web and mobile devices as well. However,

developing graphical standalone Python applications is quite cumbersome.

Flash/Action Script can run in several environments including desktop and

web as well as high-end mobile platforms. However, because it is a legacy

application it requires the installation of plugins on the host system in

order to function. This is a major drawback on the portability of the

language.

4. Development Time:

This measures the amount of time that is spent on developing applications

in the chosen language. Python, Action Script and HTML5 have much

faster development times because most of the functionality implemented

is abstracted and the programmer only interacts with very high level

functions. Java is slower because functionality is not implemented on the

levels of the above mentioned languages. However, because of its

platform independence Java programming is significantly faster than C++

programming where code has to be written uniquely for every platform

that will run the application.

5. Support

This measures how much information, help and support is readily

available for development in the chosen language. Java and C++ have

enormous resources available for developers using those languages. There

are unlimited web communities and forums with a rich knowledge base of

15

information regarding the languages. Java also has a well-defined and up-

to-date API documentation which makes development in the language

very simple. Python is a much younger language and although it has a

well-documented API, it has not yet gathered the following that Java and

C++ enjoy. Action Script is difficult to use and requires in-depth

knowledge of Flash animations. It is also proprietary software and does

not have as much freely available resources as do other languages.

HTML5 is a new technology which is still in development. Coupled with the

fact that it is a mix of different technologies, it is difficult to obtain

standard ways of developing or obtain useful resources for development

on the platform.

6. Aesthetics:

Aesthetics measures the possibilities of developing aesthetically pleasing

graphical interfaces as well as the ease with which this can be done. Flash

scores high on aesthetics because of the high quality and beautiful

interfaces and applications that it can develop. It also provides the

developer with the most customizability and puts total control of the

interface in the programmer’s reach. HTML5 (CSS3) is also capable of

producing very beautiful graphics applications although it is incapable of

developing standalone applications. Java (javax.swing, java.awt, and

JavaFX) presents a strong library for graphics programming although the

possibilities are not as fancy as those provided by Flash and HTML5.

However, the addition of third-party libraries provides means of

developing beautiful interfaces. Python and C++ are not excellent choices

for graphics programming because they lack easy to use graphics

libraries.

16

7. Performance:

This measures how well applications written in these languages make use

of system resources and how well they perform generally. C++ is highly

efficient because the programmer is forced to keep a close eye on

memory usage and procedure calls. Generally programming in C++

assumes that system resources are scarce and must be managed

efficiently. Java also does well with performance as it has functionality to

check for resource usage. The Java Virtual Machine for instance has

methods that optimize the code before it is compiled and executed. It also

has a garbage collector which monitors and ensures that memory is being

used effectively. Action Script on the other hand makes excessive use of

memory and easily slows the system down. It creates strain on the

processor when executing Flash animations and can affect the

performance of other applications using the system’s resources. HTML5 is

a lightweight technology and makes very minimal use of system

resources. However, the true resource usage depends on the underlying

platform. Python also makes very resourceful use of the system and does

not overwhelm the system.

Judging from the above criteria, I chose to use Java because it is

generally robust, fast, portable, has an adequate development time and a

large support system. It is also easy to use for graphical programming

and performs excellently. Also, Java integrates easily with C++, which is

the language used to develop the fleet planner component based on which

this program is being developed.

17

3.3 Operating System Platform

The purpose of this application is to make it easier for people to use and

by so doing achieve a wide user base. To achieve this, the application is

designed to run on all major operating systems. This includes most known

distributions of Linux3, Windows and Apple’s OSX. The fleet planner

component of the application was developed for Linux and therefore the

general application will ideally be deployed in Linux. However, considering

the numbers of computer users who use Windows, the graphical

component of the application being developed is designed to run perfectly

in the Windows environment. Since the fleet planner component is

currently designed just for Linux, the application will make use of Java’s

Remote Method Invocation (RMI) and Common Object Request Broker

Architecture (CORBA) architecture to run in a distributed architecture.

Ideally, the graphical component will be deployed on Windows and will run

remotely with the fleet planner component deployed on Linux.

Figure 3.1 Application running on separate platforms connects with RPC

3 Linux as used in this document refers Redhat and Debian distributions of the

Linux kernel. Specifically Ubuntu, Fedora and CentOS are the particular builds of

Linux being referenced.

18

3.4 User Considerations

This application places high value on the end user and as such adopts a

User-Centred Design approach to developing the application. This means

that user needs will be paramount in making any design decisions

regarding the application. The application is designed for two groups of

users. The first group is made up of scientists, programmers and

mathematicians who already understand fleet planning and optimization

to a large extent. This group of users are not traditionally concerned with

the look and feel of applications and will be primarily concerned with the

value the GUI-based programme offers over the console-based

applications they are used to. The application is also designed for non-

specialists who are interested in fleet planning for varied reasons. This

group of users are concerned with the total visual appeal of the

application but may not be particularly concerned about the performance

of the application in generating the problem files. The success of this

application lies in being able to meet the core needs of both user groups.

3.5 Performance vs. Aesthetics

While the goal of this project is to design an application that is highly

graphical in its dealings with the user, it is also important to recognize the

high demands graphics has on processing power. This means that as the

application becomes more intuitive to use and has a lot of visuals it puts

greater strain on the processor and lowers the applications performance.

This will make the application slower and make it less useful than the non-

graphical equivalent. This defeats the purpose of the project and as such

19

it is important to ensure that there is a reasonable balance between the

application’s graphical appeal and overall system performance.

3.6 Software Requirements

The following section details the various requirements that the application

must meet. It details the core requirements as well as non-functional and

general requirements that it aims at satisfying.

3.6.1 Functional Requirements

• The application will read a predefined problem file as raw text and

generate a visual representation of the problem.

• The application will provide a graphical tool for the user to visually

define a problem which will then be converted to a problem file

saved in raw text format.

• The application will read a solution file as raw text and generate a

visual representation of the solution.

• The application will visualise in a timeline view, the planning

process developed by the fleet planning component.

• The application will animate the solution process as developed by

the fleet planning component.

• The graphical tool will allow the user to add agents to a problem

and also to edit the properties of these agents or delete them

entirely.

• The graphical tool will allow the user to add tasks to the problem

and to edit the properties of the tasks.

• The application will show the precedence and synchronization

constraints that exists among the agents in the system.

20

• The system must save problems to file before exiting.

3.6.2 Non-Functional Requirements

• The application must be able to maintain the state of the user’s

defined problem and be able to automatically restore this session

after an unexpected application close.

• The application will have a configurable icon set which can be set

by defining a configuration file.

3.6.3 General Requirements

• The application will run in Linux but must be able to run on all other

common platforms (Windows and OSX).

• The application must make minimal use of system resources and

should be able to run alongside other applications without

significant performance reductions.

• The application must have appropriate firewall permissions to use

the system’s network resources.

3.7 Context of Use

The application is a general fleet planning application and can be used to

solve a wide array of fleet planning and optimization problems. These

include carpooling problems, courier services and other delivery routing

problems and assembly line organisation problems. However, it is

designed for two particular contexts – emergency rescue operations and

agricultural harvests. Under emergency rescue, the application is

developed to plan the manner in which an emergency rescue operation is

to be carried out in order to maximize the efficiency of the rescue team

and thereby save lives and resources. In the second scenario, the planner

21

develops an optimal plan for a farm harvest operation involving a number

of combine harvesters, farm trucks and silos. The planner generates a

plan that maximises the output of the trucks and harvesters and generally

makes the agricultural harvest both efficient and faster.

Figure 3.1 A group of combine harvesters on a farm

22

Figure 3.2 Paramedics attending to a an accident victim

3.8 Application Classes

This section outlines the structure of the application. It describes the

Object-Oriented model of the application giving general details of the

classes and high level methods and properties of those classes. The

application has ten main objects – problems, worlds, agents, tasks,

subtasks, attributes, locations, constraints, solutions and solution graphs.

3.8.1 Problem

A problem is an object that embodies all the actors in the problem

definition. It is comprised of a problem world and lists of agents,

attributes, tasks, subtasks, attributes, locations and several constraints.

An example problem may be an emergency rescue which will involve

ambulances, clinics, paramedics and injured persons.

23

3.8.2 Problem World

This class defines the boundaries within which the problem exists. It

defines the four spatial limits of the problem – minimum x, maximum x,

minimum y and maximum y coordinates of the area within which all the

problem actors are contained. It also defines a plan horizon. An example

world may be the site of an accident or a farm.

3.8.3 Agent

The Agent class defines the moving actors in the planning problem. It

describes the entities performing the actions that are defined in the

problem. For example, an agent may be a paramedic, an ambulance, a

truck or combine harvester. Agents have a list of attributes that describe

their functionality, start and end locations of their actions, start and end

times of their actions as well as the speed at which they act. An agent

also has maximum route duration and length, capacity and cost of

waiting.

3.8.4 Task

The task class defines the high level actions that are to be performed by

the agents in the problem. Tasks are complex activities that are composed

of simpler tasks and include such activities as transporting an injured

person to a clinic, administering first aid to an injured person or

transferring farm produce to a silo. Tasks also have a list of attributes that

define their nature and how they must be carried out. It also has a list of

subtasks that comprise it, a reward for completing the task and the

maximum time within which to complete the task.

24

3.8.5 Subtask

This class defines the low level individual activities that make up tasks.

Subtasks are the actual activities that are performed by the agents in the

system. For example, lifting an injured person onto a stretcher and driving

to a clinic are two subtasks that will comprise the task of delivering an

injured person to a clinic. Each subtask has a service time which is the

time it takes to perform it, an earliest start time and a latest start time

which defines the window within which the activity must be performed. It

also maintains a list of locations where it may be performed and capacity

requirement which must be satisfied by an agent that will carry out this

task.

3.8.6 Attribute

This class defines a property that must be possessed by an agent or a

task in the system. The attribute defines an agent’s ability to perform a

given task and the attributes a task requires from an agent before it can

be performed that agent. As an example Medical, Transport or Harvest

may be defined as attributes for an agent administering first aid, the task

of delivering a sick person to a clinic or the task of harvesting farm

produce respectively.

3.8.7 Location

The location class defines locations in the system where activities may be

performed or where agents may temporarily lodge before they perform

certain tasks. Locations have x and y coordinates which are points in a

Cartesian coordinate system. These points are transformed to maintain

25

integer coordinate pairs in order for them to be plotted on a canvas. The

coordinate system of Java is discussed in greater detail in chapter 4.

3.8.8 Constraint

Constraints are a broad group of constraints that exist among the actors

in the problem. The purpose of the constraints is to limit the solutions that

are generated by the planner. Five constraint types are relevant in this

application. These are outlined below:

1. Precedence Constraint:

This type of constraint puts a limitation on the order in which subtasks

may be performed. It is defined between two subtasks and limits the

planner to ensure that one of two subtasks is always performed before

the other. For example, in a rescue situation, an injured person must

receive first aid treatment before they are transported to a clinic for

further treatment.

2. Synchronization Constraint:

This constraint limits the planner to ensure that two subtasks are

performed at the same time. It is defined among any number of

subtasks and forces all solutions generated to ensure that these tasks

happen within the same time window. As an example, in a harvest

situation a combined harvester emptying contents into a truck and the

truck loading the contents must happen concurrently.

3. No Overlap Constraint:

26

This constraint is the opposite of the synchronization constraint. It

ensures that two activities are not performed together under any

circumstance. This is useful if two activities must not happen within the

same time window. In an emergency situation for example, the

ambulance must not be in motion at the same time an injured person

is being placed in it.

4. Location Capacity Constraint:

This type of constraint ensures that activities being performed in a

given location are within the capacity limits of the task being

performed. As an example, it must be ensured that the number of

patients delivered to a particular clinic does not exceed the number of

patients the clinic is able to attend to.

5. Proximity Constraint:

Proximity constraints are defined to check that some group of agents

or tasks are within a certain distance of each other. It is also used to

ensure that some actors are not within a certain distance of each

other. This is useful for example when it is necessary to ensure that

two paramedics are not working in the same region when there is a

location that does not have any paramedics attending to injured

people.

3.8.9 Solution

The class defines a single subtask to be performed by an agent and the

conditions under which this task must be undertaken. It defines an agent

to perform a task, the subtask to be performed, the location of the activity

27

and the amount of time to wait before carrying out the task as well as the

time the task must be executed. An example solution would be that a

paramedic must travel to an accident location, wait for an ambulance and

put the patient on the ambulance in five minutes.

3.8.10 Solution Graph

The Solution graph defines the solution output by the fleet planner. It is

the set of all solutions present which means it is a set of all agents and all

the subtasks they must carry out. For the purpose of simplicity, all the

solutions within a graph that belong to a particular agent are grouped in

another object, the Solution Set. The solution set is only present for

simplification purposes and does not affect the application in any way.

28

4 Implementation

This chapter discusses the implementation process of the application. It

details the technologies used and the methods used in developing the

product. It also outlines how the application functions.

4.1 Technology and Development Tools

The fleet planning component of the application which was already

developed as mentioned earlier was developed in C++ and used the Qt

library for the initial graphical modules. The graphical user application

which is the subject of this project however, is built purely in Java

developed with the Java SE 7 toolkit. The reason for using Java is

discussed in chapter 2 above. The application makes extensive use of the

Java Swing library, Java 2D Graphics Library, Collections and

multithreading. Some interfaces were designed using Netbeans Platforms

developed by Oracle Corporation and JFormDesigner developed by

FormDev Software GmbH.

It is built using Netbeans IDE version 7.2 for Windows but is tested on

other target platforms as discussed in chapter 5. The choice of Netbeans

stems from the extensive integration of Netbeans and Java owing to the

fact that they are developed by the same organisation. Netbeans has an

up-to-date integrated Java API documentation and has plugins to

generate Javadoc on the fly. It also has an extensive plugin library to

facilitate development, testing and debugging. It also integrates neatly

29

with JFormDesigner which is a Java Form design plugin used in this

application.

4.2 How It Works

The application works in a three step process – Problem definition,

Problem Solving and Solution display.

4.2.1 Problem Definition

When the program begins execution, the first window gives the user a

choice to either start a new instance of the program or to load a pre-

existing problem from file.

Figure 4.1 Application start window

1. Loading a pre-existing file: The application opens a file chooser

window allowing the user to navigate to the problem file of interest.

Problem files are saved in a simple human-readable txt file format.

A file handler process runs in the background which checks the

validity of the file. It then reads the contents of the file and

generates a problem object from it. This problem object is used to

30

initialize the application’s main window which displays a visual

representation of the problem on a canvas.

Figure 4.2 Dialog to open existing application.

2. Starting a new problem: The application opens a popup window

that requests the user to define the coordinates of the problem

world. A world object is created from these values and is used to

initialize the main application window with a blank canvas. An

empty problem object is defined for the new instance.

On the canvas, the user may define agents and tasks by clicking on the

canvas. The window presents the user with a number of menus that allow

the user to define attributes, tasks, subtasks, agents, locations and

constraints of the current problem. The problem can be saved at any point

31

in time by clicking the save problem button. This generates a simple text

file in txt format form the problem object defined.

Figure 4.3 Window for defining dimensions of problem world.

Figure 4.4 Blank Application window (for new problems.

32

Figure 4.5 Adding an agent to the problem world.

Figure 4.6 Adding a task to the problem world.

33

Figure 4.7 Problem world with agents and task locations

Figure 4.8 Edit agent popup menu

4.2.2 Solving the problem

After a valid problem file has been created or loaded, the user can

progress to solving the problem. This is done by making a system call to

the fleet planner component with the problem file as an argument. As

discussed earlier, this may be a local call in a Linux system or a remote

34

procedure call to the Linux system housing the fleet planning component

in the case of a Windows system.

The fleet planner may run in the background and only return a set of

solution files on completion or be set to return values as the application is

running. The data which are the branch and bound values from the fleet

planner can be visualised as a graph as the application runs. This gives

the user a feel of the progress of the optimization process. Additionally,

given this information, the user may choose to end the optimization when

the branch and bound parameters satisfies the user’s requirements. A

valid solution can be generated at this point. This saves time since it is

not always possible or even necessary to obtain the most optimal solution

to a problem.

4.2.3 Visualising the solution

After the planner determines the optimal plan for carrying out the tasks

defined it generates a series of output files. These files are plain text txt

files. The output files are used again by the graphical application for

visualising the solution. This is done in two ways – visualizing the solution

as a timeline of events and visualising the solution as an animated display

of the overall solution process.

1. TIMELINE: The solution timeline shows agents and the activities

they carry out starting from time t=0 to the length of the sum of

the non-overlapping activity durations in the problem.

2. ANIMATED SOLUTION: This feature shows an animation of the

solution in a real-time format. The solution is displayed in the same

window as the defined problem and animates the process of agents

carrying out their activities in the shared world. Each agent is

35

animated in a different thread of execution using Timers to track

the duration of each agent animation.

4.2.4 Customizability

The application has features to allow the user configure the application’s

look and feel and behaviour to meet certain needs. For instance, the user

is able to select whether the application should maintain the Java look and

feel or switch to a native look and feel which is more comfortable for

certain user groups. Also, the user is able to select whether an agent

should be represented in the world with an ambulance icon or a doctor or

a tractor depending on the kind of problem they are dealing with or their

personal preferences.

This is possible by defining a configuration file (for advanced users) which

will be read by the application once it runs and quickly set up the interface

accordingly. For non-advanced users, there is a menu option to customize

the application which gives the user an opportunity to do this. If no

customizations are made the application runs with a basic configuration

defined in a “default.config” file.

 - generic icon to represent an agent

 - generic icon for representing locations

 - generic icon for problem statistics

Figure 4.9 Sample icons used by application.

36

4.2.5 Mapping Points

The application has a number of algorithms it employs in scaling the user-

defined world into a viewable world on the application work area and the

solution area. In pixel-based mapping two things are relevant. First, it is

important to be able to convert any integer value on the graph to a

floating point values which are the actual values used by the planning

component. Secondly, the application must define an appropriate scale

given a problem and rightly transform each point in a problem world into

a viewable point on the canvas. For this purpose a Point type was defined

which is capable of maintaining both the displayable integer x and y

coordinates of the point as well as the actual floating point x and y values

used by the fleet planning component.

The problem of plotting points is extended by the unconventional nature

of Java’s canvas coordinate system. Unlike the Cartesian plane that moves

from left to right from negative to positive x values and from bottom to

top from negative to positive y values, the Java system has no negative

values. The coordinate begins from 0 and increases in x value from left to

right and starts from 0 and increases y values from top to bottom. In

addressing this problem, the Point object was modified to include a type

property that defines which region of the Cartesian plane the point would

lie in. This necessitated the creation of an Origin type which is defined for

each World to help orient the points to be plotted. The Origin inherits from

the Point class and extends it to add an AxisType property which defines

the kind of axes the Origin is defined on. An AxisType determines which of

the four sections of the Cartesian plane the sets of points in a problem

world exists.

37

With these objects it is possible to define appropriate methods to

transform points from floating point values used by the fleet planner to

integer values used by the graphical display.

38

5 Tests and Results

This chapter discusses the testing and evaluation the application was

subjected to and also discusses the results of research carried out about

the topic.

5.1 Application Testing

5.1.1 Unit Testing

Unit testing of the application was done on an Intel dual core Pentium

64bit computer running on Windows 7 Ultimate. This is the same

computer on which the application was developed. These tests were

carried out during the development stage in an iterative process. The

purpose of the unit tests were to check that all intended functionality are

implemented correctly. It was also intended to ensure that all identified

bugs are fixed before the application is deployed.

5.1.2 User Testing

User tests were also carried out to ensure that the application satisfies the

basic needs of target users and also to ensure that unforeseen needs of

users are addressed. Three user groups were tasked with testing the

application at several stages of development. The first group, a group of

five computer science students were tasked to test the robustness of the

application. This group run the program evaluating the logic and checking

the program’s response to invalid logical applications. From these tests,

39

the logic and flow of the application was redesigned to make it stronger

and withstand certain logical errors.

The second group, a random group of 5 students were tasked to evaluate

the usability of the application. This group was briefed extensively on the

functionality of the program and tasked to point out any challenges faced

in using the program. This group was also supposed to test the program’s

response to invalid inputs. From these tests the program’s error tolerance

was rechecked and the logic and flow of the application rechecked. The

new design had greater error tolerance and had easier flow which users

could understand.

The final group of testers was group of five students composed of

computer science students and students who admitted to having low

computer literacy. This group was simply tasked to crash the program by

any means possible. This group was presented with very little information

on how to use the application and then were set forth to break the

program.

5.2 Focus Group Discussions

Three focus group sessions were held to discuss requirements and design

considerations of the application. The first session was held at the

beginning of the design process to brainstorm desired functionality, user

expectations and limitations. This group included computer science

students and design students and it was expected that their knowledge in

their respective fields would inform the design choices to be made.

The second session was held halfway through implementation to ascertain

whether the design was in line with requirements that had been

40

previously established. This session was also aimed at checking if any new

requirements or ideas had come up that would affect the design and to

ensure that these requirements are met. This group had the same

composition as the first group.

The final session was held near the completion of the application with a

group of users with no interest in programming. This session was to

evaluate the acceptance of the application by a user group that had very

little knowledge about the application. Results from this session would

help refine the application by incorporating the needs of a user group that

had not been considered earlier in the design process.

On the whole, the focus group discussions helped to identify a greater

number of requirements that would not be easily identified by

programmers and scientists. Also, these sessions were aimed at gaining a

deeper understanding of various software users and how they view and

interact with software applications. The sessions helped to validate and

disprove some assertions made about software users and helped to

establish new insight beyond what is established in the reviewed

literature.

41

6 Conclusion and Recommendations

6.1 Limitations

The main limitations of this application were the inability to animate the

solution process and the unavailability of the fleet planning component of

the application. These components describe a bulk of the application’s

functionality and therefore limit the possibilities for using the visualisation

tool in a wide array of situations.

6.2 Further Works

The future of this application is to implement all the functionality that

were thought of but not implemented in this version. These include the

animated solution viewer, remote method invocation components and the

configurable icon sets. Also, work will be done to enhance the

performance of the existing application.

6.3 Conclusion

The objective of this project was to develop a visualisation tool that will

aid in solving fleet planning problems. This involved both a tool to assist in

defining the problem itself as well as a tool to visualise the solution once

the planner was done with its work. Although not every component is

finished as desired, the application is able to perform some basic roles and

is in line with the objectives set for it. In conclusion, it is my belief that

this application will serve to reduce the stress involved in defining

problems for fleet planning thereby increasing the overall efficiency of the

process.

i

7 Bibliography

Gershon, N., & Eick, S. G. (1997). Information Visualisation. IEEE

Computer Graphics and Applications, 29-31.

Korsah, G. A. (2011). Exploring Bounded Optimal Coordination for

Heterogeneous Teams with Cross-Schedule Dependencies. Carnegie

Mellon University, Robotics Institute, School of Computer Science.

Pittsburgh: Carnegie Mellon University.

Popper, F. (1994). Visualization, Cultural Mediation and Dual Creativity.

Herausforderungen für die Informationstechnik, pp. 405-415.

Sorensen, V. (1989). The Contribution of the Artist to Scientific

Visualization. California Institute of the Arts, School of Film and

Video. California: San Diego Supercomputer Center.

van Wijk, J. J. (2005). The Value of Visualisation. Eindhoven: Technische

Universiteit Eindhoven.

ii

Appendix A: Terminology

• Agent: An actor in the problem capable of performing an action.

• Attribute: A property that describes what an agent is capable of and

what a task requires of an agent that will perform.

• Capacity: A property of an agent or location that determines how

much of an activity or agents it can hold or perform at a time.

• Constraint: Any limitation on how an activity is to be performed.

• Location: A point on a Cartesian plane which represents the areas

where an agent or a task are executed.

• Plan horizon

• Problem: An object representing a problem.

• Reward:

• Solution: A line in the output file of the fleet planning.

• Subtask: A unit activity that can be performed by an agent.

• Task: A complex activity comprised of smaller straight-forward

activities.

• Wait Cost: The cost incurred by an agent while it waits to perform a

task.

• World (Problem World): A bounded region within which a problem is

defined.

iii

Appendix B: Sample Problem Definition File

GLOBAL

x_min -100

y_min -100

x_max 100

y_max 100

plan_horizon 1000

n_attributes 2

n_locations 11

n_agents 3

n_subtasks 24

n_tasks 15

n_prec_constraints 6

n_synch_constraints 0

n_no_overlap_constraints 0

n_mutex_constraints 0

n_loc_capacity_constraints 0

n_proximity_constraints 0

ATTRIBUTES

id 0 name transport

id 1 name medical

LOCATIONS

id 0 x -15.44 y 14.34

id 1 x -22.37 y 14.22

id 2 x 67.75 y 34.34

id 3 x -61.46 y -14.34

id 4 x 45.30 y 14.34

id 5 x 95.39 y 54.34

id 6 x 34.37 y -14.76

id 7 x -56.26 y 94.34

id 8 x 34.24 y -14.34

id 9 x -52.32 y 14.78

id 10 x 11.34 y -14.34

AGENTS

id 0 start_loc 2 end_loc -1 capacity 3 max_rte_len 12

max_rte_dur 1000 speed 0.35 wait_cost 0 begin_t 0 end_t 1000

n_attribs 1 attrib 0

id 1 start_loc 3 end_loc -1 capacity 2 max_rte_len 11

max_rte_dur 300 speed 0.1 wait_cost 1 begin_t 4 end_t 400

n_attribs 2 attrib 0 attrib 1

id 2 start_loc 4 end_loc -1 capacity 0 max_rte_len 14

max_rte_dur 400 speed 0.4 wait_cost 0 begin_t 0 end_t 200

n_attribs 1 attrib 1

SUBTASKS

iv

id 0 task 0 earliest_start 0 latest_start 995 service_t 5

req_capacity 1 n_loc_choices 1 loc 5

id 1 task 0 earliest_start 5 latest_start 1000 service_t 5

req_capacity -1 n_loc_choices 1 loc 0

id 2 task 1 earliest_start 0 latest_start 995 service_t 5

req_capacity 1 n_loc_choices 1 loc 6

id 3 task 1 earliest_start 5 latest_start 1000 service_t 5

req_capacity -1 n_loc_choices 1 loc 1

id 4 task 2 earliest_start 0 latest_start 995 service_t 5

req_capacity 1 n_loc_choices 1 loc 7

id 5 task 2 earliest_start 5 latest_start 1000 service_t 5

req_capacity -1 n_loc_choices 1 loc 0

id 6 task 3 earliest_start 0 latest_start 995 service_t 5

req_capacity 1 n_loc_choices 1 loc 8

id 7 task 3 earliest_start 5 latest_start 1000 service_t 5

req_capacity -1 n_loc_choices 1 loc 0

id 8 task 4 earliest_start 0 latest_start 995 service_t 5

req_capacity 1 n_loc_choices 1 loc 9

id 9 task 4 earliest_start 5 latest_start 1000 service_t 5

req_capacity -1 n_loc_choices 1 loc 0

id 10 task 5 earliest_start 0 latest_start 995 service_t 5

req_capacity 1 n_loc_choices 1 loc 10

id 11 task 5 earliest_start 5 latest_start 1000 service_t 5

req_capacity -1 n_loc_choices 1 loc 0

id 12 task 6 earliest_start 0 latest_start 1000 service_t 15

req_capacity 0 n_loc_choices 1 loc 5

id 13 task 7 earliest_start 0 latest_start 1000 service_t 15

req_capacity 0 n_loc_choices 1 loc 6

id 14 task 8 earliest_start 0 latest_start 1000 service_t 15

req_capacity 0 n_loc_choices 1 loc 7

id 15 task 9 earliest_start 0 latest_start 1000 service_t 15

req_capacity 0 n_loc_choices 1 loc 8

id 16 task 10 earliest_start 0 latest_start 1000 service_t 15

req_capacity 0 n_loc_choices 1 loc 9

id 17 task 11 earliest_start 0 latest_start 1000 service_t 15

req_capacity 0 n_loc_choices 1 loc 10

id 18 task 12 earliest_start 0 latest_start 1000 service_t 0

req_capacity 0 n_loc_choices 1 loc 2

id 19 task 12 earliest_start 0 latest_start 1000 service_t 0

req_capacity 0 n_loc_choices 1 loc -1

id 20 task 13 earliest_start 0 latest_start 1000 service_t 0

req_capacity 0 n_loc_choices 1 loc 3

id 21 task 13 earliest_start 0 latest_start 1000 service_t 0

req_capacity 0 n_loc_choices 1 loc -1

id 22 task 14 earliest_start 0 latest_start 1000 service_t 0

req_capacity 0 n_loc_choices 1 loc 4

id 23 task 14 earliest_start 0 latest_start 1000 service_t 0

req_capacity 0 n_loc_choices 1 loc -1

TASKS

id 0 reward 0 max_time_span 1000 n_req_attribs 1 attrib 0

n_subtasks 2 subtask 0 subtask 1

id 1 reward 0 max_time_span 1000 n_req_attribs 1 attrib 0

n_subtasks 2 subtask 2 subtask 3

v

id 2 reward 0 max_time_span 1000 n_req_attribs 1 attrib 0

n_subtasks 2 subtask 4 subtask 5

id 3 reward 0 max_time_span 1000 n_req_attribs 1 attrib 0

n_subtasks 2 subtask 6 subtask 7

id 4 reward 0 max_time_span 1000 n_req_attribs 1 attrib 0

n_subtasks 2 subtask 8 subtask 9

id 5 reward 0 max_time_span 1000 n_req_attribs 1 attrib 0

n_subtasks 2 subtask 10 subtask 11

id 6 reward 0 max_time_span 0 n_req_attribs 1 attrib 1

n_subtasks 1 subtask 12

id 7 reward 0 max_time_span 0 n_req_attribs 1 attrib 1

n_subtasks 1 subtask 13

id 8 reward 0 max_time_span 0 n_req_attribs 1 attrib 1

n_subtasks 1 subtask 14

id 9 reward 0 max_time_span 0 n_req_attribs 1 attrib 1

n_subtasks 1 subtask 15

id 10 reward 0 max_time_span 0 n_req_attribs 1 attrib 1

n_subtasks 1 subtask 16

id 11 reward 0 max_time_span 0 n_req_attribs 1 attrib 1

n_subtasks 1 subtask 17

id 12 reward 0 max_time_span 1000 n_req_attribs 1 attrib 0

n_subtasks 2 subtask 18 subtask 19

id 13 reward 0 max_time_span 1000 n_req_attribs 1 attrib 0

n_subtasks 2 subtask 20 subtask 21

id 14 reward 0 max_time_span 1000 n_req_attribs 1 attrib 1

n_subtasks 2 subtask 22 subtask 23

PREC_CONSTRAINTS

id 0 subtask1 12 subtask2 0

id 1 subtask1 13 subtask2 2

id 2 subtask1 14 subtask2 4

id 3 subtask1 15 subtask2 6

id 4 subtask1 16 subtask2 8

id 5 subtask1 17 subtask2 10

SYNCH_CONSTRAINTS

NO_OVERLAP_CONSTRAINTS

MUTEX_CONSTRAINTS

LOC_CAPACITY_CONSTRAINTS

PROXIMITY_CONSTRAINTS

vi

APPENDIX C: Sample Solution File

% agent subtask x y wait_t start_t

0 2 -4.57327 -8.60688 181.59 199.62

0 3 -8.22409 -7.57042 0 214.1

1 8 6.85044 -4.49372 141.62 154.27

1 0 9.81207 -4.08563 0 166.74

1 4 8.99279 -2.3565 0 176.52

1 1 4.01953 6.19353 0 206.24

1 5 4.01953 6.19353 0 211.24

1 9 4.01953 6.19353 0 216.24

1 10 1.93253 1.12841 0 234.93

1 6 -3.5458 9.76731 0 265.5

1 7 4.01953 6.19353 0 291.41

1 11 4.01953 6.19353 0 296.41

2 15 -3.5458 9.76731 0 21.76

2 17 1.93253 1.12841 0 62.33

2 14 8.99279 -2.3565 0 97.01

2 12 9.81207 -4.08563 0 116.79

2 16 6.85044 -4.49372 0 139.26

2 13 -4.57327 -8.60688 0 184.61

