

ASHESI UNIVERSITY COLLEGE

A LIGHTWEIGHT IMPLEMENTATION OF THE INTERNET OF

THINGS

APPLIED PROJECT

B.Sc. Computer Science

Michael Annor

2016

Page | 1

Branding and Identity Guide
The Ashesi brand and logo are integral parts of our worldwide image and identity. We must be
careful of how and where the Ashesi is used to ensure we maintain the integrity of our
organization.

This guide has been developed to help you clearly understand our policies towards the use of
the Ashesi logo in a variety of mediums, as well as type faces and a color palate to help you
produce materials that maintain the brand’s integrity. We would request that you seek
approval from the Ashesi University College Marketing Committee before creating any media
that reproduces the Ashesi logo.

Contents
The Logo .. 2

Using the Logo .. 3

Clear Space and Logo Design .. 5

Unacceptable Logo Uses ... 6

The Ashesi Seal .. 7

Color Palette ... 8

Fonts.. 8

Mission Statement .. 9

	
i

ASHESI UNIVERSITY COLLEGE

A Lightweight Implementation of the Internet Of Things

APPLIED PROJECT

Applied Project submitted to the Department of Computer Science,

Ashesi University College in partial fulfilment of the requirements for the

award of Bachelor of Science degree in Computer Science

Michael Annor

April 2016

	
ii

Declaration

I hereby declare that this applied project is the result of my own original work and that

no part of it has been presented for another degree in this university or elsewhere.

Candidate’s Signature:

…………………………………………………………………………………………

Candidate’s Name:

…………………………………………………………………………………………

Date:

…………………………………………………………………………………………

I hereby declare that preparation and presentation of this applied project were

supervised in accordance with the guidelines on supervision of applied project laid

down by Ashesi University College.

Supervisor’s Signature:

…………………………………………………………………………………………

Supervisor’s Name:

…………………………………………………………………………………………

Date:

…………………………………………………………………………………………

	
iii

Acknowledgement

I am immensely thankful for all the support I have received from my supervisor,

family and friends. Without their support I would not be able to complete this

dissertation. I am grateful for the opportunity to broaden my understanding of the

Internet of Things and related technologies.

	
iv

Abstract

The Internet has undergone many changes in its 45-year-old history. The next

wave for the Internet is the Internet of Things (IoT). IoT is is defined as “group of

infrastructures interconnecting connected objects and allowing their management, data

mining and the access to the data they generate” (Dorsemaine). This project implements

a lightweight IoT system that can control devices in the home. This system can then be

extended to other use cases in agriculture, healthcare and education.

	
v

Table of Contents

Declaration ... ii

Acknowledgement .. iii

Abstract .. iv

List of Tables ... vii

List of Figures ... viii

1. Chapter 1: Introduction .. 1

1.1 Background .. 1

1.2 Problem .. 2

1.3 Objective .. 2

1.4 Overview of Remaining Chapters .. 3

2. Chapter 2: Requirements .. 4

2.1 Overview .. 4

2.2 Overall Description ... 9

2.3 Specific Requirements .. 15

2.4 External Interface Requirements ... 27

2.5 Nonfunctional Requirements .. 29

3. Chapter 3: Architecture and Design .. 32

3.1 Introduction to Architecture and Design ... 32

3.2 Design Considerations ... 32

3.3 Data Design ... 38

3.4 Human Interface Design (Screens) .. 40

Hardware Design ... 46

	
vi

3.5 Traceability Requirement Matrix: ... 47

4. Chapter 4: Implementation ... 49

4.1 Tools, Libraries and Frameworks Employed... 49

4.2 Implementation Techniques ... 51

4.3 How the System Works ... 53

4.4 Evidence of Implementation ... 55

5. Chapter 5: Testing and Results .. 59

5.1 Approach .. 59

5.2 Unit Testing .. 59

5.3 Component Testing .. 61

5.4 System Testing .. 63

5.5 User Testing ... 65

6. Chapter 6: Conclusions and Recomendations ... 66

6.1 Summary .. 66

6.2 Limitations ... 66

6.3 Future Work ... 66

7. References ... 67

	
vii

List of Tables

Table 2.1: Table of Requirements for REQ-DA-1 ... 16

Table 2.2: Table of Requirements for REQ-DA-2 ... 17

Table 2.3: Table of Requirements for REQ-DA-3 ... 17

Table 2.4: Table of Requirements for REQ-DA-4 ... 18

Table 2.5: Table of Requirements for REQ-DA-5 ... 18

Table 2.6: Table of Requirements for REQ-RDC-1 .. 20

Table 2.7: Table of Requirements for REQ-RDC-2 .. 21

Table 2.8: Table of Requirements for REQ-RDC-3 .. 21

Table 2.9: Table of Requirements for REQ-RDC-4 .. 22

Table 2.10: Table of Requirements for REQ-RDC-5 .. 22

Table 2.11: Table of Requirements for REQ-RDC-6 .. 22

Table 2.12: Table of Requirements for REQ-AS-1 ... 24

Table 2.13: Table of Requirements for REQ-AS-2 ... 25

Table 2.14: Table of Requirements for REQ-AS-3 ... 25

Table 2.15: Table of Requirements for REQ-AS-4 ... 26

Table 2.16: Table of Requirements for REQ-AS-5 ... 26

Table 3.1: Table of Database Fields and Descriptions .. 39

Table 3.2: Matrix Mapping Requirements to System Components 47

Table 5.1: Summary of unit test results for Remote Control 59

Table 5.2: A table showing the results for a scalability test .. 64

	
viii

List of Figures

Figure 2.1: Building Blocks of the Internet of Things ... 5

Figure 2.2: Block Diagram showing the components of the IoT system 7

Figure 2.3: Context Diagram of System to be Developed ... 10

Figure 2.4: Use Case Diagram for Device Automation ... 16

Figure 2.5: Use Case Diagram for Remote Device Control .. 20

Figure 2.6: Use Case Diagram for Auxiliary Services .. 24

Figure 3.1: A Deployment Block Diagram Showing the Subsystems of the System .. 33

Figure 3.2: A Sequence Diagram for Device Automation ... 34

Figure 3.3: A Sequence Diagram for Remote Device Control 35

Figure 3.4: A Sequence Diagram for Auxiliary Services .. 36

Figure 3.5: An Alternative Architectural Design for the System 37

Figure 3.6: Selected Architecture with Cloud .. 38

Figure 3.7: A Data Model Diagram for the System ... 39

Figure 3.8: User Interface Design (Option A) ... 41

Figure 3.9: User Interface Design (Option B) ... 42

Figure 3.10: User Interface Design (Option C) ... 43

Figure 3.11: User Interface Design (Option D) ... 43

Figure 3.12: User Interface Design (Option E) .. 44

Figure 3.13: Schematic Diagram for Connecting Physical Devices to ESP8266 46

Figure 4.1: Breadboard Connection of ESP8266 to an LED 55

Figure 4.2: Soldered board with ESP connected to a light bulb 56

Figure 4.3: Soldered board with Humidity/Temperature Sensor and ESP8266 56

Figure 4.4: Interface showing the list of connected devices .. 57

Figure 4.5: Interface showing controls for a selected device 57

	
ix

Figure 4.6: Interface showing a list of connected sensors ... 58

Figure 5.1: Screenshot of Jasmine Unit Test Results .. 59

Figure 5.2: Screenshot of Broker Test Application ... 61

Figure 5.3: Screenshot of Postman application for testing database 62

	
1

1. Chapter 1: Introduction

1.1 Background

The emergence and growth of the internet over the last five decades has led to a

massive interconnection of people and devices across the globe, thus, facilitating broader

spectrum of communication as well as the ability to work remotely. In recent years, the

internet has grown past serving content on webpages to becoming more user-centric. It has

become a participatory medium, allowing users to get more social and interactive by

creating and sharing and collaborating on content (Castellani, Dissegna, Bui, & Zorzi,

2012). Gradually, the walls between the online and offline worlds are fading.

Today, the internet is undergoing a significant transformation. A “new class of users

is establishing itself in the Internet landscape”- physical objects (Castellani, Dissegna, Bui,

& Zorzi, 2012). It is predicted that there will soon be billions of these physical objects

interconnected and liaising between the offline and online worlds (Dorsemaine, Gaulier,

Wary, Kheir, & Urien, 2015). These connected physical objects will improve and redefine

processes. They will also serve as a means for data collection for big data mining to enable

better and more accurate predictions (Dorsemaine, Gaulier, Wary, Kheir, & Urien, 2015).

Big data collected from physical objects is being used to gather intelligence with use cases

across several industries including energy management and optimization, precision

agriculture and renewable energy forecasting (Hamann, 2015). This is the basis of the

Internet of Things (IoT).

	
2

The Internet of Things (IoT) paradigm has the potential to disrupt life as we know it. It

would birth new commercial opportunities for businesses, evident from present investment

from large multinational technology companies including, Google, Apple, IBM and

Phillips. The innovative application of the Internet of Things in the household, out in the

city and in industry would make life more convenient in these domains.

1.2 Problem

The predicted success of the Internet of Things (IoT) is not without obstacles. The

Internet of Things (IoT) is lacking a set of widely accepted open standards for the

interconnection of physical objects. At present this hinders the seamless interoperability of

devices from varying vendors. There are however a few open source standards in IoT

including “architectural frameworks, reference models and data-abstraction blueprints”

(Logvinov, 2014).

The IoT could be described as the next big thing on the internet after social media.

Fittingly, enjoyable user-experiences would be a key factor to the widespread acceptance of

IoT as is the case with social media. A simple, well defined standard would be helpful for

the growth of IoT.

1.3 Objective

This project would, taking cognizance of the potential opportunities and obstacles

of the Internet of Things develop a model IoT-based system that allows interconnection and

control of physical devices over the internet to investigate the directions the IoT paradigm

should take for widespread adoption especially in the context of metropolitan Africa.

	
3

1.4 Overview of Remaining Chapters

The paper will next discuss the requirements of the system, followed by a chapter on the

design considerations for the system. Thereafter the paper will discuss the implementation

of the system. Next the paper will present the tests that were run on the developed system

and the results. The paper will then conclude with a chapter on limitations and possible

future work.

	
4

2. Chapter 2: Requirements

2.1 Overview

This section discusses the scope of this project and provides an overview of the

requirement chapter.

2.1.1 Scope

This project designs and implements the Internet of Things in the context of a smart

home, connecting physical objects with sensors to allow them automatically respond to

changes in the environment and messages from other devices. For example, as shown in

Figure 2.1, A proximity sensor may be used to sense a person’s presence in a room,

communicate this to a gateway which would in turn switch on a light bulb. In a similar

manner, sensors can be used to operate other devices including fridges, washing machines,

air conditioners, etc. The system should also allow a human user to remotely override the

automated control of these devices. In addition, the system should keep the human user

updated whenever changes occur for example, a user may receive an SMSwhen his front

door is unlocked.

In this project, there is the option to either use a vendor-provided Internet of Things

(IoT) Framework, or to independently build the framework that would interconnect the

physical objects using available open standards.

	
5

Figure 2.1: Building Blocks of the Internet of Things

A given IoT Framework will have common building blocks as shown in Figure 2.1.

Connected Devices and Sensors could range from everyday home appliances to industry

specific machinery, for example cookers, thermostats, unmanned forklifts, sprinklers, etc.

These devices and sensors are equipped to connect to a computer network over various

communication protocols. Common communication protocols in IoT include Constrained

Application Protocol (CoAP), Message Queuing Telemetry Transport (MQTT), OMA

LightweightM2M (LWM2M).

MQTT is a lightweight publish subscribe protocol for low bandwidth, high latency

networks. This makes MQTT ideal for Machine to Machine communications and the

Internet of Things. MQTT is convenient for use in constrained environments and has been

widely used across industries since 1999. (MQTT, 2016). CoAP is a specialized web

transfer protocol for use with constrained nodes and constrained networks (CoAP, 2016).

LWM2M is a device management protocol suitable for sensor or cellular networks (Eclipse,

2016). These protocols connect the devices and sensors to a Gateway/Router that in turn

channels the communication to a Backend Engine for processing.

Two common options for the vendor-provided frameworks are the Eclipse IoT

Framework and the Windows 10 IoT Core.

The Eclipse Foundation manages a collection of open source IoT projects, one of which is

the Kura Open Source framework for IoT. Windows 10 IoT Core is Microsoft’s IoT

	
6

platform for its Windows platform, with editions for low cost devices, mobile and an

Enterprise Edition for industry devices (Microsoft, 2016).

Initially the inclination was to develop parallel systems using the Kura Open Source

framework for IoT on one hand and the Windows 10 IoT Core on another and there after

run comparative tests to make recommendations on the more appropriate system. However,

in light of the many threats to the Internet of Things (IoT) growing to the predicted scale

such as challenges with interoperability, the absence of widely accepted standards, etc., it

would be unfair to present a vendor’s framework as ideal over it’s competitors. Instead, this

project would take a direction to develop a system using open technologies as a simple but

representative model for a successful Internet of Things (IoT) era.

Unlike the Windows 10 IoT Core which is limited to Windows operating systems

and Eclipse Kura framework which is complex with support for different communication

technologies including Wi-Fi and Bluetooth, this project will be a lightweight and an

interoperable implementation of an IoT solution.

	
7

In essence, the project would have different building blocks as shown below in the

block diagram in Figure 2.2. These blocks would enable one to build an IoT framework with

a minimal set of tools. With only a Hub, Mobile application and Connected Devices, a user

can connect and control an entire home.

Figure 2.2: Block Diagram showing the components of the IoT system

The different components of the IoT system are explained below:

• Internet of Things (IoT) Hub (Broker): The Hub is the central server that will run

all the services in the local environment. The main service that will run on the Hub

is the MQTT Broker service. The Broker is a service that will handle the publishing

and subscribing of messages using the MQTT protocols. It will connect and facilitate

communication across clients. A client is a device or service that connects to the

Broker and can send and receive messages. A publisher client is a client that is

configured to send messages and a subscriber client is one, configured to receive

messages. In some cases, a single device or service may be both a publisher and

subscriber. For example, a light bulb can publish its state and subscribe to receive

control instructions.

	
8

This IoT Broker software will run on a Raspberry Pi to interface the

connected physical objects and a network. The Raspberry Pi is a portable low cost

computer largely used for educational and prototyping purposes. It will be used

instead of other alternatives (laptop computer, BeagleBone) because of its affordable

price and computing power, making it a convenient choice. The Raspberry Pi 2

Model B has a 900MHz quad-core processor and 1GB RAM. As well as run services

and process that will facilitate the automation and remote control.

The IoT Hub will connect devices via the MQTT protocol and will define

how message passing is done between clients; publishers and subscribers. Had the

project gone down the initial path, the IoT Hub (Broker) would be the host for the

frameworks- Windows 10 IoT Core and Eclipse IoT Framework. There would be an

internet accessible clone of the IoT Hub in the cloud to connect clients outside of

the home.

• Mobile Application: The mobile application would be the user’s interface to

interact with the system and control the connected physical devices. The application

would run on the Android Operating System and would connect to the devices

through the IoT Hub (Broker) using the MQTT Protocol and Websockets.

Websockets is a protocol that creates an interactive full duplex channel over a single

TCP connection. In this project it would be used to create web MQTT clients.

The mobile app would support interactions to view connected devices and

their states, control these states and receive notifications when the states are

changed. Additionally, the system could also allow the user to view reports on the

system with respect to usage patterns, data usage and costs, etc.

• Connected Physical Objects: The system will be designed to control everyday

electronic devices. Since a standard device (for example, light bulb or air

	
9

conditioner) does not come with connectivity features, the devices will be modified

to include a Wi-Fi microcontroller module, to enable them communicate with the

other parts of the system, and be controlled remotely. The inclusion of the Wi-Fi

microcontroller module would thus make them connected physical objects/devices.

These Wi-Fi enabled devices will run firmware that enable the remote control of the

devices over a Wi-Fi network, communicating using the MQTT protocol as well.

2.1.2 Overview of Software Requirement Specification

The requirement specification in this chapter describes the software product into

detail, specifying the functions of the product, the user classes and their characteristics. The

latter parts of the chapter will also provide details on the operating platform for the software

product comprising the hardware platform, operating systems and other required software

components and applications. The chapter will also specify the software requirements to

enable a software engineer design the application. The chapter will also specify the

interfaces of the software as well as the non-functional requirements.

2.2 Overall Description

This section provides an overview of for the requirements which are defined in detail

in later in the chapter. The context diagram in Figure 2.3 at a high level describes the inner

workings of the system. Some sensors connected to the system will have readings relevant

to some devices, thus would form the device’s set of related sensors. The two main actors,

the resident and home owner are also shown in Figure 2.3 and how they interact with the

system. They use the application to control and manage the system respectively. All

communication links to the Hub are publish and subscription messages. The Hub is the

	
10

central point where messages are processed. When the hub receives a message, it forwards

it to the desired recipient.

Figure 2.3: Context Diagram of System to be Developed

2.2.1 Product Perspective

As shown in the context diagram in Figure 2.3, the system will comprise three parts

namely:

a) Internet of Things (IoT) Hub (Broker)

b) Mobile Application

c) Connected Physical Object

On the whole, the system will be largely self-contained and will run independent of other

systems. However, to some extent, some of the parts listed above will interface with other

external systems and services in order to achieve the goals of this system.

• Internet of Things (IoT) Hub (Broker): The Hub is the suite of services that will

run on a Raspberry Pi in the local environment. This part of the system will be

	
11

independent of other systems. It will run its own database service and its own MQTT

broker service. It will interface with other parts of the system, but no external

systems. The broker will handle messaging between clients, and will bridge with

another broker in the cloud for clients both in the local home environment and out

on the internet.

• Mobile Application: This part will interface with the broker which in turn interfaces

with the connected physical objects. The mobile application will run with other

external systems to expand its features to include push notifications from Amazon

Simple Notification Service and SMS messaging from SMSGH. This design of the

mobile application software will help to satisfy the broad requirements of the overall

system to enable the remote control of physical and otherwise not-connected objects.

As well as monitor these objects remotely.

• Connected Physical Objects: Given that IoT is about bridging the connected world

with the not-connected. A connected physical object is a device that can be accessed

over a network. These may be electrical devices or sensors. A sensor is a connected

physical object that sense changes in the physical world and report on the state. This

part of the system will with the knowledge of electronics and an ESP8266 Wi-Fi

module, interface un-connected, regular and un-automated physical objects with this

IoT platform. The ESP8266 is a low cost microcontroller with Wi-Fi capabilities

and the full TCP/IP stack and will be used to extend connectivity to traditional non-

smart devices without network connectivity.

2.2.2 Product Functions

The principal functions of the software systems are as listed below:

	
12

• Device Automation: Based on clearly defined rules, this function enables the

system to automate the control of physical devices. This functionality will

particularly adjust the states of physical objects given real-life properties most likely

from connected sensors.

• Remote Device Control: This function will enable an end-user to be able to override

the programmed automation. A user should be able to remotely control individual

objects at will.

• Remote Device Monitoring: The end-user should be able to view and monitor the

current states of connected physical object. These may be the on or off state of two-

state devices or the value of analog readings like temperature.

2.2.3 User Classes and Characteristics

As shown in the Context Diagram of the system (Figure 2.3) There are two main user

classes of the system. One representing a home owner and the other, a resident.

• Home Owner/Manager: The home owner/manager could be any technological

competent individual. Competence in this instance would mean that at the very least,

the user should be able to operate applications on a smart phone with relative ease.

In addition, the user may either be the owner of the home or be the person designated

to manage the home. This would mean the user would have more permissions than

a regular member of the home. Gender and educational level are not essential

characteristics for this user class although at the very least the user should be able to

read, in order to comfortably navigate and operate the application.

• Home Resident: This home resident should have demographics and characteristics

very similar to the home owner/manager. The difference would arise in the levels of

permissions given and the amount of control the user has over the home. Since the

	
13

resident has no managing responsibilities, he/she is expected to have fewer

permissions than the home owner/manager.

2.2.4 Operating Environment

The different software modules of the system will run on different hardware

platforms. The IoT Hub will run on a Raspberry Pi 2 Model B running the Raspbian

Operating System because of its low cost, computing power and physical size. Other less

ideal alternatives include be a PC, which is not as portable, or a mobile device which has a

less powerful processor and fewer operating system options. The software to control and

connect the Physical objects will run on the ESP8266 Wi-Fi module. And the End-user

android application will run on a mobile phone running the Android operating system

version 4.4 and upwards.

2.2.5 Design and Implementation Constraints

• The ESP8266 Wi-Fi module that would be used to give physical devices

connectivity features has limitations on memory. For this project, the ESP8266s with

512KB flash memory were sourced. This allows firmware to be uploaded and run.

However, in order for over-the-air updates (wireless) to firmware to be enabled,

memory of double the program size (1MB) is required to hold the existing firmware

and the replacement firmware. Thus, for this project, with the ESP8266s available,

updates to firmware would have to be done using a serial connection.

• The ESP8266 is not designed to be 5V tolerant, thus all pins connected to the module

must be stepped down to 3.3V. This would require either a 3.3V power supply unit

or a more complex circuit design to do the conversion. A voltage beyond 3.3V will

destroy the module.

	
14

• Communication using the MQTT protocol would openly transfer packets of data

over the network connection. The system in granting access to devices over the

internet requires that security measures are put in place to maintain the user’s safety

and privacy. Thus, communication may be encrypted at the expense of having a

lightweight system because it increases the processing load. For this system,

lightweight is a bigger priority than encryption,

• Another design consideration to make is the quality of service (QoS) to use for

transferring packets over the network using the MQTT protocol. There are 3 levels

Quality of Service with MQTT, which determine how reliable the broker or client

handles messaging. “Higher levels of QoS are more reliable, but involve higher

latency and have higher bandwidth requirements” (Mosquitto, 2016). To meet the

objective of being lightweight, the preferred QoS for the system is Level 1.

2.2.6 Assumptions and Dependencies

Using Wi-Fi as the communication channel for all devices in the system presents key

assumptions and dependencies that must be met for the system to function as designed.

These are listed below:

• A Wi-Fi network must be set-up where the system will be installed.

• The Wi-Fi network must have consistent access to the internet.

• All devices connected to the system must fully support the MQTT protocol.

• There is consistent electricity and back-up power supply in the case of a power cut

for the system to work reliably, especially as a user may be remote.

• The user uses a mobile device running the Android operating system.

	
15

2.3 Specific Requirements

The functional requirements of the system have been organized according to the

major product functions: Device Automation, Remote Device Control and Auxiliary

Services.

2.3.1 Device Automation

This section describes the Device Automation requirement and provides use cases

and a scenario. Detailed functional requirements are then listed and discussed.

2.3.1.1 Description and Priority

This feature allows the system to automate the control of devices based on some

parameters. Its is a high priority feature, as the user would not be expected to manually

control all the connected physical objects at all times. Automation is a primary objective of

IoT. The automation of control will make living and management of the home more

convenient. The use case diagram in Figure 2.4 describes a user’s interactions with the

system concerning this requirement.

	
16

2.3.1.2 Use Case: Device Automation

Figure 2.4: Use Case Diagram for Device Automation

2.3.1.3 Requirement Scenario: Device Automation

Mrs. A, a home owner acquires the system with connected devices and sensors.

Being preoccupied with late meetings at the office, Mrs. A normally gets home very late in

the evenings to a very dark compound. To deal with this problem, Mrs. A seeks to be able

to program her outside security lights to come on once the sun has set. She sets up her

connected light bulbs and connected light sensors and adds a new configuration to the

system, to allow it control the lights as she desires

2.3.1.4 Functional Requirements

REQ-DA-1: A user should be able to add automation rules for control the connected devices

Table 2.1: Table of Requirements for REQ-DA-1

Description: A home owner/manger would have an interface that allows
him/her to create rules that the system would use to
autonomously control the connected physical devices. An
automation rule will be of the form:
IF [SENSOR] HAS [SENSOR_READING] READING
THEN CHANGE [PHYSICAL DEVICE] TO [TARGET
STATE]

Inputs: Select Sensor (e.g. daylight sensor)

	
17

Trigger Sensor Reading (e.g. bright)
Select Physical Device (e.g. front door light bulb)
Target State of Physical Device (e.g. off)

Source:

The user would select the sensor and its trigger reading as well
as the connected physical device and the state it should be
changed to

Outputs: The user received feedback on the success of the addition of
the new rule

Destination: The feedback will be viewed in the user’s interface
The rule will be delivered to the automation engine that deals
with the autonomously controlling the connected devices

Action: Using a diagram, select a combination of inputs would create
a rule that would control the devices in the desired manner

Pre-condition: Physical devices and sensors need to be already connected to
the system

Post-condition: The devices would be controlled with the rules put in place
Side effects: Rules may conflict so the system would have to find a conflict

resolution mechanism

REQ-DA-2: A user should be able to view all the automation rules setup in the system

Table 2.2: Table of Requirements for REQ-DA-2

Description Once a rule has been configured, a should be able to view a
list of all the rules that have been setup in the system

Inputs None
Source N/A
Outputs The user views a list of the all the rules in the system
Destination The listed rules will be viewed in the user’s interface
Action At the click or press of a button, a user should be able to

request for a list of all the rules stored in the system
Pre-condition Automation rules need to be already setup in the system
Post-condition None
Side effects None

REQ-DA-3: A user should be able to update automation rules for control the connected

devices

Table 2.3: Table of Requirements for REQ-DA-3

Description Once a rule has been configured, a should be able to
conveniently modify the existing rules at will in any form
possible

Inputs The rule to be updated
At least one of the following inputs is needed to modify the
rule:
Select Sensor (e.g. daylight sensor)

	
18

Trigger Sensor Reading (e.g. bright)
Select Physical Device (e.g. front door light bulb)
Target State of Physical Device (e.g. off)

Source The user would decide what changes should be made to the
rule

Outputs The user receives feedback on the success of the change
Destination The feedback is sent to the user’s interface

The updated rule is delivered to the automation engine for the
changes to take effect in the real world

Action A user should be able to view a rule and modify any of the
parts of the rule to suit any changes that need to be made in
the real world

Pre-condition The user needs to be able to view the rules that are setup in
the system

Post-condition The devices would be controlled with the updated rules put in
place

Side effects The updated rule may conflict with another rule so there will
need to be tie breakers

REQ-DA-4: A user should be able to remove automation rules for control the connected

devices.

Table 2.4: Table of Requirements for REQ-DA-4

Description Once a rule is no longer needed to be enforced in the system,
a user should be able to remove it, so that it has no effect on
the connected physical devices

Inputs The rule to be removed
Source The user decides which rule no longer needs to be enforced
Outputs Feedback on the success of the deletion
Destination The feedback is viewed on the user’s interface
Action A user may at the click or press of a button, delete a rule from

the set of rules in the system
Pre-condition The rule needs to be in the system

The user needs to be able to view the rule prior to deletion
Post-condition The automation engine is updated to no longer enforce the

deleted rule
Side effects None

REQ-DA-5: The system should be able to autonomously control the connected devices

using the programmed rules.

Table 2.5: Table of Requirements for REQ-DA-5

Description The system would run an automation engine that monitors the
rules and the parameters given in the rules and trigger an

	
19

action when the parameter is met. The action triggered will be
the change in the state of a connected physical device

Inputs The automation rules in the system
Source The system’s database
Outputs A change in the state of affected physical devices

A notification sent to the user to keep him/her aware
Destination The change in state is in the real world with physical devices

The notification may be viewed on the user’s interface
Action The system will for each rule given, monitor the listed sensors.

If a sensor reading matched the specified trigger reading, the
corresponding connected physical device is controlled in
accordance with the given rule

Pre-condition The rule needs to be in the system
The physical devices and sensors need to be connected to the
system

Post-condition The physical devices should change state in the real world
Side effects None

2.3.2 Remote Device Control

This section describes the Remote Device Control requirement and provides use

cases and a scenario. Detailed functional requirements are then listed and discussed.

2.3.2.1 Description and Priority

This feature allows the end-user to control all the physical objects connected to the

system. It is of high priority as it is the only feature that is centered around the end-user. A

user should be able to view the available options and select one, which will have an effect

in the real world. This feature overrides automated control in Subsection 3.1, Device

Automation. The use case diagram in Figure 2.5 describes a user’s interactions with the

system concerning this requirement.

	
20

2.3.2.2 Use Case: Remote Device Control

Figure 2.5: Use Case Diagram for Remote Device Control

2.3.2.3 Requirement Scenario: Remote Device Control

Mrs. A, a home owner with 3 children closes from work an hour after her children

get home from school. She arranges for a driver to pick them off from school. When they

get home, she wants to be able to unlock the front door so they can enter the house because

they do not have keys. She installs a connected door lock along with the system and from

her office, using her mobile phone, she can see if the door is locked or not, and can unlock

the door for the children to enter. Throughout the day, when nobody is home, she can know

if the door is locked and can be notified if the anyone unlocks it.

2.3.2.4 Functional Requirements

REQ-RDC-1: The user should be able to view all devices connected to the system

Table 2.6: Table of Requirements for REQ-RDC-1

Description A user should be able to very easily view a list of all the
devices in the system from anywhere in the world, at anytime

Inputs None
Source N/A
Outputs A list of connected devices in the system
Destination The list can be viewed on the user’s interface

	
21

Action The user can at the click or press of a button list all the
connected devices in the system

Pre-condition There needs to be connected devices in the system
Post-condition None
Side effects None

REQ-RDC-2: The user should be able to view each connected device’s current status

Table 2.7: Table of Requirements for REQ-RDC-2

Description The user should be able to view the current state of a
connected device, whether it is on, off or whatever states a
device is configured to have

Inputs The device whose current state the user wants to view
Source The user selects from a list in the the user’s interface
Outputs The current state of the connected device
Destination The state will be displayed in the user interface
Action A user at the click or press of a list item, may be able to request

the current state a device
Pre-condition The physical device needs to be connected
Post-condition None
Side effects None

REQ-RDC-3: The user should be able to view each connected device’s set of related sensors

Table 2.8: Table of Requirements for REQ-RDC-3

Description The user should be able to view the set of sensors which are
directly related to a connected device

Inputs The device whose current state the user wants to view
Source The user selects from a list in the the user’s interface
Outputs A list of device-related sensors in the system
Destination The sensors will be displayed in the user interface
Action A user at the click or press of a list item, may be able to request

the device’s related sensors
Pre-condition The physical device needs to be connected

The associated sensors need to be connected
Post-condition None
Side effects None

REQ-RDC-4: The user should be able to view the controls available for each connected

device

	
22

Table 2.9: Table of Requirements for REQ-RDC-4

Description The user should be able to view the set of control options to
change the state of a device

Inputs The device whose controls the user wants to view
Source The user selects from a list in the the user’s interface
Outputs The set of control options available for the specified device
Destination The set of control options will be displayed in the user

interface
Action A user at the click or press of a list item, may be able to request

for the device’s available controls
Pre-condition The physical device needs to be connected
Post-condition None
Side effects None

REQ-RDC-5: The user should be able to view all the sensors connected to the system

Table 2.10: Table of Requirements for REQ-RDC-5

Description A user should be able to very easily view a list of all the
sensors in the system from anywhere in the world, at anytime
along with their current readings

Inputs None
Source N/A
Outputs A list of connected sensors in the system and their current

readings
Destination The list can be viewed on the user’s interface
Action The user can at the click or press of a button list all the

connected sensors in the system
Pre-condition There needs to be connected sensors in the system
Post-condition None
Side effects None

REQ-RDC-6: The user should be able to control each device and change its state in the real

world

Table 2.11: Table of Requirements for REQ-RDC-6

Description The user should be able to override automation rules and at
anytime and from anywhere, be able to change the state of any
of the connected physical devices in the system

Inputs The device to be controlled
The desired control to change the device’s state to the target
state

Source The user selects the device to be controlled from a list in the
interface
The user selects the controls from the interface

	
23

Outputs A change in the state of affected physical devices
Feedback on the success in changing the device’s state

Destination The change in state will occur in the real, physical world
The feedback will be received in the user’s interface

Action A user may view a connected device along with it’s related
sensor readings and available controls. If the physical
conditions in the home (got from the sensors) warrant a
change in the device’s state, the user may use any of the
control options available to effect this change

Pre-condition The user should be able to view connected devices, their
current states and their current related sensor readings
The user should be able to view the controls available for the
selected device

Post-condition The device should change state in the real world to the desired
state

Side effects The control may override conflicting automation rules. If a
rule is being implemented whiles a user controls a device, the
user’s control will be used

2.3.3 Auxiliary Services

This section describes the requirement for Auxiliary Services and provides use cases

and a scenario. Detailed functional requirements are then listed and discussed.

2.3.3.1 Description and Priority

This feature comprises all the services provided to support the main features (device

automation and remote control). This includes customization features to suit the user’s

preferences and other features that enhance the usability of the system. Such services

include adding new devices, accessing a log of past transactions and changing settings (e.g.

network access point configurations). The use case diagram in Figure 2.6 describes a user’s

interactions with the system concerning this requirement.

	
24

2.3.3.2 Use Case: Auxiliary Services

Figure 2.6: Use Case Diagram for Auxiliary Services

2.3.3.3 Functional Requirements

REQ-AS-1: The user should be able to add a device to the system

Table 2.12: Table of Requirements for REQ-AS-1

Description A home owner/manager should be able to add a new device to
the system and configure it accordingly

Inputs Device ID
Device Name
Location
Available Controls
Set of Related Sensors

Source The user doing the configuration would decide on these inputs
Outputs Notification message on the success of the addition of a new

device
Destination The user will receive the notification on the user’s interface
Action A user should be able to conveniently add a device to the

system and specify its name, location, available controls and
related sensors through an intuitive interface. The user should
be able to connect the physical device to the IoT Hub.

Pre-condition The system is operational. The device is connected to the
network.

Post-condition The new device would be operable either via remote control
or using the automation rules

	
25

Side effects None

REQ-AS-2: The user should be able to remove a device from the system

Table 2.13: Table of Requirements for REQ-AS-2

Description A home owner/manager may decide he/she no longer wants a
particular device connected to the system. The user should be
able to conveniently remove the device and restrict access to
it through the system

Inputs The device to be removed
Source The user decides which device to remove from the system
Outputs Feedback on the success of the deletion
Destination The feedback may be viewed on the user’s interface
Action The home owner/manager should be able to view devices

connected to the system and conveniently remove any of them
at will. These connected device will no longer be functional
within the context of the system

Pre-condition The device must be connected to the system to be able to be
removed

Post-condition The device will no longer be involved in automation and
controllable via the mobile app

Side effects None

REQ-AS-3: The user should be notified whenever major changes are made to the system

Table 2.14: Table of Requirements for REQ-AS-3

Description The Internet of Things enables physical devices to get
connected and be accessible from anywhere in the world with
an internet connection. Thus once the devices in the home are
connected, they can be operated remotely. A home
owner/manager would want to be kept updated on what
happens in the home, irrespective of where he/she is

Inputs Device Control Event
Source System generated based on the occurrence
Outputs Notification Message
Destination SMS, Push Notification or Email
Action The notification engine is able to connect to services that

allow the sending of SMSs, Mobile Push Notifications and
Emails from within the system whenever a notable change
occurs. The user is thus promptly alerted

Pre-condition A change occurs in the system
Post-condition None
Side effects None

REQ-AS-4: The user should be able to view a log containing a history of device control

	
26

Table 2.15: Table of Requirements for REQ-AS-4

Description The system should keep a trace of all control transactions for
auditing purposes. A user may want to monitor usage of the
system over time as well as see what device was controlled,
the timestamp of the control and the user that authorized the
control transaction

Inputs The time period for which transactions should be shown
Source The user would specify the time period
Outputs A list of transactions showing a date-time stamp, the

authorizing-user, the control transaction, device information
and sensor information

Destination The transaction log will be viewed on the user’s interface
Action The user would have an interface that him/her to request the

logs and filter them by date and time
Pre-condition There would have to be transactions that have already

occurred in the system
Post-condition None
Side effects None

REQ-AS-5: The user should be able to customize system preferences and notable network

configurations

Table 2.16: Table of Requirements for REQ-AS-5

Description The system would work with a local network and among other
things it is highly crucial that when the local network details
change, the system can very easily be reconfigured to work
with new SSIDs, passwords, etc. Also the user should be able
to modify other configurations to suit the user’s preferences
for the system

Inputs The details to be modified changed. (e.g. Network SSID,
Keys)

Source The user would provide these replacement details
Outputs Feedback on the success of the customization operation
Destination The feedback can be viewed on the user’s interface
Action The user interface would provide forms that will allow users

input changes and submit them to reflect on the system
Pre-condition A change occurs in the network, or elsewhere in the physical

environment that needs to be reflected on the system
Post-condition The system now works with the new configuration and the old

configuration details are no longer functional
Side effects None

	
27

2.4 External Interface Requirements

This section discusses the system’s interfaces. These comprise user interfaces,

hardware and software interfaces, as well as communication interfaces.

2.4.1 User Interfaces

Different user interfaces would be needed for the different software components of the

system. The three components with user interfaces are the mobile application, the IoT Hub

(Broker) and the firmware that would operate each of the physical objects.

• Mobile Application Interface: Upon opening the application, an already existing

user is shown a form to enter authentication details for access to the system. A new

user may register to configure the system. The user would enter preferred login

details and the IoT Hub’s configuration details. Allowing a user to enter the Hub’s

configuration details allows the user to use the application with more than one hub

by specifying the appropriate hostname and port number. Once the user has access

to the application, the user may either view the connected physical objects and their

respective available controls. As well as related sensor readings. The user may also

view all sensor readings. And finally the user may adjust configurations and settings.

A tabbed view may be used to make all these views easily accessible.

• IoT Hub (Broker): The user may access a Home Owner/Manager web application

to exercise administrative rights and make changes to the Hub’s configuration. Such

changes may include system password changes, granting and revoking access to

users, etc.

• Firmware on Physical Objects: Each physical device is configured to work with

the setup IoT system. If any changes are made to the system’s configuration, the

updates need to be reflected on the physical devices. This process needs to be done

	
28

in a user-friendly and convenient manner. A simple web application would be

developed to aid this. A user will be given a form to update network settings,

authentication details, etc.

2.4.2 Hardware Interfaces

The IoT Hub (Broker) and mobile applications would run on any Linux operating

computer and any android enabled mobile phone respectively. Thus, these two software

components do not have designated hardware interfaces. These however would need to be

connected to one another through a Wi-Fi (802.11) network. Wireless was chosen over cable

because of the convenience of setup. Also, Wi-Fi was conveniently chosen over other

Wireless networks (e.g. Bluetooth) because of its speed, transmission range and availability

on several devices. Hardware network interfaces needed for these components include a

wireless access point, etc.

The physical objects would need to be connected to the network as well. The

hardware interface for this connection is the ESP-8266 (ESP-01) Wi-Fi module. This would

connect to the wireless access point. The ESP-8266 module has an on-board processor for

controlling the physical object.

The communication over the network between the components will primarily be

done using the MQTT (MQ Telemetry Transport) protocol, “a machine-to-machine

(M2M)/IoT connectivity protocol” (MQTT, 2016).

2.4.3 Software Interfaces

The system’s software would interface with a backend database using a REST

Application Programming Interface (API). The REST API would give applications within

the system privileges to access the database as well as save and modify records. The API

will return data from the database (e.g. device control history) in JSON format, or Result

	
29

Codes for other functions that do not access data. The software will interface with an SMS

service provider’s API (SMSGH) to be able to send SMSs for notification. This interfacing

will transfer the SMS service keys for authentication as well as the messages to be delivered.

The mobile application would interface with Amazon AWS Simple Notifications Service

(SNS) for the delivery of push notifications to the user. The interface with Amazon SNS

will also transfer the AWS keys for authentication as well as the contents of the notification

message.

2.4.4 Communications Interfaces

The nature and essence of the system being developed makes it a very

communication heavy system. The different system modules (devices, hub, end-user

application) would communicate with one another. It is expected that messages sent would

be delivered within a specified acceptable time period. It is also expected that messages are

delivered correctly. Messages to change the state of a device in the physical world in

particular need to be reliably delivered accurately because they have security and safety

implications. All communications would have to be secure and only accessible with

authorization.

The following protocols will be used throughout the system:

• Hypertext Transfer Protocol (HTTP)

• MQTT

• Websockets

2.5 Nonfunctional Requirements

The non-functional requirements for the system have been classified into 5 main

groupings and explained below:

	
30

2.5.1 Performance requirements

The system should be lightweight in nature. Lightweight processing and

communications are necessary in order for the system to scale efficiently. The Internet of

System deals with an ecosystem of a large number of devices. Thus, adding more devices

should not take a toll on the system.

2.5.2 Standards compliance

The system should comply with open standards for the Internet of Things to maintain

interoperability with a wide range of physical devices, sensors, etc. In order for the system

to be relevant as an Internet of Things solution, interoperability is key, given the vast array

of devices.

2.5.3 Reliability

All communication between devices, the hub or the end-user application meant to

control a device and change its state should be done with reliability. In the system, devices

may be controlled autonomously or remotely. In order for the user to trust that the system

works, all control instructions must be delivered with the highest reliability. However,

communications publishing the the state of devices or sensor readings may have reduced

reliability because of the continuous publishing of these states. Because the state of a device

will be resent in after an interval, such messages do not need to be delivered with the highest

reliability.

2.5.4 Availability

A user may control the devices in the home from anywhere in the world at anytime

over the internet. Thus, the system should always be available. And should be able to

	
31

recover on its own for some foreseeable problems (e.g. power outage). The system should

inform the user whenever there’s downtime in the local environment and when the problem

is resolved.

2.5.5 Security

The system grants a user access to devices in the home over the internet. This means

that only authorized persons are granted this access over the internet. The system should be

secure and prone to snooping. Different classes of users should only have access to aspects

of the system for which they have permission.

	
32

3. Chapter 3: Architecture and Design

3.1 Introduction to Architecture and Design

This section on architecture and design introduces the chapter with the purpose and

a brief summary.

3.1.1 Purpose:

This chapter defines how the system described in the requirements section is to be

implemented. This design gives an overarching view of the system architecture to enable a

developer build the system according to specification. The document will include a system

overview, detailing the context. It will also include detailed Data Design as well as a

snapshot and explanation of the human user interfaces.

3.1.2 Summary and overview of chapter:

The chapter will detail the specifics of the system architecture using a deployment

diagram, sequence diagrams, and user interfaces. The document will also discuss design

considerations and briefly describe alternative architectures that were thought of in the

designing of this system.

3.2 Design Considerations

The subsequent sections discuss the system architecture, and discusses alternative

architectural designs.

3.2.1 System Architecture

	
33

Figure 3.1 is a block diagram showing major subsystems and the interconnections

among them. The architectural diagram shows the different software components for

example, the MQTT Broker and Automation Engine. The diagram shows which hardware

component the software would be deployed to. In addition the diagram shows the interfaces

between the components. These interfaces include various APIs for connected services as

well as communication protocols. The outermost box at the top represents the host, where

the various engines and services will run. The hardware component for the host is a

Raspberry Pi and will communicate over Wi-Fi using MQTT.

Figure 3.1: A Deployment Block Diagram Showing the Subsystems of the System

3.2.2 Component Decomposition: Sequence Diagram.

	
34

Figure 3.2 shows a sequence diagram describing the interactions between a home

owner/manager and the different software components of the system to create, view and edit

automation rules. The sequence diagram shows the requests that will be made to the backend

API and the respective database query results.

Figure 3.2: A Sequence Diagram for Device Automation

The sequence diagram in Figure 3.3 describes an end user’s interactions with the

software components to successfully control a connected object remotely. The user interacts

with an Android application which connects with a RESTful API to make database calls.

The user may also use the application to directly interact with the MQTT Broker to control

devices and view their current states.

	
35

Figure 3.3: A Sequence Diagram for Remote Device Control

Figure 3.4 is a sequence diagram for a user’s interactions with the software components

while using the system’s auxiliary services. The diagram shows the actions a user takes and

shows the messages that are sent back to the user in response. A user can add or remove a

device as well as customize the system’s preferences. For all the interactions, the user

receives feedback from the system, viewed on the user interface.

	
36

Figure 3.4: A Sequence Diagram for Auxiliary Services

3.2.3 Architectural Alternatives

Figure 3.5 Shows an alternative architecture that was created in designing the

system. The design shows the hardware components (Raspberry Pi and Connected Object).

The design also specifies MQTT as the protocol for communicating between components.

	
37

Figure 3.5: An Alternative Architectural Design for the System

3.2.4 Design Rationale

The difference with this system (Figure 3.5) is that the android application does not

directly communicate with the MQTT broker. Instead it communicates with a database.

Having to go though a database would make the application unresponsive to real-time

changes to the states of connected devices in the physical devices. Also the design uses two

databases. Maintaining synchronized databases places an unnecessary processing overhead

on the system. This impedes the goal for the IoT system to be lightweight. Thus the

architectural design was further developed into the architecture in the design in Figure 3.6

which extends the MQTT protocol to the Android phone and the cloud. Figure 3.6 is an

update on Figure 3.1.

	
38

Figure 3.6: Selected Architecture with Cloud

3.3 Data Design

This section describes how the data in the system is stored and organized.

3.3.1 Data Description

	
39

Figure 3.7: A Data Model Diagram for the System

The system uses a non-relational schema-less document database. Because of the

schema-less nature, each record does not have to strictly follow the data model described in

Figure 3.7. The model is a guide for all records. Document databases store records as key-

value pairs. Thus, as the IoT system scales, there will be a lower overhead on database query

operations. Given that the document database is non-relational, for this system embedded

sub-documents are used to model relations. The data model is further documented in the

data dictionary below (Table 3.1), showing data types and descriptions.

3.3.2 Data Dictionary

Table 3.1: Table of Database Fields and Descriptions

Document
Name

Field
Name

Data
Type

Allow
Nulls

Field Description

Sensor _ID Object
Id

No This field uniquely identifies a
connected sensor

	
40

Document
Name

Field
Name

Data
Type

Allow
Nulls

Field Description

Sensor
Name

String No This field identifies a connected sensor
by a recognizable name

Location String Yes This field describes where the
connected sensor is installed

Reading String Yes This filed contains the current reading
of the connected sensor

Device

_ID Object
Id

No This field uniquely identifies a
connected physical device

Device
Name

String No This field identifies a connected
physical device by a recognizable name

Location String This field describes where the
connected physical device is installed

State String No This filed contains the current state of
the connected physical device

Availa-
ble
Controls

Array No This field contains an array of controls
available to the connected physical
device

Related
Sensors

Array Yes This field contains an array of Sensors
IDs representing the set of sensors tied
to a given connected physical device

Automa-
tion Rule

_ID Object
Id

No This field uniquely identifies an
automation rule

Sensor String No This field contains a reference to the
sensor that will trigger the action in the
rule

Sensor
Reading

String No This field contains the sensor reading
that will trigger the action in the rule

Device String No This field contains a reference to the
device that will be automatically
controlled once the trigger occurs

Device
State

String No This field contains the state that the
physical device should be changed to

3.4 Human Interface Design (Screens)

This section discusses the screens of the mobile app and the design considerations

that were made.

3.4.1 Overview of the User Interface

The interface of the mobile application will primarily allow a user to see the

connected devices and their related sensors. The application should also allow the user to

	
41

very easily monitor the controls of the objects and override the automation controls if they

desire. The user would on opening the application see a selectable list of objects. On

selecting the object from the list the user can then view the details and controls specific to

the object. From the home view, the user can select from the navigation, options to view the

list of sensors and their readings, as well as the log of past controls across all devices.

Two design alternatives were created and evaluated. In the screens shown in section

3.4.2, there are two options for the main navigation view. Option A (Figure 3.8) uses a

tabbed layout and option B (Figure 3.9) uses a navigation drawer layout. Figures Figure 3.8

and Figure 3.9 show alternative ways to navigate the menu options.

Figure 3.8: User Interface Design (Option A)

	
42

Figure 3.9: User Interface Design (Option B)

On selecting a device, there are three options C (Figure 3.10), D (Figure 3.11) and

E (Figure 3.12). C displays all the objects details on one screen. D splits the views for the

controls, related sensor readings and logs across three tabs and option E is a hybrid of C and

D which merges the sensor and control tabs in one. E was developed because viewing

sensors whilst adjusting controls avoids continuous switching between tabs when

controlling an object.

	
43

Figure 3.10: User Interface Design (Option C)

Figure 3.11: User Interface Design (Option D)

	
44

Figure 3.12: User Interface Design (Option E)

3.4.2 Screen Images, Objects and Actions

• Option A (Figure 3.8): This is one of two options for the landing view of the

application. The first screen is the list of connected objects with identifiable details.

This option uses the navigation drawer layout. Clicking the Objects, Sensor and Log

menu items in A1 takes the user to A2, A3 and A4 respectively.

• Option B (Figure 3.9): This option, using the tab layout is the second of two options

for the landing view of the application. Clicking the tabs at the bottom take the user

to the respective views with the shaded menu items.

• Once an object is selected from the list, options C to E depict three interface options

to view the object details and control it.

• Option C (Figure 3.10): Option C uses a single page view, where all the information

is displayed on one screen

	
45

• Option D (Figure 3.11): Option D uses a tabbed view to display the object details.

The tabs control, sensors and logs show the available controls, related sensors and

the control log respectively.

• Option E (Figure 3.12): Option E is a hybrid of Options C and E. E still uses a tabbed

view but combines the control and sensor views into one tab. With this view, whilst

controlling devices a user can monitor the related sensor readings.

	
46

Hardware Design

Most physical devices are not manufactured with network connectivity. Therefore,

for this system to work with a wider range of physical devices, a Wi-Fi module was

connected to them. Figure 3.13 shows a schematic diagram for transforming disconnected

devices into connected physical devices.

The following considerations were made in designing and implementing this hardware

component of the system:

• The 3.3V Regulator is used to step down the input voltage from the power supply to

3.3V which the ESP8266 Wi-Fi module requires.

• A transistor was used with a relay as a switch to use the small current from the

ESP8266 microcontroller to control devices that require a larger current. And to

prevent the high current from affecting the ESP8266.

Figure 3.13: Schematic Diagram for Connecting Physical Devices to ESP8266

	
47

3.5 Traceability Requirement Matrix:

The matrix below in Table 3.2 maps requirements for the system to components.

This demonstrates how the design in this section addresses the requirements. A dot in the

table signifies that the requirement was in part fulfilled using the corresponding system

component.

System Components:

1. MQTT Broker (MB)

2. Automation Engine (AE)

3. Notification Engine (NE)

4. Raspberry Pi (RPi)

5. Restful API (RAPI)

6. Amazon AWS Simple Notifications Service (SNS)

7. SMS GH (SMS)

8. Database Server (DB)

9. Web Server (WS)

10. Android Application (MOB)

11. Connected Devices (CD)

12. Connected Sensors (CS)

Table 3.2: Matrix Mapping Requirements to System Components

Requirement
Code

M
B

A
E

N
E

R
Pi

R
A

PI

SN
S

SM
S

D
B

W
S

M
O

B

C
D

C
S

REQ-DA-1 • • • • • • •
REQ-DA-2 • • • • • • •
REQ-DA-3 • • • • • • •
REQ-DA-4 • • • • • • •
REQ-DA-5 • • • • • • • • • •

	
48

Requirement
Code

M
B

A
E

N
E

R
Pi

R
A

PI

SN
S

SM
S

D
B

W
S

M
O

B

C
D

C
S

REQ-RDC-1 • • • • • • •
REQ-RDC-2 • • • • • • •
REQ-RDC-3 • • • • • • •
REQ-RDC-4 • • • • • • •
REQ-RDC-5 • • • • • • •
REQ-RDC-6 • • • • • • •
REQ-AS-1 • • • • • • • • • •
REQ-AS-2 • • • • • • • • • •
REQ-AS-3 • • • •
REQ-AS-4 • • •
REQ-AS-5 • • • • •

	
49

4. Chapter 4: Implementation

4.1 Tools, Libraries and Frameworks Employed

• Raspberry Pi 2 Model B: The Raspberry Pi is a portable low cost computer largely

used for educational and prototyping purposes. It is able to run a desktop operating

system and has 4 USB ports, an Ethernet (802.3) port and an HDMI port. The

Raspberry Pi 2 has 40 programmable General Purpose Input Output (GPIO) pins.

Considering costs, computing power, network capabilities and physical size, the

Raspberry Pi makes an ideal dedicated MQTT server in the home environment.

Since the Raspberry Pi 2 Model B does not have inbuilt Wi-Fi (802.11) capabilities,

a USB Wi-Fi dongle will be used to supplement its functionality.

• ESP8266: The ESP8266 is a very low cost microcontroller with Wi-Fi (802.11)

capabilities and the full TCP/IP stack. For this project, the ESP is configured to run

Arduino code and is connected in a circuit to control and give existing physical

devices Wi-Fi capabilities. The ESP8266s used in this project are the 512KB ESP-

01 which have 2 General Purpose Input Output (GPIO) pins for control.

• PlatformIO: PlatformIO is an open source ecosystem for professional IoT

development. It provides a tool chain for programming a wide range of embedded

boards. The development for the ESP8266 initially was started with the Arduino

IDE, but using the OSX operating system, the IDE was unable to upload to the

ESP8266. PlatformIO was a functioning alternative with support for several libraries

ESP8266 development.

• Mosquitto Broker: Mosquitto is an open source lightweight server implementation

of the MQTT protocol. The server implementation allows several clients to connect

and publish and subscribe to messages on topics. In the system, Mosquitto is

	
50

installed on the Raspbian distribution of Linux, with support for WebSockets. This

means that clients connecting to the broker may publish and subscribe using both

MQTT and WebSockets.

• PubSubClient: PubSubClient is an open source Arduino library for creating MQTT

clients for publishing and subscribing to topics. The library is compatible with the

ESP8266 and is used to control the physical devices and to know their states.

• ESP8266WiFi: This is a part of the ESP8266 Arduino Core and provides functions

to control the WiFi capabilities of the Wi-Fi module for example setting up a web

server, getting the MAC Address or IP Address, etc.

• Eclipse Paho JavaScript Client: Paho is an open source JavaScript library to create

web MQTT clients that can publish and subscribe to the broker using WebSockets.

This allows web applications to monitor and control physical devices in the system.

• Ionic Framework: Ionic is a cross-platform mobile application framework based

on Node JS, Angular JS and Apache Cordova. Ionic allows the building of mobile

applications using web technologies and has support for a large number of libraries.

Apache Cordova allows you to build for multiple platforms (Android, IOS,

Windows Mobile) using one code base. Using the Ionic Framework would enable

this project extend to multiple mobile platforms with little costs to the project

timeline.

• MongoDB: MongoDB is a scalable open source document database system.

MongoDB is non-relational and uses key-value pairs to store complex JSON style

objects. Because of the multi faceted nature of the Internet of Things (IoT), it will

be difficult to design a schema that suits all objects (actuators, sensors, devices, etc.)

which have non-uniform properties.

	
51

• SMSGH API: The SMSGH API is an interface to send SMSs to phone numbers

from within an application. It uses a token-based authentication approach and is

linked with an SMSGH service account for billing.

• Amazon Simple Notification Service (SNS): Amazon SNS is a web-based

messaging service for delivering messages to mobile devices as push notifications

from the cloud.

4.2 Implementation Techniques

Given the multifaceted nature of the internet of things (IoT), different

implementation techniques were employed for implementing the different components of

the system.

4.2.1 Host Target Development

• Physical Devices: Given the computing constraints that connected physical devices

have, a Host-target development approach was used for developing firmware for the

ESP-8266 Wi-Fi module that gave the physical devices connection capabilities. The

ESP-8266 firmware was developed and deployed using PlatformIO.

• Mobile Phones: The Host Target development approach was also used for the

development of the mobile application. The mobile application was developed using

the Ionic Framework whose software development kit is PC-based. Once the code

was written and tested, it was then deployed to an android mobile phone for further

testing and use. The mobile application is designed specifically to run on the android

operating which in turn runs on android-enabled devices.

4.2.2 Component Reuse

	
52

For other components, the Component Reuse model was employed to increase

dependability, to ensure compliance with protocol standards and to accelerate development.

• MQTT Broker: With setting up the MQTT broker to implement the protocol to

support publishing and subscription of messages over topics. A topic is a string the

broker uses to filter messages to clients. The Mosquitto MQTT broker was selected

from the many options available because it is an open-sourced project with the

Eclipse Public License (EPL). This affords Mosquitto a reliable community to

maintain the project and keep the codebase updated.

• Reasons for reusing Mosquitto:

o Mosquitto is written in C, enabling it to run on many devices including

embedded systems

o Mosquitto is a very lightweight implementation of the MQTT protocol and

test results show that it consumes about 3MB RAM with 1000 clients

connected

o Mosquitto supports the MQTT and Websockets protocols

o Mosquitto has a bridge that supports connection to another broker. In this

case, two brokers (one in the cloud and another on the local network) may

be conveniently connected together

o Mosquitto is very configurable

o Mosquitto is well developed, standards compliant and maintained by the

Eclipse foundation. Having to develop a broker of this nature would require

unavailable resources and derail the project’s timeline

	
53

4.3 How the System Works

To satisfy the system’s requirements, the two main ways of controlling the devices

were implemented. These are the Automation Engine and the Remote Control Engine.

Pseudo code showing how they were implemented are shown below. Both pieces of code

run as MQTT clients on the broker and can trigger and respond to events as well.

4.3.1 Automation Engine

Once this is implemented, without human intervention physical devices can be

controlled using automation rules in the database. This piece of code will run on the Hub.

Listing 4.1: Pseudo code for Device Automation

/**
 * Sensors publish messages to broker containing sensor readings
 * Devices publish messages to broker containing current states
**/
Data structures:
SensorEvent {
 Sensor; Reading;
}
Automation Rule {
 Device; Sensor; SensorReading; DeviceState;
}
Event {
 Message from sensor;
}
Helper Functions:
/**
 * This function responds to a sensor event, and based on stored
 * rules, changes the device state
**/
function Automate (Event E) {
 GET automation rules with given sensor that triggered event E
 For each (Rule) {
 Sensor s = E.Sensor;
 Device d = Rule.Device;
 SensorReading sr = Rule.SensorReading;
 DeviceState ds = Rule.DeviceState;
//Check if SensorReading corresponds with the rule’s trigger reading
 if E.reading is equal to sr {
 //Check if device mode is set to automatic control
 if d.mode is equal to automatic {
 d.state = ds;
 }
 }
 }

	
54

}

/**
 * When Event e is triggered the automate function is called
**/
on event(e){
 automate(e);
}

4.3.2 Remote Control Engine

This module allows a user to override the device automation and change the state of a

device. This piece of code will run on the Android application.

Listing 4.2: Pseudo code for Remote Control

/**
 * A user monitors the connected devices and decides to change the
 * state of a given device
**/
Data structures:
Device {
 Name; State; Location; Controls; Mode;
}
Helper Functions:
/**
 * This helper function changes a device control mode to either manual
 * or automatic.
**/
function ChangeDeviceMode(Device d, Mode m){
//Mode may be manual or automatic. Determines which control mode is
//used
 Device.Mode = m;
}
/**
 * This helper function changes the physical state of a device
**/
function ChangeDeviceState (Device d, State Control){
//Changes the device mode to manual control
 ChangeDeviceMode(Device, Manual)
//Control may be any of the available states a device can be changed to
 d.State = Control;
}
/**
 * The user uses this function to remotely control devices from the app
**/
function RemoteControl(Device) {
//User requests to see available controls for the device
 Device.controls = GET DeviceControls;
//User requests for the device’s current state and makes a decision

State = GET DeviceState;
//User remotely controls device
 ChangeDeviceState(Device, Control)
}

	
55

4.4 Evidence of Implementation

This section comprises pictures that demonstrate the implemented system. These

include hardware and software implementations.

4.4.1 Hardware

Figures Figure 4.1 and Figure 4.2 show connected physical devices. Figure 4.1 is

an initial implementation on a breadboard to control a red LED. Once this was tested and

working, the soldered board in Figure 4.2 was designed and built to control a light bulb.

From the mobile application, both connected devices can be controlled.

Figure 4.1: Breadboard Connection of ESP8266 to an LED

	
56

	

Figure 4.2: Soldered board with ESP connected to a light bulb

Figure 4.3 shows a connected sensor. The sensor takes both temperature and

humidity readings and reports them to the broker using the ESP8266.

	

	

Figure 4.3: Soldered board with Humidity/Temperature Sensor and ESP8266

4.4.2 Software

	
57

The following screens show the implemented mobile application. Figure 4.4 shows

the screen that shows the list of connected device. On selecting a device, Figure 4.5 shows

the controls available for the device.

	
Figure 4.4: Interface showing the list of connected devices

	
Figure 4.5: Interface showing controls for a selected device

	
58

Figure 4.6 shows a list of sensors connected to the system. The list shows their

current readings and locations.	

	
Figure 4.6: Interface showing a list of connected sensors

	
59

5. Chapter 5: Testing and Results

5.1 Approach

To ensure that the solution that was developed adequately meets the requirement

that were set out at the beginning of the project, appropriate measures were taken to test the

components of the system. This chapter discusses the tests that were run and their results.

5.2 Unit Testing

The testing process began with the smallest units of the system. Unit Tests were run

to ensure that all the implemented functions worked correctly. For the mobile application

and the backend, most of the functionality was implemented in JavaScript so a JavaScript

Testing Framework was needed. Jasmine, a “Behavior Driven Development (BDD) testing

framework for JavaScript” was used to run unit tests (Jasmine, 2016). Figure 5.1 shows the

results of a unit test on the functions that make up the Remote Control Engine and Table 5.1

summarizes the results.

Figure 5.1: Screenshot of Jasmine Unit Test Results

Table 5.1: Summary of unit test results for Remote Control

Functionality Expected Result Actual Result
Remote Control (ON) Device state changes to

ON
Device state changes to
ON

	
60

Device mode changes to
MANUAL

Device mode changes to
MANUAL

Change Mode
(MANUAL)

Device mode changes to
MANUAL

Device mode changes to
MANUAL

Change State Device state changes to
ON

Device state changes to
ON

As seen from the snippet of automated testing code in Listing 5.1: Unit test code for

remote control engine below, functions were tested under different conditions, and the

expected outputs were compared to the actual output. Whenever the tests failed, the

functions were corrected using the stack trace the testing framework provided and the unit

tests were carried out again.

5.2.1 Snippet of unit test code for the remote control engine

Listing 5.1: Unit test code for remote control engine

describe("Remote Control Devices", function() {
 var dev;
 beforeEach(function() {
 dev = new Device();
 dev.Name = "Test LED";
 dev.State = "OFF";
 dev.DeviceLocation = "Breadboard";
 dev.Controls = ["ON","OFF"];
 dev.Mode = "Manual";

 // rule = new AutomationRule();
 // msgevent = new IncomingMessage();
 });

 it("control a device remotely", function() {
 var ctrl = "ON";
 RemoteControl(dev, ctrl);
 expect(dev.State).toEqual(ctrl);
 });
});

	
61

5.3 Component Testing

Once the individual units were tested and working correctly, the components were

tested as well. The different components of the were tested to ensure that at a component

level, the system functioned correctly.

5.3.1 Broker Testing

The first component to be tested was the Broker. This was tested by developing a

test MQTT client to publish messages and subscribe to topics as seen in Figure 5.2. These

messaging transactions were monitored on the Mosquitto broker command line interface.

This application was used to understand how to name topics for clients. The application was

also used to test authentication on the broker. First the client was used to attempt to connect

to the broker with details not in Mosquitto’s password file. Finally, to test the encryption

configuration of the password file, it was opened and viewed to see if its contents were

intelligible. As expected, a six-character password was hashed to a 107-character string in

the file. Having completely tested the Broker component of the system, it was certain that

it had been set-up correctly and functioned as designed.

Figure 5.2: Screenshot of Broker Test Application

	
62

5.3.2 Mongo Document Database

Once the Mongo database was created, the system’s RESTful Application

Programming Interface (API) written in Node JS was used to test it. The GET, PUT, POST

and DELETE functions in the API tested at the Unit Testing phase were now tested at the

component level. Postman, a professional API testing tool was used to test the Database. As

seen in Figure 5.3 a GET request for ‘things’ in the database with its respective URL

returned a JSON array of MongoDB documents representing connected objects stored in

the database. Testing the different HTTP methods in the API demonstrated that database

was properly configured and its contents were accessible.

Figure 5.3: Screenshot of Postman application for testing database

5.3.3 Mobile Application

The mobile application component built with the Ionic Framework was tested using

a browser at the component level. The Ionic command line interface has an inbuilt

webserver that allows a developer to view changes in real time. With this the mobile

application was tested, using the browser console to log and monitor different occurrences

	
63

within the application. For example, when an MQTT message was published from the

application, logging to the console helped to record the timestamp and actual contents of

the message. These logs were compared with the changes in the on/off state of a test LED.

5.4 System Testing

At the system level, more technical aspects of the system were tested to be able to

determine if the set requirements had been met adequately. As part of the system tests

response time, scalability and conflict resolution were the main concerns.

5.4.1 Response Time

For the remote control requirement to be meaningful to a user, the system would

have to minimize response time. Hence, once the system was implemented the time between

a button press within the application and a change in the state of a device was to be

measured. However, by observation, the control seemed instantaneous. To accurately

measure, this time required additional hardware components including a real-time clock.

Unable to get a real-time clock, the response time could not be calculated. However, because

of the seemingly instantaneous nature of the response, it can be concluded that with an

estimated response time of less than 1 second, the requirement has been met.

5.4.2 Conflict Resolution

From tests on the system’s ability to handle conflicts, it was found that conflicts

between Remote Control and Device Automation were resolved by the system. However,

when two or more remote controlled events conflict, the system is unable to meaningfully

handle them. Similarly, when there are two or more conflicting Device Automation events

the system fails to resolve them. In order to intelligently resolve these conflicts, machine

	
64

learning and data mining techniques would be needed to determine the most desirable

outcome. However, that was out of the scope of this project.

5.4.3 Scalability Testing

The Mosquitto broker does not place a limit on the number of connections to the

broker. However, according to benchmark tests, with high load on the CPU and high

transmission latency, Mosquitto succeeds in connecting 60,000 clients. To explore how this

statistic compares to the implemented system, a test client was developed to publish 1,000

control messages to the web browser to repeatedly switch a connected object on and off.

This timed experiment was run 4 times and for all 4 tests. Table 5.2 below shows a summary

of the results. The variations in duration may be attributed to the load on the network.

Table 5.2: A table showing the results for a scalability test

Round of Experiment Controls Duration (s) Rate (controls/sec)

1 1000 117 8.547

2 1000 166 6.024

3 1000 233 4.292

4 1000 216 6.630

Average rate 23.49 ≈ 24controls/sec

As seen from Table 5.2, at high load the broker can handle about 24 control requests

per second. Although this seems like a rather high estimate, the rate is not good enough

because the Internet of Things is expected to scale at a remarkable rate.

	
65

5.5 User Testing

A hallway user test was run with a novice user who found the basic features of the

application easy to use. The user was able to navigate to the view devices in the system and

change the state of a given device.

	
66

6. Chapter 6: Conclusions and Recomendations

6.1 Summary

Overall the system successfully meets the set requirements. The system is able to successfully

automate the control of physical devices and allow a user to remotely control devices in the home.

The system does this with a minimum viable set of open-source protocols. Compared to related

systems Eclipse Kura Framework and Windows IoT Core, the project is comparatively lightweight.

6.2 Limitations

Despite the success of the project in meeting the requirements, there are some limitations that could

not be addressed with the resources allotted for the project. These include:

• The project is limited to Wi-Fi connections

• Reduce latency on the broker to scale more efficiently

6.3 Future Work

To extend the project additional features to improve the system as an IoT solution include:

• Use geofencing technology to make the system smarter

• Apply machine learning and data mining to improve the system’s engines

• Use NFC, RFID or Barcode technologies extend interactions with physical system

• Use natural language voice recognition to control devices in a more natural way

	
67

7. References

Castellani, A. P., Dissegna, M., Bui, N., & Zorzi, M. (2012). WebIoT: A web application

framework for the internet of things. In Wireless communications and networking

conference workshops (WCNCW), 2012 IEEE (pp. 202-207). Retrieved from Google

Scholar.

CoAP,. (2016). CoAP — Constrained Application Protocol | Overview. Coap.technology.

Retrieved 17 April 2016, from http://coap.technology

Dorsemaine, B., Gaulier, J., Wary, J., Kheir, N., & Urien, P. (2015). Internet of Things: A

Definition & Taxonomy. 2015 9Th International Conference On Next Generation

Mobile Applications, Services And Technologies.

http://dx.doi.org/10.1109/ngmast.2015.71

Eclipse,. (2016). iot.eclipse.org — Standards. Iot.eclipse.org. Retrieved 17 April 2016,

from http://iot.eclipse.org/standards#etsi-smartm2m

Hamann, H. (2015). From Smart Sensors to Smarter Solutions with Physical Analytics.

Proceedings Of The 13Th ACM Conference On Embedded Networked Sensor Systems -

Sensys '15. http://dx.doi.org/10.1145/2809695.2823463

Logvinov, O. (2014). Open Standards Will Enable the IoT’s Growth.

Electronicdesign.com. Retrieved 17 April 2016, from

http://electronicdesign.com/iot/open-standards-will-enable-iot-s-growth

Microsoft,. (2016). Windows 10 IoT for your buisness. Microsoft.com. Retrieved 17 April

2016, from https://www.microsoft.com/en-us/WindowsForBusiness/windows-iot

Mosquitto,. (2016). mqtt. Mosquitto.org. Retrieved 17 April 2016, from

http://mosquitto.org/man/mqtt-7.html

	
68

MQTT,. (2016). FAQ - Frequently Asked Questions | MQTT. Mqtt.org. Retrieved 17 April

2016, from http://mqtt.org/faq

	

