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Abstract 

As the world keeps evolving, the demand for electricity increases. The growing energy 

consumption leads to higher cost that many people, especially in Ghanaian rural areas, cannot 

afford. Thus, considering this, this paper focuses on designing a Stirling engine to pump water in 

homes. In order to contribute to the use of renewable energy with a low carbon footprint, 

concentrated solar energy will be used to power this system once it is implemented. As such this, 

source of power was considered in the design of the Stirling engine. The Stirling engine was 

designed in Solidworks. Simulations were also done in Solidworks and MATLAB to test the 

performance of the designed engine. Using the Schmidt formula, the work and power output of 

the engine was calculated. 
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1 Introduction 

1.1 Problem Statement 

Electricity is one of the significant determinants of the prosperity of a country’s economic. 

It plays a substantial role in our daily activities such as heating, cooking, and communicating. As 

such, electricity is crucial for human existence. However, not every human enjoys the privileges 

that come with electricity. As of 2017, only 79% of the population had access to electric power in 

Ghana [1], while 43% of the entire African population has access to electricity [2]. This makes 

performing daily activities such as pumping water for domestic use challenging, especially in rural 

areas and farms. Water is also a fundamental human need since it is used to perform many activities 

such as cooking, bathing and irrigation of plants. As such, there is always a high demand for water 

in these communities. However, due to the limited supply of electricity, the pumping or channeling 

of water to the various homes for use is nearly impossible.   

A simple solution to this problem may be to expand the energy grid of the country to cover 

these areas. However, this comes at a cost that most people in rural areas cannot afford. Moreover, 

most of the energy utilized is usually produced by diesel, gas or coal, which are non-renewable 

sources of fuel, hence, may run out soon. These sources of energy also cause much pollution in 

the environment. For instance, for each gallon of gasoline used, 8.7 kg of carbon dioxide is emitted, 

while 12.2 kg is emitted for 1 gallon of diesel used [3]. Though expanding the energy grid to these 

rural areas is a potential solution to mitigate the existing challenges, nevertheless, the rural 

community could hardly bear the cost that comes with such solutions. Thus, the need for an 

alternative solution that is relatively cheaper and sustainable with little or no harm to the 

environment. Considering these conditions, a better alternative may be the use of renewable energy 
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such as solar energy. Solar energy is a clean and free source of power that can be harnessed either 

using photovoltaic cells or a solar thermal collector for power generation on large scales. Similarly, 

this concept can be altered and used solely for water pumping in rural areas without electricity, 

with the use of a solar collector and a Stirling engine. 

1.2 Project Objectives  

This project seeks to design a purely mechanical water pump driven by a Stirling engine. 

Stirling engines have the versatility of being able to be powered by any heat source. However, this 

project seeks to emphasize the importance of renewable energy, specifically, solar energy. As such, 

a solar collector will be used to harness the sun’s energy to power the Stirling engine. The Stirling 

engine is a critical section of the system, and hence, it is the focus of this project.  

It must be noted that people in rural areas are mostly below the poverty bracket. The World 

Bank defines poverty as individuals who cannot afford $1.9 per day [4]. As such, the fundamental 

design goal is to achieve high efficiency at low cost. In order to reduce the initial and maintenance 

cost of the system, local resources will be outsourced. This project aims to fulfil one of the goals 

of the Sustainable Development Goal (SDG) 7, to ensure access to affordable, reliable, sustainable 

and modern energy for all. SDG 7 seeks to “increase substantially the share of renewable energy 

in the global energy mix” [5]. 

The main project objectives are listed below: 

• Designing a low-cost Stirling engine for water pumping. 

• Making use of renewable sources of energy that is, Concentrated Solar Power to design the 

engine. 
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1.3 Theoretical or Conceptual Framework 

1.3.1 The First Law of Thermodynamics 

A Stirling Engine is a thermodynamic cycle that consists of thermodynamic processes such 

as the transfer of heat, and the production work. Thermodynamic cycles are governed by the first 

law of the thermodynamics, which states that energy can neither be created nor destroyed, but 

changes from one form to the other [6]. The first law allows for the transformation of heat into 

other energy sources such as electrical and mechanical energy by employing a power cycle. Power 

cycles are the underlying principle behind the operation of heat engines. In this project, the power 

cycle of an internal combustion cycle is studied and utilized.  

1.3.2 Heat Exchangers 

Heat exchangers are devices used in the transfer of heat between two or more fluids at 

different temperatures. Unlike mixing chambers, fluids involved in the heat exchange are not 

allowed to be mixed [6]. In order for this system to work efficiently, a heat exchanger is employed 

to facilitate the transfer of heat to and from the environment. 

1.3.3 Schmidt Analysis 

Schmidt Analysis is one of the fundamental theories used in the design of the Stirling engine. 

It is used in calculating the isothermal processes associated with the Stirling cycle [7]. Schmidt 

analysis is useful in predicting the power output of the Stirling engine, and it is utilized in 

predicting the work done and power output of the designed Stirling engine.   
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2 Literature Review 

2.1 History 

Robert Stirling, a minister in the Church of Scotland, produced the first-ever Stirling engine 

on September 27, 1816.  At the time, the engine was known as the hot air engine. Similar to the 

modern Stirling engines, Robert Stirling’s engine worked based on the cyclic heating and cooling 

of an internal gas such as air, hydrogen and helium. The name, Stirling engine was later devised 

by Roelf Meijer, a Dutch engineer to describe similar engines known as a closed cycle regenerative 

gas engine [8]. 

However, Robert Stirling’s engine was hardly used in the 1990s due to the invention of more 

powerful internal combustion such as the steam engine.  This was because the Stirling engine was 

bound to fail when its hot cylinder was heated beyond its capacity [8]. Nevertheless, it’s quiet 

operation enable it to be used in submarines as a source of power [8]. 

2.2 Types of Stirling Engines  

A Stirling engine is a heat engine that operates by the compression and expansion of air or 

other gases known as a working fluid such that there is a conversion of thermal energy into 

mechanical energy. It is a closed cycle, meaning that the working fluid used is permanently 

contained in the system and does not need to be renewed as in other cycles such as the Rankine 

cycle [9]. It is environmentally harmless and silent in its operation. Stirling engines can operate 

using several gases such as hydrogen, nitrogen, helium and the most common being air. 

Theoretically, the efficiency of such engines is about 52% to 72% [10]. There are three main types 

of Stirling engines which are distinguished by the way they are constructed and how the working 
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fluid moves from the cold region to the hot area. These are the Alpha, Beta and Gamma 

Configurations.  

The Alpha Stirling engine in Figure 2.1 consist of two pistons in two separate cylinders, that 

is, the hot piston and the cold piston which is connected by a tube containing the regenerator. Both 

cylinders, which are 90 degrees apart, are connected to a flywheel at a common point. Due to the 

reciprocal motion of both pistons, the working fluid is repeatedly moved back and forth from the 

cold cylinder to the hot cylinder. As a result, the working fluid is heated and cooled in every cycle. 

This causes the working fluid to expand upon heating and contract when cooled in the cold 

cylinder. The expansion and contraction of the working fluid forces the piston to move linearly, 

which provides power for the rotational movement of the flywheel.  

Unlike the alpha Stirling engine that has two power pistons, the beta Stirling engine has one 

cylinder containing, the power piston and the displacer. As the name suggests, the power piston is 

used to produce the power required for the engine to operate while the displacer’s function is to 

move the working fluid back and forth from the heated region to the cold area. When the working 

fluid moves into the hot zone, it expands and pushes the power piston up, and the flywheel is 

turned. In the cold zone, the working fluid contracts and the momentum of the flywheel pushes the 

power piston down to compress the fluid.  A typical beta engine is shown in Figure 2.2.  
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Gamma Stirling engines are similar to beta Stirling engines; however, the power piston is 

found in a separate cylinder as in Figure 2.3. Both pistons are however connected to the same 

flywheel with the displacer 90 degrees ahead of the power piston. The Gamma Stirling engine has 

large dead volumes as compared to the Alpha and Beta Stirling engines since there is an 

introduction of a passageway to connect the displacer and the power piston [8]. However, this type 

of engine is mechanically simpler, and therefore, it is the preferred engine used.  

  

Figure 2.2:Beta Stirling engine 
Figure 2.1:Alpha Stirling engine 

Figure 2.3: Gamma Stirling engine 
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2.3 Operation of the Stirling Engine 

The Stirling cycle is based on four thermodynamic processes explained as follows, and it 

is summarized in the P-V diagram in Figure 2.4:  

• Isothermal expansion (1): In this stage, the heated fluid in the hot region expands 

and pushes the power piston outward to turn the flywheel.  

• Constant volume heat removal (2): The gas is transferred from the hot region to 

the cold zone. Before it gets to the cold area, the gas passes through the regenerator 

where heat is removed stored for use in the next cycle. In the cold region, heat is 

lost at constant volume. 

• Isothermal compression (3): The momentum of the flywheel pushes the piston 

inwards, which forces the working fluid to compress, thereby, reducing its volume. 

As this is being done, heat is removed from the engine to the environment.  The gas 

is also transferred from the cold region to the hot area. 

• Constant volume heat addition process (4): The working fluid is found in the 

heated region at this point. Heat is added at constant volume. In cases where there 

is a regenerator, heat is added to the working fluid as it transferred from the cold 

region to the heated region. 
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Figure 2.4: P-V diagram of the Stirling cycle [11] 

2.4 Solar Powered Systems  

Due to the intense research into renewable energy specifically, solar energy, to cater for the 

emission of greenhouse gases by non-renewable energy, the Stirling engine technology was 

revived. The solar-powered Stirling engines were first patented by Roelf J. Meijer in 1987 [11]. 

His design, shown in Figure 2.5, consisted of a large dish with a focal point at the centre of the 

dish where the sun’s energy was concentrated. The concentrated heat then powers the Stirling 

engine, which is used to produce electricity. After Roelf J. Meijer patented his work, many similar 

systems were studied and also constructed for the production of electricity.  

Figure 2.5: An assembly of Roelf J. Meijer's Design 
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Ranjani Vasu and Firas Basim Ismail cover various literature on solar-powered Stirling engine. 

The development and the types of Stirling engines (i.e. Beta, gamma and alpha Stirling engines) 

are discussed as well. The paper examines the factors that affect Stirling engine performance which 

gives insight as to how an all-rounded solar Stirling engine can be developed for future studies. 

Some of the factors that affect the performance of the engine include the mass and size of the 

engine. A micro-sized Stirling engine which weighs 10g and has a swept volume of 0.05 cm3 was 

able to produce an output power of 10mW at a frequency of 10 Hz. The heat conductivity between 

the reservoir and the engine is also a significant factor affecting the engine’s performance [12]. In 

a nutshell, the main conclusions arrived at are as follows:  

• The Stirling engine has a simple working principle, uses an external heat source, has high 

efficiency as compared to other heat engines, and it has a low cost of operation.  

• The highest possible efficiency can be achieved by setting up a double-acting piston 

arrangement in the gamma configuration. 

• The working fluid used must have: 

o Low viscosity 

o High specific heat capacity 

o High thermal conductivity 

2.4.1 Systems that Produce Electricity 

Mike He and Seth Sanders [13] addressed the challenges associated with the generation of 

electricity, such as an economically appealing system by proposing a low-temperature differential 

Stirling engine-based system for the production of electricity. A low-temperature differential 
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(LTD) Stirling engine is an engine which operates with a temperature difference between 100°C 

and below. LTD engines usually have a relatively large surface area to facilitate the transfer of 

heat between the environment and the engine [14]. He and Sander’s [13] proposed system in Figure 

2.6 encompasses a passive solar thermal collector, a thermal energy storage system, a Stirling 

engine and a waste heat recovery system for a combined heat and power system. The Stirling 

engine is the significant component of the system; as such, the authors’ primary focus in this paper. 

The major design goal described are ways in which the heat engine can be designed to attain high 

enough efficiency at low cost and low hot-side temperature. As such, the low cost of materials and 

fabrication of a low-temperature differential system is of primary concern. In order to achieve 

relatively high efficiency, the focus was on designing an economical and efficient heat exchanger 

by minimizing temperature drops along the path of the thermal energy. After evaluations and 

testing, the engine selected was a gamma type Stirling engine with an operating frequency of 20 

Hz at a pressurized air, at 30 Bar, as the working fluid. 

 

Figure 2.6: Schematic of the proposed system by Mike He and Seth Sanders [13] 
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Aditya, A et al. [15] emphasized the use of a solar Stirling engine for power generation 

with a focus on the parabolic reflector as a heat source for the engine in their paper. Based on 

calculations, the engine designed is that of a gamma- configuration, double-acting vertical Stirling 

engine. This system consists of a parabolic reflector with a convex lens, a Stirling engine and a 

tacho generator to convert mechanical energy to electrical energy. The modelling of the different 

parts of the system shown in Figure 2.7 was done using Solid edge. The efficiency of the engine 

designed based on calculations was 71.8% which is higher than other internal combustion engines 

[15].  

Figure 2.7: Model of designed solar Stirling engine [15] 

2.4.2 Systems for Water Pumping Purposes 

Other than the production of electricity, solar-powered Stirling engines can be used for 

other applications which require mechanical energy. A typical example of such an application is 

the pumping of water, which is the main focus of this paper. In this section, systems that are solely 

used for water pumping activities will be discussed and reviewed.  

A solar thermal water pump was recently designed and fabricated by Sunvention Sunpulse 

Water (Figure 2.8). It consists of a solar thermal collector, a Stirling engine which is coupled to a 

water pump. The advantage of this system is that it can be coupled to any mechanical device which 

requires similar power to that of the water pump. The system was specifically designed using 
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locally available non-toxic and recyclable materials. According to the World Bank, the existing 

“maximum water cost target” is 6 US cents/m3.  Currently, gasoline pumps cost 8.58 US cents/m3 

while photovoltaic systems are estimated at 8.5 US cents/m3. The Sunvention Sunpulse water 

pump is assessed to cost 2.4 US cents/m3, which is 60% below the World Bank’s set target [16]. 

Hence, we can conclude that solar-powered Stirling engines are a good alternative for other 

pumping systems as it is relatively cheaper. 

Anish Saini, Shivam Kohli and Ajesh J. Pillai [17] write on the use of solar energy to power 

a water pump with the help of a Stirling engine to capture the sun’s thermal energy. To concentrate 

the solar beams into a specific area for the Stirling engine, a parabolic mirror is used. From Anish 

Saini, Shivam Kohli and Ajesh J. Pillai’s design in Figure 2.9, they estimated an output 

approximately 3kW, which can drive a centrifugal pump at a speed of 500-1,500 rpm. In cases of 

lower power output, a gear mechanism can be used to achieve the desired speed or torque. For the 

Figure 2.8 : Sunpulse Water Pump Connected to a Borehole [16] 
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system to begin operation, an initial momentum must be given to the flywheel of the engine.  

According to these authors, once a temperature of about 5000C is achieved by the concentrated 

solar collector, the displacer piston moves forward, thereby forcing the power piston to move. The 

force of the power piston is transferred to the flywheel, which acts as an energy reservoir. The 

flywheel then transfers its rotary motion to the centrifugal pump which is connected to the same 

shaft (In this system, there is no gear mechanism). The design parameters of Anish Saini, Shivam 

Kohli and Ajesh J. Pillai’s system are summarized in Table 2.1. The authors argue that this system 

of pumping water is the most efficient and economical since no electricity is being utilized, and it 

has low maintenance cost as well as little operational cost [17].  

Table 2.1: Design parameters of Anish Saini, Shivam Kohli and Ajesh J. Pillai’s Stirling engine and pump [17] 

• Engine Type  • 2 Piston  

• Main Energy Source  • Solar Energy  

• Working Fluid  • Helium  

• Mean Pressure  • 3-6 MPa  

• Max. Expansion Space Temp.  • 50 K  

• Max. Shaft Power  • 3KW  

• Engine Speed  • 500-1500 rpm  

• Output Mechanism Type  • 60 deg. V Crank  

• Flywheel Inertia  • 0.9 Kg m  

 

Figure 2.9: 3D model of Anish Saini, Shivam Kohli and Ajesh J. Pillai’s Stirling engine and pump [17] 
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A review was also done on the different types of systems (including photovoltaic cell 

systems) that use Stirling engines for water pumping. The paper relates the evaluation of solar 

Stirling engines to several factors namely,  

(1) Areas where underground water is available and needed 

(2) The daily volume of water to be pumped 

(3) The pumping depth 

(4) Site features and climatic conditions 

(5) Infrastructure and local technical skills 

(6) Technical alternatives available for water pumping 

The authors state that the electrical power needed to drive a working pump is calculated 

based on equation 2.2 [18]. The power obtained determines the amount of power the Stirling 

engine needs to power a water pump: 

 
𝑊 =

𝜌𝑔𝑉𝐻

3600
= 0.002725 (

𝑊ℎ

𝑑𝑎𝑦
) (2.1) 

 

The paper concludes that a gamma Stirling engine can be developed to pump water. Air is 

usually used as a working fluid in such systems due to the difficulty of obtaining other working 

fluids. The operation of the engine is based on the speed of the centrifugal pump attached. The 

temperature ranges for such an engine can be designed to be between 700C and 8000C with an 

efficiency between 52% and 72% [18]. 

Based on the studies above, the following conclusions about the Stirling engine can be made:   
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• The gamma type Stirling engine is the most widely used, as it is easy to construct since the 

power piston and displacer piston are a certain distance apart, unlike the beta Stirling engine 

where both pistons are aligned. 

• Solar-powered Stirling engines are environmentally friendly and have little to no carbon 

footprint as compared to photovoltaic (PV) panels [19]. 

• As compared to other systems, the solar-powered Stirling engine is relatively cheaper and has 

a less operational cost, as stated in M. Ardon’s report [16].  

• The Stirling engine can work using various heat sources once there is adequate temperature.  

Hence, it can be operated as a hybrid system. However, since the focus of this paper is to 

promote the use of renewable energy, solar energy will be the primary source of heat for the 

Stirling engine. 

• The ideal temperature difference required for the effective operation of a low-temperature 

differential Stirling engine is between 1000C [14].  
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3 Design Requirements and Criteria 

This chapter establishes the desired user requirements, technical specifications, as well as the 

entire proposed system. Based on the user and system requirements obtained from secondary 

research, various design considerations, including material selection, selecting the right 

dimensions and configuration will be introduced to achieve the desired goal.  

3.1 Design Proposal  

The objective of this project is to build a prototype of a heat engine, that is, a Stirling engine 

to pump water mainly for rural areas such as the Accra in Ghana, which records a temperature of 

320C on an average. To achieve this, the Stirling engine, with its calculated dimensions, was 

designed and simulated in Solidworks. After which the prototype was fabricated. The functional 

block diagram of the system is shown in Figure 3.1.  

 

Figure 3.1: Block diagram of the system 



 

 

17 

 

3.2 Requirements 

The requirements outlined include requirements from the user’s perspective, as well as the 

system requirements based on its functionalities. These requirements were obtained mainly 

through literature reviews and user interviews. With the help of these requirements listed, the 

system was designed according to the user’s preferences. The users of this system include people 

living in sunny rural areas in Ghana and homeowners. The user requirements and system 

requirements are listed in section 3.2.1 and 3.2.2, respectively. 

3.2.1 User Requirements 

• The system should be cost-effective 

• The system should be easy to maintain (Simple system) 

• The system should be able to last long enough  

• Should be able to pump water fast enough and silently 

3.2.2 System Requirements  

• The system should be able to drive the water pump efficiently with a high flow rate  

• The system (Stirling engine) should be able to work with any heat source 

• The system should be simple 

• The system should be environmentally friendly (low carbon footprint) 
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3.3 Design Criteria and Decision Matrix 

In order to achieve the goals of this system, a design criterion was set, and a decision matrix 

was created to evaluate specific aspects of the system. A Pugh matrix was constructed for the 

various working fluids and the three Stirling engine configurations.  

3.3.1 Working Fluid 

Common working fluids used in the operation of the Stirling engine include hydrogen, air, 

helium, and nitrogen. These working fluids are evaluated and assigned scores based on the criteria 

found in Table 3.1. The various criteria include density, viscosity, thermal diffusivity, specific heat 

capacity, safety, availability, and cost of the fluid. The criteria were weighted based on its 

importance and the requirements of the project. Density deals with how heavy the fluid is. For this 

system, very light gas is desired for the smooth operation of the engine. Viscosity describes the 

internal friction of the fluid. For the easy flow of the fluid, a low viscosity is required. Thermal 

diffusivity involves the transfer of heat from one particle of the fluid to the adjacent particle. 

Specific heat capacity is also concerned with the amount of heat required to raise the temperature 

of 1 kg of the fluid by 10C. For an optimal system, high thermal diffusivity and low specific heat 

capacity are desired. Among all the other working fluids, air had the highest rating. Therefore, it 

would be used in the operation of the system being designed.  
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Table 3.1: Pugh Matrix of the Working Fluids [6] 

Design 

Criterion 
Weight 

Hydrogen Air Helium Nitrogen 

Score Rating Score Rating Score Rating Score Rating 

Density 0.1 5 0.5 2.5 0.25 4 0.4 1 0.1 

Viscosity 0.15 4 0.6 2 0.3 1 0.15 3 0.45 

Thermal 

Diffusivity 
0.1 4.5 0.45 3 0.3 4 0.4 2 0.2 

Specific Heat 

Capacity 
0.1 5 0.5 1.5 0.15 3 0.3 0.5 0.05 

Safety 0.2 3 0.6 5 1 1 0.2 1 0.2 

Availability 0.15 3 0.45 5 0.75 2 0.3 4 0.6 

Cost 0.2 0.5 0.1 5 1 2 0.4 4 0.8 

Total  3.2  3.75  2.15  2.4 

 

3.3.2 Stirling Engine Configuration 

The main types of configurations of a Stirling engine are the alpha, beta and gamma 

configurations. These configurations are explained in detailed in section 2.2. The various criteria 

used in the configuration selection include the manufacturability, sealing, low dead volume and its 

operation at low differentials. Manufacturability considers how easy and affordable it is to design 

and machine the system. Sealing deals with how the working fluid can be trapped in the engine 

without escaping. Dead volume is the total volume in a Stirling engine (either in the hot or cold 

space) that is not being swept by the pistons. An increase in the dead volume causes a decrease in 

the efficiency of the engine. Therefore, a low dead volume is required for optimization [20]. An 

engine with low-temperature differential is desired due to the nature of the environment the system 

will be located. The weight for each criterion is assigned based on its importance. Table 3.2 lists 

the various criteria, and the configurations are scored according to how well they perform in each 

section. Overall, the gamma type Stirling engine scored the highest. As such, the system being 

built will be based on the gamma Stirling engine design. 
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Table 3.2: Pugh Matrix for Stirling Engine Configurations 

Design Criterion Weight 
Alpha Beta Gamma 

Score Rating Score Rating Score Rating 

Manufacturability 0.5 2 1 1 0.5 4 2 

Sealing 0.2 1 0.2 4 0.8 3 0.6 

Low Dead volume 0.15 4 0.6 4 0.6 2 0.3 

Operation at low 

temperature differentials 
0.15 2 0.3 3 0.45 5 0.75 

Total 1  2.1  2.35  3.65 

 

3.4 Material Selection 

The project aims to create a relatively low-cost water pumping system. Therefore, the 

material selected should be affordable and locally outsourced. The materials under consideration 

include light metals with high thermal conductivity. The CES EduPack software aided in the 

material selection process. The criteria used in selecting the material was the thermal conductivity 

of the material, the cost, and the density of the material. The thermal conductivity of the suitable 

metals is graphed against its price in Figure 3.2. The most suitable metals obtained from this graph 

are aluminum and copper alloys which has a thermal conductivity of 121 W/m0C -137 W/m0C and 

50 W/m0C - 300 W/m0C, respectively. The densities of these materials graphed in Figure 3.3 are 

2640 kg/m3-2810 kg/m3 and 8180 kg/m3 – 8850 kg/m3, respectively. Due to the relatively high 

density of copper, aluminum alloy would be used for the fabrication of the main parts of the engine 

such as the displacer, power piston and the cooling fins.  
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Figure 3.2: Thermal Conductivity against Price 

 

Figure 3.3: A graph the densities of Various Metals 
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3.5 Selecting Hot and Cold Side Temperatures 

As stated above, ideally, the system would be powered by a solar parabolic dish collector. 

As such, the Stirling engine was designed such that it works based on the temperature produced 

by the solar collector. The expected temperature range produced by a small-sized solar collector 

is between 150°C–300°C [21]. Therefore, the hot side was designed based on this temperature. 

While the hot side is at a temperature, 𝑇ℎ of 300°C, the cold side was designed to be at 

temperature, 𝑇𝑐 of 200°C to achieve a temperature difference of 100°C [14]. 
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4 Design and Implementation  

Chapter 4 describes the various processes and calculations involved in obtaining the precise 

dimensions for the system to be modelled using Solidworks. 

4.1 Analysis and Calculations 

Table 4.1 contains all the variables and its definitions used in this chapter. 

Table 4.1: Table of Variables 

Variable Definition and unit 

𝑨𝑺 Area of displacer cylinder, m2 

𝑨𝒇𝒊𝒏 𝒂𝒓𝒆𝒂 Surface area of cylinder with fins, m2 

𝑨𝒇𝒊𝒏 Area of a fin, m2 

𝑫𝒅𝒊𝒔𝒑 Diameter of displacer cylinder, m 

𝑳𝒅𝒊𝒔 Length of displacer cylinder, m 

𝑳𝒇𝒊𝒏 𝒂𝒓𝒆𝒂 Length of the cylinder with fins, m 

𝑳𝒇𝒊𝒏   r1-r2, m 

𝑳𝒄 Length of the piston connecting rod, m 

𝑸𝒇𝒊𝒏 Heat transfer of surface with fins, W 

𝑸𝒏𝒐𝒇𝒊𝒏 Heat transfer of surface without fins, W 

𝑸𝒔𝒖𝒑𝒑𝒍𝒊𝒆𝒅 Heat supplied to the Stirling Engine, W/ 

𝑻𝒉 Temperature at hot side, °C 

𝑻𝒂𝒗𝒈 Average temperature of cylinder,°C 

𝑻𝒃 Bulk mean temperature, (Tb+Tinf)/2, °C 

𝑻𝒄 Temperature at cold side, °C 

𝑻𝒇 Film temperature, °C 

𝑻𝒊𝒏𝒇 Ambient temperature,°C 

𝒎𝒇𝒍𝒚𝒘𝒉𝒆𝒆𝒍 Mass of flywheel, kg 

𝒓𝟏 Inner radius of a fin, m 

𝒓𝟐 Outer radius of a fin, m 

𝒓𝒄𝒓𝒂𝒏𝒌 Radius of crankshaft, m 

𝒓𝒇𝒍𝒚𝒘𝒉𝒆𝒆𝒍 Radius of flywheel, m 

𝒔𝒐𝒑𝒕 Optimum spacing of fins, m 
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𝒕𝒇𝒊𝒏 Thickness of a fin, m 

𝒕𝒇𝒍𝒚𝒘𝒉𝒆𝒆𝒍 Thickness of flywheel, m 

𝒗𝒑𝒊𝒔 Velocity of piston, m/s 

𝜺𝒇𝒊𝒏 Fin effectiveness 

𝜼𝒄𝒂𝒓𝒏𝒐𝒕 Carnot efficiency of Stirling engine 

𝝆𝒂𝒍 Density of Aluminum, kg/m3 

𝝎𝒓𝒂𝒅 Angular velocity in rad/s 

𝝎𝒓𝒑𝒎 Angular velocity in rpm 

F Friction factor 

g Acceleration due to gravity 

h convection heat transfer coefficient, W/m2·°C 

I Moment of Inertia 

k Thermal Conductivity 

Nu Nusselt number 

Pr Prandtl number 

Ra Rayleigh’s number 

Re Reynold’s number 

U Overall coefficient of heat transfer, W/m2K 

v Kinematic viscosity, m2/s 

X Distance moved by piston, m 

α Thermal diffusivity, m2/s 

β Volume expansion coefficient, 1/K 

η Pump efficiency 

𝑽 Volume of flywheel, m3 

𝜽 Crank angle, ° 

 

4.1.1 Power Analysis 

In order to obtain the required power to drive the water pump efficiently, the Stirling 

engine’s dimensions were obtained based on the power required. As such, the following 

calculations were done to obtain the required power for modelling the engine.  
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Using a typical household water pump shown in Figure 4.1, the following data in Table 4.2 

was obtained: 

Figure 4.1: Typical Water Pump used in Households 

Table 4.2: Ratings of a Typical Water Pump 

Ratings Value 

Flowrate, 𝐐𝐦𝐚𝐱 
0.00055 

m3

sec
 

Energy Head, 𝐇𝐦𝐚𝐱 33 m 

Power, Ppump 370 W 

Power, 𝐏𝐦𝐚𝐱 550 W 

 𝜼 67.27% 

 

From the ratings of the pump, the power needed to drive it is 370W. This is equivalent to 

the power to be supplied by the Stirling engine. However, due to the inefficiencies of the Stirling 

engine, the power produced would be less than expected. Therefore, the actual power produced by 

the Stirling was calculated using its Carnot efficiency in equation 4.1 [6].  

 
𝜂𝑐𝑎𝑟𝑛𝑜𝑡 = 1 −

𝑇𝑐
𝑇ℎ

 
(4.1) 

The Carnot efficiency achieved was 33.3%. Therefore, to account for inefficiencies of the 

system, the actual power that the engine is expected to produce, 𝑄𝑠𝑡𝑖𝑟𝑙𝑖𝑛𝑔 is 1.11 kW which was 
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calculated using equation 4.2. This power obtained is equivalent to the heat energy produced by 

the Stirling engine [6]. 

 
𝑄𝑠𝑡𝑖𝑟𝑙𝑖𝑛𝑔 =

𝑃𝑝𝑢𝑚𝑝

𝜂𝑐𝑎𝑟𝑛𝑜𝑡
 (4.2) 

4.1.2 Analysis of Flywheel 

The dimensions of the flywheel were calculated based on the desired energy required and 

its moment of inertia using equations 4.3 to 4.8 [22]. A radius of 0.2568 m was obtained for the 

flywheel assuming an engine speed of 1200 rpm [23]. 

 
𝐾𝑖𝑛𝑒𝑡𝑖𝑐 𝐸𝑛𝑒𝑟𝑔𝑦 𝑝𝑒𝑟 𝑐𝑦𝑐𝑙𝑒, 𝐸 =

𝑃 × 60

𝜔
 (4.3) 

 
𝑀𝑜𝑚𝑒𝑛𝑡 𝑜𝑓 𝐼𝑛𝑒𝑟𝑡𝑖𝑎, 𝐼 =

2 ∙ 𝐸

𝜔𝑟𝑝𝑚
2 ∙ 60

 (4.4) 

 
𝐼 =

1

2
∙ 𝑚𝑓𝑙𝑦𝑤ℎ𝑒𝑒𝑙 ∙ 𝑟𝑓𝑙𝑦𝑤ℎ𝑒𝑒𝑙

2 (4.5) 

 𝐵𝑢𝑡 𝑚𝑓𝑙𝑦𝑤ℎ𝑒𝑒𝑙 = 𝜌𝑎𝑙 ∙ 𝑉 (4.6) 

 𝑎𝑛𝑑 𝑉 = 𝜋𝑟𝑓𝑙𝑦𝑤ℎ𝑒𝑒𝑙
2𝑡𝑓𝑙𝑦𝑤ℎ𝑒𝑒𝑙 (4.7) 

 
∴ 𝐼 =

1

2
∙ 𝑃𝑎𝑙 ∙ 𝜋 ∙ 𝑟𝑓𝑙𝑦𝑤ℎ𝑒𝑒𝑙

4 ∙ 𝑡𝑓𝑙𝑦𝑤ℎ𝑒𝑒𝑙 (4.8) 

4.1.3 Heat Exchanger Analysis 

To model the heat exchanger effectively, using the desired hot region and cold region 

temperatures obtained from literature, the log mean temperature difference (LMTD) must be 

implemented. The LMTD method is an effective method for obtaining the dimensions of the heat 

exchanger. Once the log mean temperature difference,  ∆𝑇𝑙𝑚, the overall heat transfer coefficient, 

the mass flowrates and the heat required are known, the area of the heat exchanger, as well as its 

length, can be calculated for, using equations 4.29 and 4.30. This heat exchanger is modelled as a 
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parallel heat exchanger. That is, both working fluid and ambient air all move in the same direction. 

The equations governing parallel-flow heat exchanges are equations 4.9 to 4.11.  

 ∆𝑇1 = 𝑇ℎ − 𝑇𝑖𝑛𝑓 (4.9) 

 ∆𝑇2 = 𝑇𝑐 − 𝑇𝑖𝑛𝑓 (4.10) 

 
∆𝑇𝑙𝑚 =

∆𝑇1 − ∆𝑇2

log (
∆𝑇1
∆𝑇2

)
 

(4.11) 

Given that: 

𝑇𝑖𝑛𝑓 = 32 ℃ 

𝑇ℎ = 300 ℃ 

𝑇𝑐 = 𝑇ℎ − 100 ℃ 

∆𝑇𝑙𝑚 can be calculated for as 214.1222. 

Next, to find the overall heat transfer coefficient in equation 4.28, ℎ1 and ℎ2, which 

represents the convective coefficient for the ambient air and the working fluid, respectively, need 

to be calculated. ℎ1, which can be classified as natural convection, can be obtained from equations 

(4.17 to 4.21  [6]. To use these equations, certain properties of the air need to be estimated using 

the film temperature in equation 4.12. These properties, that is, the Prandtl number, the thermal 

conductivity, kinematic viscosity and volume expansion coefficient, are shown in equations 4.13 

and 4.16 using a film temperature of 166°C (439 K) [6].   

 𝑇𝑓 =
𝑇ℎ1 + 𝑇𝑖𝑛𝑓

2
+ 273 𝐾 (4.12) 

 𝑃𝑟1 =  0.7007 (4.13) 
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 𝑘1 = 0.0355 𝑊/𝑚 ∙ 𝐾 (4.14) 

 𝑣1 = 3.0461 × 10
−5𝑚2/𝑠 (4.15) 

 𝛽1 =
1

𝑇𝑓
 𝐾−1 (4.16) 

 𝑅𝑎 =
𝑔𝛽(𝑇𝑆 − 𝑇𝑖𝑛𝑓)𝐿

3

𝑣2
 𝑃𝑟 (4.17) 

 𝑊ℎ𝑒𝑟𝑒 𝑇𝑠 = 𝑇ℎ1 + 273 (4.18) 

 𝑎𝑛𝑑 𝑇inf = 𝑇𝑐 + 273 (4.19) 

 𝑁𝑢 =  

{
  
 

  
 

0.6 +
0.387𝑅𝑎

1
6

[1 + (
0.559
𝑃𝑟  )

9
16
]

8
27

}
  
 

  
 
2

 (4.20) 

 ℎ =
𝑘 ∙ 𝑁𝑢

𝐷𝑑𝑖𝑠𝑝
 (4.21) 

To find ℎ2, the flow of the working fluid in the cylinder is considered as forced convection. 

As such, equations 4.25 to 4.27 and 4.21 were used to find the value of ℎ2 as 46.1348 W/m2K. The 

properties of air used to find  ℎ2 at a film temperature of 450 °C (723 K), are in expressions 4.22 

to 4.24. After finding both coefficients of convections, the overall coefficient of heat transfer U, 

can be found using equation 4.28. The area and length of the heat exchanger, that is, the displacer 

cylinder, is then calculated in equation 4.29 and 4.30 respectively. 

 𝑃𝑟2 =  0.6946 (4.22) 

 𝑘2 = 0.04104 𝑊/𝑚 ∙ 𝐾 (4.23) 

 𝑣2 = 4.091 × 10
−5𝑚2/𝑠 (4.24) 
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𝑅𝑒 =

𝑣𝑝𝑖𝑠 ∙ 𝐷𝑑𝑖𝑠𝑝

𝑣2
 (4.25) 

 𝑓 = (0.790 ln 𝑅𝑒 − 1.64)−2 (4.26) 

 

𝑁𝑢 =
(
𝑓
8
) (𝑅𝑒 − 1000)Pr

1 + 12.7 (
𝑓
8
)
0.5

(𝑃𝑟
2
3 − 1)

 (4.27) 

 1

𝑈
=
1

ℎ1
+
1

ℎ2
 (4.28) 

 
𝐴𝑆 =

𝑄

𝑈 ∙ ∆𝑇𝑙𝑚
 (4.29) 

 
𝐿𝑑𝑖𝑠 =

𝐴𝑠
𝜋 × 𝐷𝑑𝑖𝑠

 (4.30) 

 

4.1.4 Fin Analysis 

Cooling fins are projections on the surface of heat exchangers to increase the surface area 

and hence, radiate heat away from a device. The annular cooling fins in Figure 4.2 is incorporated 

in the design of the Stirling engine’s heat exchanger is to optimize the rate of heat transfer at the 

cold region. To justify the added material and cost associated with the cooling fins, the 

performance of the fins is expressed in terms of fin effectiveness, 𝜀𝑓𝑖𝑛. The fin effectiveness is 

defined as in equation 4.31. For the fins to enhance heat transfer effectively, the effectiveness of 

the fins should be greater than one (𝜀𝑓𝑖𝑛 >1) [6]. As such the finned surface was designed around 

this effectiveness to obtain the right dimensions for optimal heat transfer. Equations 4.32 to 4.39 

are used to obtain the cooling fins dimensions in Table 4.3 [6]: 
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Figure 4.2: Annular Cooling Fins [6] 

 
𝜀𝑓𝑖𝑛 = 

𝑄𝑓𝑖𝑛

𝑄𝑛𝑜𝑓𝑖𝑛
 (4.31) 

 𝑄𝑓𝑖𝑛 = 𝜀𝑓𝑖𝑛 ∙  𝑄𝑛𝑜𝑓𝑖𝑛 (4.32) 

 𝑊ℎ𝑒𝑟𝑒 𝑄𝑛𝑜𝑓𝑖𝑛 = ℎ ∙ 𝐴𝑓𝑖𝑛 𝑎𝑟𝑒𝑎 ∙ (𝑇𝑏 − 𝑇𝑖𝑛𝑓) (4.33) 

 𝑎𝑛𝑑 𝐴𝑓𝑖𝑛 𝑎𝑟𝑒𝑎 =  𝜋 ∙ 𝐷 ∙ 𝐿𝑓𝑖𝑛 𝑎𝑟𝑒𝑎 (4.34) 

 
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑓𝑖𝑛, 𝐴𝑓𝑖𝑛 =

𝑄𝑓𝑖𝑛

ℎ(𝑇𝑏 − 𝑇𝑖𝑛𝑓)
 (4.35) 

 
𝑟2 = 𝑟2𝑐 −

𝑡

2
 (4.36) 

 
Where  𝑟2𝑐 = √

𝐴𝑓𝑖𝑛

2𝜋
+ 𝑟12 (4.37) 

 ∴ 𝐷2 = 𝑟2 × 2 (4.38) 

 𝐿𝑓𝑖𝑛 = 𝑟2 − 𝑟1 (4.39) 

 

The cooling fins must be spaced out in such a manner to transfer heat out of the system effectively. 

The optimum spacing, 0.0095 m, is derived using the equation 4.40 below [24]. 

 

𝑠𝑜𝑝𝑡 = 2.71 × (
𝑔𝛽(𝑇𝑏 − 𝑇𝑖𝑛𝑓)

𝐿𝛼𝑣
)

−
1
4

 (4.40) 
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4.1.5 Slider Crank Mechanism 

The slider-crank mechanism is a critical part of the Stirling engine because it converts the 

linear motion of the piston to the rotary motion needed by the impeller of the water pump. Figure 

3.1 simplifies the slider-crank mechanism of the crankshaft and the piston. The connecting rod, 𝑙𝑐 

connects the piston to the crankshaft which has a radius, 𝑟𝑐𝑟𝑎𝑛𝑘. Equations 4.41 and 4.42 govern 

the working principle of the mechanism. 

 

 
𝑥 = rcrank (1 − cos 𝜃 +

𝐾2

2
sin2 𝜃) (4.41) 

 𝑊ℎ𝑒𝑟𝑒 𝐾 =
rcrank
𝑙𝑐

= 0.3 (4.42) 

 

From the dimensions obtained, the maximum distance travelled by the displacer,  is 0.098 m hence, 

making the crankshaft turn an angle of 180˚. With this angle, 𝜃 and the distance travelled by the 

displacer, equations 4.41 and 4.42 [22] are manipulated to obtain the crankshaft radius, 𝑟𝑐𝑟𝑎𝑛𝑘 as 

0.0489 m. 

Figure 4.3: Diagram showing the slider crank mechanism 
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4.2 Dimensions of the Various Parts of the Engine 

The dimensions of the other parts of the engines were acquired from Figure 4.4, which shows 

the basic structure of the Stirling engine. 

Figure 4.4: The basic structure of the gamma Stirling engine [7] 

Table 4.3: Dimensions of the Main Parts of the Stirling Engine 

Engine Part Dimension (m) 

Displacer Cylinder Outer diameter: 0.365  
Inner diameter: 0.362  
Length: 0.744 

Displacer  Diameter: 0.355  
Length: 0.496 

Power Cylinder Outer diameter: 0.180  
Inner diameter: 0.177  
Length: 0.297 

Power Piston Outer diameter: 0.177  
Length: 0.248 

Cooling Fins Thickness: 0.005 

 Diameter: 0.699 

 Optimum spacing: 0.0095 

Flywheel Thickness: 0.015 

 Diameter: 0.514 

 

4.3 Fabricated Prototype 

With the dimensions in Table 4.3, the Stirling engine was modelled, as shown in Appendix A: 

Modelled and Fabricated Stirling Engine 
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Using a scale of 1:13 of the dimensions in Table 4.3, a prototype was built. Figure A43 and 

Figure A34 show a picture of the prototype built. Since the prototype was built to test out the 

functionality of the system, it was built using common materials such as an aluminum cans, steel 

rods and aluminum plate. The following steps describe how each of the parts was built: 

1. An aluminum can was cut to the desired length to function as the displacer cylinder. 

2. The displacer was fashioned from foam with a thin steel rod in the middle to act as the 

connecting rod as shown in Figure 4.5 . 

 

3. The power cylinder was fashioned from a 22mm PVC pipe elbow. One end of the pipe 

elbow was attached to the side of can. To make the attachment easier, the pipe elbow 

was shaped to match the curve of the can using sandpaper. Once that was done, the 

curved end of the pipe elbow is attached the side of the aluminum can using epoxy.  

4. A hole is made at the side of the can where the pipe elbow is attached. This will aid in 

the movement of air to and from the power cylinder. 

5. A balloon is used to cover the free end of the pipe elbow. This will help in moving the 

power piston. 

Figure 4.5: Displacer 
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6. To cover the displacer cylinder, a second identical aluminum can is cut to length and 

placed over the free end of the displacer cylinder with the displacer inside.  A hole is 

made in the top can, to facilitate the movement of the displacer’s connecting rods. The 

cylinder is sealed with epoxy to make it airtight.  

7. Two plastic sticks are attached to the displacer as shown in figure A4. A 2mm hole is 

made at the top of the plastic sticks. The holes made on both sticks should be aligned 

horizontally. This will support the crankshaft. 

8. A steel rod of diameter 2 mm was obtained to serve as a crankshaft. Since the displacer 

is always 90 ° ahead of the power piston, the crankshaft was bent such that the 

movement of the pistons satisfy this rule. The fabricated crankshaft was passed through 

the holes of the sticks as shown in figures A3 and A4. 

9. The displacer was connected to the crankshaft by wrapping its connecting rod to the 

crankshaft. 

10. The power piston was fabricated from a 1mm steel rod. The steel rod was coiled at one 

end and attached to the balloon using epoxy as shown in Figure 4.6. The other end was 

wrapped around the crankshaft. 

Figure 4.6: Power piston 
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11. A CD was attached to the free end of the crankshaft to function as the flywheel.  

To provide energy for the fabricated engine, a candle was used. The estimated temperature of 

the heat provided was 85°C. Coldwater at an estimated temperature of 15°C was placed in the top 

can. This provides the needed temperature difference needed to run the engine. A speed of 123 

rpm was obtained from the working engine. The estimated power output of the engine was 0.28 

W. The low power output can be attributed to the low quality of materials used and the small 

temperature difference. The optimum temperature difference needed from the effective working 

of the engine is 100°C [14]. Once the size of the engine is scaled up to the required dimensions, 

using the appropriate materials and optimum temperature difference, the desired power can be 

achieved.  
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5 Results and Discussion 

This chapter discusses the various simulations and analysis done to ensure the proper working 

of the system once it is implemented physically.  

5.1 Simulations 

After modelling the engine in Solidworks, the critical parts of the engine were simulated. 

5.1.1 Thermal Analysis of Cooling Fins 

With the dimensions obtained from the calculations in chapter 5, the cooling fins were 

modelled and simulated to test the amount of heat it can dissipate out of the system. A temperature 

of 300°C was set on the inside of the fins while a convective coefficient was set around the body. 

With a fin of diameter 0.699 m, the temperature difference it could achieve was 160°C, as shown 

in Figure 5.1. This temperature difference is high enough to optimize the working of the engine. 

 
Figure 5.1: Simulation results of cooling fins 
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5.1.2 Stress and Fatigue Analysis of Crankshaft 

The crankshaft, which is made out of steel (as typical crankshafts are made from steel), 

with a diameter 15 mm was analyzed to determine the stresses that it will face when the engine is 

in operation. The crankshaft is analyzed with all supports and forces acting on it, as shown in 

Figure 5.2. The maximum stress occurs on one of the fixtures with a value of 5.663 × 107N/m2. 

The yield stress for this material is 2.750 × 108N/m2. Therefore, the maximum stress experienced 

is significantly below the yield stress. Hence the minimum factor of safety is 4.9. As such, this 

crankshaft is suitable for its operation. Figure 5.3 shows the results obtained from the fatigue 

analysis. The analysis shows that, after 1,000,000 cycles, there will be a damage percentage of 

6.58 %. 

 

Figure 5.2: Stress analysis of crankshaft 
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Figure 5.3: Fatigue analysis of crankshaft 

5.1.3 Stress and Fatigue Analysis of Displacer 

During the engine’s operation, the piston head experiences pressures due to combustion. 

While these pressures vary, they can be approximated using Brake Mean Pressure (BMEP) defined 

in equation 5.1 [22]. The effective of the BMEP on the displacer and power piston were simulated 

in Solidworks. Using equation 5.1, the BMEP for the displacer was 5878.4 Pa. This pressure was 

applied to the displacer, and the results in Figure 5.5 were obtained. With the yield stress being 

5.517 × 107N/m2, the maximum stress experienced was 1.918 × 107N/m2. Hence, a factor of safety 

of 2.9 was obtained. In the fatigue test performed, the damage percent after 10,000 cycles was 

14.13% as in Figure 5.4. 

 𝐵𝑀𝐸𝑃 =
𝑃𝑛𝑐
𝑉𝑑𝑁

 (5.1) 

 

𝑊ℎ𝑒𝑟𝑒 𝑃 = 𝑃𝑜𝑤𝑒𝑟 𝑂𝑢𝑡𝑝𝑢𝑡 
𝑛𝑐 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑝𝑒𝑟 𝑠𝑡𝑟𝑜𝑘𝑒 (𝑛𝑐 = 2) 

𝑉𝑑 = 𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑝𝑖𝑠𝑡𝑜𝑛 

𝑁 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑 
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Figure 5.4: Results of the displacer's static analysis 

Figure 5.5: Results of the displacer's fatigue analysis 
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5.1.4 Stress and Fatigue Analysis of Power Piston 

Using a BMEP of 47027 Pa, the power piston was also simulated, and the results in Figure 

5.7 were obtained. The maximum stress attained was 6.469 × 107N/m2, while the yield stress of 

the material is 2.92 × 108N/m2. Therefore, a factor of safety of 4.5 was achieved. The fatigue 

analysis in Figure 5.6 shows that after a 1000 cycle, the maximum damage percent would be 

12.15%. 

Figure 5.6: Results of power piston's static analysis 

Figure 5.7: Results of power piston's fatigue analysis 
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5.2 Thermodynamic Analysis  

The diagram in Figure 5.8 shows the PV diagram of the designed Stirling engine. From the 

graph, the net work done was 28.4338 J, which leads to a power output of 568.6752 W. Overall, 

an efficiency of 19.15 % was achieved. Schmidt analysis was employed to obtain these values. 

The equations used in the analysis is stated in Appendix B: Schmidt Analysis. The power output 

obtained is adequate to run an average water pump as the one in Figure 4.1 which needs a power 

of at least 370 W to work effectively.  

  

Figure 5.8: PV diagram of Stirling engine 
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6 Conclusion 

This project proves that there is hope for the development of clean and relatively cheap energy 

for water pumping in rural areas with abundant sunshine. In this engine, concentrated solar energy 

can be used to heat the hot end of the solar engine to a temperature of 300 °C. Unlike the PV solar 

system, this system has a relatively cheaper investment cost, and it has a very low carbon footprint 

[16]. Adopting this technology would lead to the attainment of the SDG 7, to “increase 

substantially the share of renewable energy in the global energy mix” [5] as stated in chapter 1. 

Further modifications can be done to the solar-powered Stirling engine to optimize its performance 

and adapt them for other uses such as electricity generation or any device that requires mechanical 

energy. Some of these modifications are stated in section 6.2. 

6.1 Limitations 

The challenges that hindered the accomplishment of the set goals are as follows: 

1. Even though the Gamma Stirling engine might be easy to build, it is difficult to get the 

engine working. This is mainly due to the friction experienced between the crankshaft 

and the connecting rods. Also, to operate the Stirling engine, the cylinders must be 

airtight. However, it is extremely difficult to obtain an airtight cylinder. 

2. Even though the manufacturing of the Stirling engine using locally outsourced materials 

might be relatively cheap, the recommended source of heat, that is, Concentrated Solar 

Power leads to an additional installation cost. However, the system can be scaled such 

that the engine can be powered by other cheaper heat sources.  
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6.2 Future Work 

This project sets a foundation for the use the Stirling engine technology in areas such as 

Accra, Ghana. However, other designs and systems can be created to improve upon the work 

discussed and optimize the use of the Stirling engine. This can be done through the following: 

1. Designing a starting mechanism for the Stirling engine such that it does not need an initial 

push to get it working. 

2. Designing and Fabricating a Concentrated Solar Powered Dish to power the Stirling water 

pump.  

3. Fabrication of a thermal storage system such that the Stirling engine can function 

effectively at night. 

4. Designing a more efficient and high-power Stirling engine that can power other devices 

simultaneously. This would reduce the pressure on the national grid drastically and 

promote the use of clean energy, thereby protecting the environment. 
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Appendix 

Appendix A: Modelled and Fabricated Stirling Engine 

Figure A1 : A top view of designed Stirling engine 

Figure A2: Aside view of designed Stirling Engine 
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Figure A4:Front view of the prototype built 

Figure A3:Top view of the prototype built 
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Appendix B: Schmidt Analysis 

Nomenclature for Analysis 

Table A 1: Nomenclature for Schmidt Analysis 

Variable  

Definition and unit 

𝑽𝑺𝑬 Swept Volume of displacer piston, m3 

𝑺𝒅𝒑 Displacement of displacer piston, m 

𝑩𝒅𝒑 Bore of displacement piston, m 

𝑽𝑺𝑪 Swept Volume of power piston, m3 

𝑩𝒑𝒑 Bore of power piston, m 

𝑺𝒑𝒑 Displacement of power piston, m 

𝑽𝑬  Expansion space volume 

𝑽𝑪 Compression space volume 

𝝋 Phase angle, ° 
𝑽 Total volume 

𝑽𝑫 Total dead volume 

𝑽𝑫𝑬 Dead expansion volume 

𝑽𝑹 Regenerator volume 

𝑽𝑫𝑪 Dead compression volume 

𝑻𝑹 Regenerator temperature 

𝑻𝑬 Expansion space temperature 

𝑻𝑪 Compression space temperature 

𝒎 Total mass of air 

𝒎𝑬 Mass of air in expansion space 

𝒎𝑹 Mass of air in regenerator space 

𝒎𝑪 Mass of air in compression space 

𝒑 Pressure of engine 

𝑹 Gas constant of air 

𝑾𝒏𝒆𝒕 Net work done by engine 

𝝎 Speed of engine 

𝑷𝒐𝒖𝒕𝒑𝒖𝒕 Power output of engine 

𝜶 Crank angle, ° 
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Assumptions to perform Schmidt Analysis [7], [25] 

1. The working gas, which is air in this case, is an ideal gas. 

2. The speed and pressure are constant throughout the cycle.  

3. The Stirling engine is in steady-state operation 

4. There is no leakage of the working gas. 

5. The temperature of the working gas changes with time.  

6. The regenerator temperature is equal to the average temperatures of the expansion space 

and compression space temperature.  

7. There is a sinusoidal motion between the displacer and the power piston.  

 

Schmidt Analysis [7], [26] 

The swept volume of the displacer and power piston was calculated using equation 1 and 2, 

respectively.  

 𝑉𝑆𝐸 =
𝜋

4
× (𝐵𝑑𝑝)

2
× 𝑆𝑑𝑝 (1) 

 𝑉𝑆𝐶 =
𝜋

4
× (𝐵𝑝𝑝)

2
× 𝑆𝑝𝑝 (2) 

The expansion volume is calculated in equation 3. The compression volume, the volume 

between the displacer and the power piston, is represented in equation 4. Both the expansion and 

compression volumes are a function of the crank angle. Depending on the point in the cycle, the 

crank angle is between 0° and 360°.  

 𝑉𝐸 (𝛼) =
𝑉𝑆𝐸
2
∙ (1 − cos 𝛼) (3) 

 𝑉𝐶(𝛼) =
𝑉𝑆𝐸
2
∙ (1 + cos𝛼) +

𝑉𝑆𝑐
2
∙ (1 − cos(𝛼 − 𝜑)) (4) 

 𝛼 = 0° 𝑡𝑜 360° (5) 

 𝜑 = 90° (6) 
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The total volume of the cylinder represented in equation 7 comprises of the expansion 

space volume, the compression space volume and the total dead volume. The total dead volume is 

the sum of the dead volume in expansion space and compression space and the volume of the 

regenerator space as represented in equation 8. 

 𝑉(𝛼) = 𝑉𝐸 + 𝑉𝐷 + 𝑉𝐶 (7) 

 𝑉𝐷 = 𝑉𝐷𝐸 + 𝑉𝑅 + 𝑉𝐷𝐶 (8) 

The temperature of the regenerator can be determined using equation 9. 

 

𝑇𝑅 =
𝑇𝐸 − 𝑇𝐶

ln (
𝑇𝐸
𝑇𝐶
)

 

 

(9) 

The total mass of the working gas, air, comprises of the mass of expansion, regenerator 

and compression space as expressed in equation 10 and expanded in equation 11. 

 𝑚 = 𝑚𝐸 +𝑚𝑅 +𝑚𝐶 (10) 

 𝑚 =
𝑝

𝑅
. [
𝑉𝐸
𝑇𝐸
+
𝑉𝑅
𝑇𝑅
+
𝑉𝐶
𝑇𝐶
] (11) 

Equation 11 is rearranged to obtain the pressure at each point in the cycle, as shown in 

equation 12. 

 

𝑝 =
𝑀 × 𝑅

𝑉𝐸
𝑇𝐸
+
𝑉𝑅
𝑇𝑅
+
𝑉𝐶
𝑇𝐶

  

 

(12) 

These equations are inserted into MATLAB with their corresponding values. The pressure 

is plotted against the total volume to obtain the PV diagram in Figure 5.8. 
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 𝑄𝑠 = 𝑃3𝑉3𝑙𝑛 (
𝑉4
𝑉3
) (13) 

 𝑄𝑅 = 𝑃1𝑉1𝑙𝑛 (
𝑉1
𝑉2
) (14) 

 𝑊𝑛𝑒𝑡 = 𝑄𝑠 − 𝑄𝑅 (15) 

 𝑃𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑊𝑛𝑒𝑡 × 𝜔 (16) 

𝑊ℎ𝑒𝑟𝑒 𝑃3 = 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑎𝑡 𝑠𝑡𝑎𝑡𝑒 3 

 𝑃1 = 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑎𝑡 𝑠𝑡𝑎𝑡𝑒 1  

𝑉3 = 𝑣𝑜𝑙𝑢𝑚𝑒 𝑎𝑡 𝑠𝑡𝑎𝑡𝑒 3 

𝑉1 = 𝑣𝑜𝑙𝑢𝑚𝑒 𝑎𝑡 𝑠𝑡𝑎𝑡𝑒 1 

These equations are inserted into MATLAB with their corresponding values. The pressure 

is plotted against the total volume to obtain the PV diagram in Figure 5.8. The values 

of 𝑃1, 𝑃3, 𝑉3 and 𝑉1were obtained using the PV diagram and inserted into equation 13 and 14 to 

obtain the net work done in equation 15 by the engine. The power produced by the engine is 

calculated using equation 16. Finally, the efficiency of the engine is obtained in equation 17.  

 

𝜂 = 1 −
𝑄𝑆
𝑄𝑅

 

 

(17) 
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Appendix C: Drawings of the Parts of the Stirling Engine 

Figure C1: Drawing of Displacer Cylinder 
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Figure C2: Drawing of Power Cylinder 
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 Figure C3:Drawing of Power Piston 
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Figure C4:Drawing of Connecting Rod 
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Figure C5:Drawing of Flywheel 
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Figure C6:Drawing of Crankshaft 
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Figure C7:Drawing of Crankshaft Support 
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Figure C8:Drawing of the Displacer Cylinder's Support 
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Figure C9:Drawing of Power Cylinder's Support 
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Figure C10: Drawing of Displacer Cylinder 
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Figure C11:Drawing of Connecting Tube 
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Figure C12:Drawing of the base of the Engine 
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Figure C13:Exploded View of Stirling Engine 




