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ABSTRACT 

 This project seeks to apply natural language processing techniques to automate the 

support processes of Chalkboard Education, a startup in Ghana. The company has many 

users but currently has only two operations personnel responsible for responding to 

customer queries. Their support processes can be made easier with the use of a chatbot. The 

project references work from early chatbots like ELIZA and Cleverbot as well as more 

recent ones like MOOCBuddy and SuperAgent. The chatbot is built on RASA Natural 

Language Interpreter and uses third party APIs like Twilio and Database connections to 

mirror human support processes. Upon implementation, the chatbot is suitably able to 

perform the repetitive human tasks the operations personnel were carrying out, successfully 

and in shorter time. In the event that the chatbot cannot handle a query, the problem is 

forwarded to the aforementioned operations personnel. Upon evaluation, it was discovered 

that the chatbot has could improve its accuracy and effectiveness with techniques such as 

adding more training data and using different language models for embeddings. In the 

future, the chatbot can be implemented via a USSD application to enable Chalkboard 

capitalize on the prevalence of USSD application in Africa. 
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Chapter 1: Introduction 

  Many businesses in Ghana make use of customer service call centers to 

respond to the queries of customers and resolve any issues they may have. A simple search 

on-line would produce a list of jobs available at said call centers. In principle, these centers 

are very instrumental to the business operations as they serve as a contact point to customers 

who are revenue drivers for the business. However, practicality dictates otherwise. In some 

cases, the numbers provided for customer service are no longer in service (some have been 

changed but not updated). In other cases, the call experience is marred by the emotional 

state of calling customers or the receiving agents at a given point in time. Even beyond these 

issues exist a more significant problem of cost. For companies, as they scale up and acquire 

more customers, there is a need to hire more customer service personnel to cater to the needs 

of customers. 

        An already existing solution to this problem is the use of automated conversational 

systems to respond to the queries of customers. Intelligent systems exist that can quickly 

serve numerous customers at any given time before deciding if human intervention is 

needed. Systems differ to varying extents based on the contents of their domain. A domain, 

in this case, is merely the scope of questions, statements, and classes that all communication 

can be categorized under. Hence, even though many automated systems function similarly, 

they need to be built for a specific domain to be effective.  

        Chalkboard Education is a startup that hosts an education platform. The company 

allows schools to make all their content digital and enrolls their students onto a platform to 

access it. The school gives their course material to Chalkboard Education who digitize it, 

upload it to the platform and create accounts for all the students who can then access the 

content from their mobile phone via a 6-character login token. Problems with the platform 

are thus handled solely by Chalkboard and not the school. This results in many individual 
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students always calling and direct messaging Chalkboard’s customer service support line 

for help. The company currently has only two people available for this job. This project’s 

main contribution is to automate some of Chalkboard’s support processes using a task-

oriented dialog agent to resolve common recurring user problems. By the end of this project, 

the goal is to build a full-functioning chatbot to handle all of Chalkboard’s support issues. 

 1.1 Background & Motivation 

  The use of conversational agents and dialog systems can be traced as far back 

as 1966 with the development of ELIZA, an early natural language processing computer 

program to present day Siri and Alexa of Apple and Amazon respectively. Natural Language 

Processing and its related fields have provided a means for us, humans, to communicate 

with machines and machine systems in ways similar to how we do with each other. There 

are many systems with different implementations and nuances, but the majority generally 

fall in two classes: Task-oriented dialog agents and Chatbots. 

        Task-oriented dialog agents are predominantly concerned with specific tasks and 

designed to have as very little interactions as possible to accomplish the task [1]. Examples 

include digital assistants like the Siri above and Alexa. This class of dialog systems is mostly 

employed by companies on their websites and products to enable customers and users to 

address problems and answer questions. Key benefits of these systems, especially to 

businesses and their customers, include faster and more convenient query handling as well 

as lower costs relative to hiring of human agents. They are not designed to have prolonged 

conversations. However, chatbots, the second class of dialog systems, are designed for that.  

        Chatbots are set up to mimic the natural conversational characteristics of human 

beings. They are designed to have more casual and less directed conversations than task 

oriented dialog agents. Cleverbot is a chatbot capable of carrying on prolonged 
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conversations with humans and exists mainly for entertainment purposes [5]. These are 

more suited for social uses such as for psychological analysis and entertainment purposes. 

A form of evaluation for many chatbots is a test called the Turing Test developed by Alan 

Turing in 1950. A Turing Test is a method of inquiry for determining whether or not a 

computer/system is capable of thinking like a human being[2]. A human should be able to 

find the two systems indistinguishable to pass the Turing Test. A chatbot that can pass this 

test can be said to be a good one. 

        The existence of the above systems in the field of natural language processing have 

made it possible for the application of knowledge to different scenarios and domains. 

Chalkboard Education’s particular situation presents an opportunity to apply this knowledge 

in a local context. The startup has been running for close to three years and currently has 

over 4000 students enrolled on its platform. Customer queries are handled mainly through 

WhatsApp and voice phone calls and require employees to be present to respond at all times. 

The creation of a dialog system using the information and queries specific to Chalkboard 

appears a potential solution to solve the problem by removing the need for the physical 

presence of human and saving costs for the startup. As the startup scales, the system does 

not have to scale proportionally; hence the cost of customer service can be minimal for a 

given number of users. 

  

1.2 Related Work 

1.2.1 ELIZA 

ELIZA is an early natural language processing computer program created from 1964 

to 1966 [3]. It was created by Joseph Weizenbaum at the MIT Artificial Intelligence 

Laboratory to demonstrate communication between humans and machines using natural 
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language. It works by breaking down a sentence, ranking its keywords and transforming the 

user’s sentence into a proper response using rules from its pre-programmed learning script. 

The system was modeled after a Rogerian psychotherapist in that it allowed the program do 

not need to have a knowledge base of the topic the human was discussing [Weizenbaum, 

1966]. By merely transforming the sentences based on keywords in the user's query, the 

program can appear to be engaging in conversation regardless of the topic. ELIZA would 

turn user input into a question which kept the users engaged. There were several reports of 

human test subjects developing an emotional connection to the system; a testament of how 

well it was able to sustain a regular conversation. This system formed the basis for the 

creation of other conversational agents and improvements in the field of natural language 

processing. 

 

1.2.2 Cleverbot 

Cleverbot is a web-based chatbot that uses artificial intelligence to have 

unsupervised conversations with humans and is created by Rollo Carpenter. It holds the 

distinction of having passed the Turing Test. As mentioned earlier, the idea of the test is for 

a machine to pretend to be a human and will only pass if this pretense is found to be 

convincing [4]. Cleverbot has performed quite well in Turing Test competitions, giving it 

some credibility [4]. Unlike ELIZA, Cleverbot learns how to have a conversation as it 

interacts with more humans. Its responses at any given time are as a result of an analysis of 

previous conversations it has had with other humans. This contributes to its ability to 

perform well on the Turing Test. Despite the difference in how ELIZA and Cleverbot are 

implemented, they are both capable of holding a conversation with a human for a 

considerable length of time. 
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1.2.3 Super Agent: A Customer Service Chatbot for E-commerce websites 

This paper highlights the need for the use of automated systems like chatbots in a business 

environment. It labels customer service as one of the most resource intensive departments 

within a company, consuming a lot of time and money. Customer queries are repetitive, and 

customer service agents cannot be present 24/7. Both of these can be resolved through the 

use of chatbots as the paper points out. Chatbots are economical, indefatigable and would 

enable support staff to spend more time on other things. The bot created in the paper, 

SuperAgent, leverages ‘large-scale and publicly available e-commerce data’ to respond to 

customer queries. A key contribution of the paper to this proposed project work was how to 

involve a ‘chit-chat engine’ to satisfy usability in terms of customer experience and achieve 

the non-functional requirement of naturalness of conversation. SuperAgent uses a chit-chat 

engine to reply to queries that cannot be answered by all other engines and to respond to 

small talk off-topic user inputs. The provision of this engine helps push the conversation 

with the chatbot to look closer to that of a customer service agent. 

 

1.2.4 MOOCBuddy 

MOOCBuddy is a chatbot that serves as a recommender system to help users find the best 

courses on Massive Open Online Courses like Coursera and edX. It is created based on the 

user’s social media profile and is managed through Facebook Messenger. The paper by 

Holotescu [8] tells of how the creation of Facebook's Messenger service, which leverages 

billions of individual users and businesses on Facebook, has led to the increase in the 

number of chatbots available. These chatbots are built and run through the Messenger API. 

Dialogues are modeled as structured messages with URLs connected to enable users to make 

choices. It also offers users the ability to search using topics, languages, and dates among 

others. This paper ultimately serves as an example of the use of chatbot for an online 
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educational platform built with Facebook Messenger. This is similar to what is being done 

for Chalkboard Education throughout this applied paper and hence serves as a basic proof 

of concept. 

1.2.5 E-business Chatbot Using AIML and LSA 

 This work proposes building a chatbot using a combination of Artificial Intelligence 

Markup Language(AIML) and Latent Semantic Analysis (LSA) as a solution for improving 

customer service. Similar to other works on the topic, the paper outlines some of the 

inadequacies of humans in the customer service department and the great benefits of 

employing an automated system. AIML is a dialect used for creating natural language 

system agents. They use AIML to handle general queries like ‘Whats up' and ‘hello.' It 

cannot be used for more specific queries because it requires the developer to anticipate all 

the specific ways the user might express an intent. LSA is used here to find the similarity 

between words in vector representation form. The combination of these two can help the 

chatbot understand user input and generate a suitable response. Inputs are first handled by 

the AIML, and if the input exists in the templates, the appropriate prepared answer is given. 

If not, it is passed to the LSA to produce a semantic-based answer. The LSA is trained on 

FAQs from the given business. The main benefit of the paper to the project is to help 

understand and view other implementations of chatbots, validate the problem-solution fit 

once again and to understand the flow of processes a chatbot might go through to produce 

a response.   
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Chapter 2: Requirement Specification 

 The chapter seeks to give an analysis of the functionality the task dialog system would offer 

as well as the scope of its capability. The application would make use of frequently entered 

user inputs to learn and generate appropriate responses to user queries. The learning and 

generation of responses will be done without human supervision. Requirements would be 

obtained from Chalkboard Education as well as literature such as Speech and Language 

Processing by Daniel Jurafsky [1] to identify the necessary components for building a task 

dialog system. At various parts of this document, the system may be referred to as a bot. 

  

2.1 User Identification and Use Case 

The application would be used primarily by students of schools that use Chalkboard 

Education’s platform to manage their content. The service would run on Facebook 

Messenger; hence users would need Internet access and a subscription to a mobile carrier to 

access the dialog system. The primary use cases for which the chatbot is being built are 

outlined below to understand better how the application will be used: 

1. A student of a newly added school (freshly added to Chalkboard’s platform) attempts to 

access the platform but does not know how to log in/does not have their log in details. 

2. A student of a newly added school can log in but does not know how to navigate the site 

and access resources. 

3. A student of an already existing school on the platform is unable to find specific course 

material on the platform. 

2.2 Procedure for Requirements Gathering 

The requirements were obtained through the following means: 
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Interview: Interview with an Operations Associate at Chalkboard Education. Through this 

interview, we can identify the key problems that the dialog system needs to resolve and the 

extra Chalkboard specific information and resources the bot would need to accomplish the 

task. 

 

Literature Review on Chatbots and Dialog Systems: Books such as Speech and Language 

Processing by Dan Jurafsky help identify some universal concerns and usability issues to 

address when building conversational systems in general. The concerns are not specific to 

Chalkboard but are more general to any conversational system being built. 

2.3 Requirement analysis 

 The main function of the task dialog system is to provide appropriate generated 

answers to user queries through Facebook Messenger without human supervision. A key 

input is a set of previously asked queries to enable the system to learn queries and match 

them to appropriate responses. All use cases would involve the user querying the system. 

2.3.1 Functional Requirements 

● Users should be able to type in any problems they have or queries they need to be 

answered. 

● The system should be able to read the queries as input and generate a response that 

best answers the query. 

● The user should be able to read the generated response. The response should be in a 

form readily understandable by the user.      

● The system should be able to process queries that have the same idea but appear in 

different forms and contexts. 
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● The system should be able to learn from real-time queries to be more capable of  

handling queries it has not been trained on 

● The bot should be able to resolve login issues 

● The bot should be able to resolve enrolment issues 

● The bot should be able to resolve navigation issues 

● The bot should be able to recognize registered users of Chalkboard 

● The bot should be able to resolve user queries in less time than its human counterpart 

2.3.2 Non Functional Requirements 

● The bot should be able to respond to user queries in under 20 seconds. 

● Talking to the bot should feel like talking to a human being. 

● The bot should not give out sensitive information during the conversation. 

● The system should be able to respond to a few non-problem oriented queries to 

maintain some level of interactivity with the user. 

● The bot should be able to identify when it cannot solve a problem and refer to 

personnel. 

● The bot should be able to work through simple spelling mistakes. 

 

All requirements outlined above will be addressed in this project.  
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Chapter 3: Architecture and Design 

3.1 High-Level Architecture of Project 

 
Fig 3.1 

3.2 Key Modules in the Architecture/Design 

3.2.1 Facebook Messenger Application 

Facebook's Messenger Application will be used to receive inputs and send generated 

responses to users. The pervasiveness of Facebook and the large number of users who access 

it make this a suitable medium. 

 

 

 

 

3.2.2 Dialog Engine 

Below is a more detailed illustration of the architecture of the dialog engine component: 
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Fig 3.2 

Source: https://rasa.com/docs/core/architecture/ 

3.2.3 NLU Interpreter 

This component is responsible for understanding user input. For a given input, it 

breaks it down by words to identify the intent of the user. It does this using pre-trained 

sentences for given intents and compares similarity. It also extracts entities from the input. 

Entities are key objects that are useful when executing actions and generating responses. 

The interpreter is also responsible for slot filling. Slots represent information required for 

certain actions. For instance, if a user wants to enroll for a course, a slot to be filled is the 

user's name and the course name. 

Training with the NLU Interpreter 

Intent Classification 

RASA can use different pipelines to process user messages. A pipeline defines 

different components which process a user message sequentially and ultimately lead to the 

classification of user messages into intents and the extraction of entities [10]. The two most 

important pipelines RASA uses are tensorflow_embedding and spacy_sklearn[11]. 

spacy_sklearn is more suitable for this project because it uses pre-trained word vectors 

https://rasa.com/docs/core/architecture/
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which is very useful when training data is limited. Using this pipeline, RASA takes each 

piece of training data and its marked intent to create a training data object. This object has 

the text of the document, its intent and the entities marked as keys in the object. RASA uses 

a Sklearn [15] Intent Classifier. The classifier uses spaCy, an open source library for natural 

language processing, to convert each training object into a list of tokens(words), creating a 

bag of words. This is referred to as tokenization. RASA then moves to feature this bag of 

words by converting the tokens into word vectors. These are known as Word embeddings 

which can capture semantic and syntactic aspects of words [10]. Machine Learning 

Algorithms understand numerical data which is why the words need to be converted to word 

vectors. The features are then labeled with the intents they describe in a numerical format. 

Hence instead of labels like [login, list_courses], numbers will be assigned to represent the 

labels. 

The Sklearn Intent Classifier uses GridSearch [15] with intent names as labels and 

features as those generated by the feature to generate a Machine Learning Model. The 

Machine Learning Model is a mathematical representation of a real word process; in this 

case, determining whether a given text belongs to a particular intent. GridSearch is a 

hyperparameter tuning algorithm that helps identify the optimal hyperparameter to use in a 

machine learning model. It works by building and evaluating a machine learning model for 

each combination of parameters specified. Hyperparameters are values that help a model 

produce the most accurate predictions but cannot be estimated from the data. Selecting 

hyperparameters can be likened to tuning a radio for the right frequency. Once this is done, 

it stores the model in a persisted file. The final output is an Interpreter object which can 

classify an intent based on the model. When a new input is provided, the Interpreter returns 

a numerical value based on the model trained which needs to be decoded to arrive at the 
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actual intent tag. A set of confidence values are created for each prediction, and the highest 

confidence value is selected as the intent. 

 

Entity Extraction 

RASA uses Named Entity Recognition using Conditional Random Fields 

(NER_CRF) as the algorithm for entity extraction [11]. Named Entity Recognition is used 

to identify and classify words in a document into defined categories/labels. [12]. Conditional 

Random Fields are used to predict the most likely sequence of labels based on a sequence 

of inputs [13]. Here, again, as part of preprocessing, the text is tokenized but in this case 

stop, words are not removed as is the case in other NLP techniques. This is because, with 

NER_CRF, every feature depends on features preceding and succeeding it. The training data 

is converted with entities to a list of tuples with a start_index, end_index, and entity. So for 

instance, the marked training data “I am Dennis[first_name]” would have a tuple of [(5,10, 

‘first_name’)] to denote where the entity starts and ends in that sample. The range (5, 10) is 

regarded as the offset of the entity. This helps tag tokens from the preprocessing step. 

BILOU (Begin, Inside, Last, Other, Unigram) tagging is a way of encoding information in 

a set of labels by recognizing the Beginning, Inside and the Last token of data relating to 

entities and differentiate them from Other tokens and unigram tokens. It is used for each 

token whereby if the token falls within the offset of the entity tag, an entity tag is attached 

to it; if the token does not, it is given a value of 0. We end up with each token and its assigned 

entity in each training example. After this is completed each token is again analyzed to 

determine further characteristics about the word for training. Characteristics like the 

previous word, whether the previous words is a title, whether the current word is a digit and 

whether it is at the end of a sentence are taken. This information together with the 

information from BILOU tagging is used to train and fit a CRF model for prediction. During 
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prediction, the text entered by the user is broken into tokens and processed to arrive at the 

breakdown of its characteristics. This breakdown is then fed to the CRF model for 

classification. We obtain a list with the probability that a token has a BILOU tag. Tags with 

0 are ignored. A new entry like ‘I am Jesse’ would result in a result in a result such as 

[{‘start’: 5, ‘end’:9, ‘value’:’Jesse,’ ‘entity’: ‘first_name’}]. 

Dialog Manager 

This component is responsible for keeping track of the conversation state at all times. 

It makes use of a Dialogue State Tracker and Policy objects as seen in Fig 3.2. The Tracker 

stores and maintains the state of the dialogue with a single user [11]. Events describe 

everything that occurs in a conversation and are stored in the tracker. The Tracker stores 

Events such as: 

● The user saying something to the bot.  

● The bot saying something to the user  

● The user specifying the value for a slot  

● The bot restarting a conversation 

● The conversation being paused and resumed 

● An Action being executed or rejected 

● The last action executing 

● The number of state turns and intents made 

The Tracker also stores current slot and entity values. It passes its state to the Policy 

object which decides what action to take at every step in the dialogue[11]. The Policy 

predicts the next action the bot should take after being passed the tracker. It produces a list 

of probabilities/confidence scores for the next actions based on the state of the Tracker and 

selects the one with the highest probability. The Policy can decide by training on the 

Trackers it receives. The Tracker provides a bag of active features which consist of Events 



15 

that have been recorded. Policy converts these features into vector representation with an 

array containing the target class labels encoded as one-hot vectors[11]. It does this using 

multiple Featurizers. For instance, the BinarySingleStateFeaturizer creates a binary one-hot 

encoding with the vector indicating the presence of an intent, entity, previous action or slot 

[11]. After featurizing, te Policy trains on the Tracker features and then predicts the action 

probabilities. Keras and Memoization Policies are some policies RASA uses. The former 

uses a neural network implemented in Keras to select the next action and the latter simply 

memorizes the conversations in the training data and predicts the next action based on 

this[11]. If the Policy used returns low confidence in multiple stages, a two-stage Fallback 

Policy is used which asks the user to first affirm the intent. If is affirmed, the conversation 

continues with the affirmed intent and if not the user is asked to rephrase their message. If 

the rephrased message produces high confidence, the conversation continues; if not, the user 

is asked to affirm again. If the user affirms the second time the conversation continues, if 

not a fallback action is executed by the Action Manager. 

The action to be taken next is passed to the action manager. Upon executing the 

action, the action manager sends the output of the action to the dialog manager who then 

generates a response to be sent back to the user. 

3.2.3 Action Manager 

 This component is responsible for generating and executing the necessary code for 

successfully executing actions. It works with a database by generating and executing 

necessary SQL queries to cull data. It also formats the data received from the database in a 

form suitable for the dialog manager. The Action Manager also interacts with the Twilio 

API to send text messages to a number provided by the Dialog Manager. Login URLs will 

be sent through this means. It also uses the Python SMTP Library to send an email to 

personnel at  Chalkboard in the event the chatbot receives queries it is unable to handle. The 
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Manager stores all the tokens that are necessary to interact with these APIs. The Manager is 

also responsible for writing logs of conversations with users for storage. 

3.2.4 Third Party Connectors 

The Action Manager will interact with a MySQL database, the Twilio API and 

SMTP Library. This will enable it to extract database information, send SMS’s and emails 

respectively.  

3.3 Design Component to Requirements Mapping 

Requirement Architecture component responsible for 

addressing requirement 

Users should be able to type in any 

problems they have or queries they need to 

be answered. 

Facebook Messenger Front End 

Integration 

The system should be able to read the 

queries as input and generate a response that 

best answers the query. 

Dialog Engine 

The user should be able to read the 

generated response. The response should be 

in a form easily understandable by the user. 

  

Dialog Engine, Facebook Messenger Front 

End Integration 

The system should be able to process 

queries that have the same idea but appear 

in different forms and contexts. 

Dialog Engine (NLU Interpreter) 

The system should be able to learn from  real-

time queries to be more capable of  handling 

queries it has not been trained on 

Action Manager 

The bot should be able to respond to user 

queries in under 20 seconds. 

Dialog Engine, Action Manager 

Talking to the bot should feel like talking to 

a human being. 

Dialog Engine 

The bot should not give out sensitive 

information during the conversation. 

Action Manager, Twilio API 

The system should be able to respond to a 

few non-problem oriented queries to 

Dialog Engine 
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maintain some level of interactivity with the 

user. 

The bot should be able to identify when it 

cannot solve a problem and refer to 

personnel. 

Action Manager, Gmail API,  

The bot should be able to work through 

simple spelling mistakes. 

Dialog Engine (NLU Interpreter) 

The bot should be able to resolve login 

issues 

Dialog Engine, Action Manager, Database, 

Twilio API 

The bot should be able to resolve enrolment 

issues 

Dialog Engine, Action Manager, Database 

The bot should be able to resolve navigation 

issues 

Dialog Engine, Action Manager 

The bot should be able to recognize 

registered users of Chalkboard 

Dialog Engine, Action Manager, Database 

The bot should be able to resolve user 

queries in less time than its human 

counterpart 

Dialog Engine, Action Manager 
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Chapter 4: Implementation 

 

Overview 

 This section intends to describe all the steps taken to build the dialog system and an 

accompanying application to mirror the Chalkboard website. The application will have an 

entry for students and administration, and the bot will make changes that are possible on the 

administration platform to be reflected on the student platform. For the application and the 

bot, the components used to build it and the functionality they provide will be explained to 

give a full picture of the implementation 

4.1 RASA Core and NLU 

RASA is an open source platform with tools for building virtual assistants and 

conversational systems. It features a Natural Language Understanding (NLU) and Core 

components. The former is used to help the bot understand what the user is saying while the 

latter is used to manage the flow of the conversation and the performing of corresponding 

actions.  

4.1.1 RASA NLU 

The Natural Language Understanding tool is essential for intent classification and 

entity extraction. For a given sentence, the NLU helps identify what the user wants to do 

and the resources available to do it.  

Defining Intents 

When building the bot for this system, the first step was to define the intents for the 

system. Intents represent what the students seek to do with the system. For instance, if a 

user types ‘I am unable to log in,' the intent here is to report difficulty with logging in. I 

defined intents for our system listed below: 
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- greet: When a user intends to greet the bot 

- goodbye: When a user intends to leave the bot 

- thanks: When a user intends to express gratitude 

- deny: When a user seeks to answer negatively to a question or statement 

- give_course: When a user seeks to give the name of a course 

- give_name: When a user intends to give their name 

- login: When a user intends to report an issue about logging in 

- navigation: When a user intends to report an issue about navigation and generally using 

the application 

- enrollment: When a user intends to report an issue about enrolling 

- affirm: When a user seeks to answer position to a question or statement 

- list_course: When a user seeks to see a list of all the courses being offered 

- introduction: When a user seeks to introduce the 

- age 

- beautiful 

- birthday 

- boss 

- help 

- good 

- hobby 

- occupation 

- origin 

- how_are_you 

- my_birthday 

 

For each intent, the bot needs several sample sentences that show how a user might express 

the various intents. The bot needs this to be able to train to identify an intent given a new 

sentence. Hence for each intent, sample sentences where given. Below are some of the 

sentences given for the ‘login' intent 

## intent:login 

- I cannot log in 

- Cannot log in 

- I have login issues 

- I don’t know where to find my URL 

- Can you send me my login URL 

- Cannot find URL 

- Cannot log in 

- Where is my link 

- There are supposed to be six characters. How do I get my six characters 

- I cant see my log in link  

- I cannot see my six characters 

- My URL is not working 

- I did not get a text message from you 

- I did not receive an SMS 
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This is done for all intents listed above.  

 

Marking Entities 

For some intents, there is a need to mark entities in the sample sentences to enable 

RASA identify them when new input is provided. An entity is any item of interest that can 

be used to perform some further action. For the ‘give_name’ intent, the sample sentences 

have been marked as shown below: 

# intent:give_name 

- My name is [Yoofi](name) [Brown-Pobee](last_name)   

- I am [Ebenezer](name) [Lamptey](last_name) 

- I'm [Elvis](name) [Boateng](last_name) 

- People call me [Sarah](name) [Agyapong](last_name) 

- It's [Judith](name) [Asaaba](last_name) 

- Usually people call me [Julian](name) [Adusei](last_name) 

- My name is [Adam](name) [Serwaa](last_name) 

- You can call me [Abigail](name) [Adamtey](last_name) 

- Please call me [Mary](name) [Brakoh](last_name) 

- Name name is [Blankson](name) [Frimpong](last_name) 

- I am [Aku](name) [Nsowine](last_name) 

- I'm [Adel](name) [Amponsah](last_name) 

- Call me [Faustina](name) [Adjei](last_name) 

 

The entities used here are ‘name’ to represent the user’s first name and ‘last_name’ to 

represent their last name. The bot for the Chalkboard system requires three entities: 

- name  

- last_name  

- course_name  

Hence in the ‘give_course' intent I use the sample sentences marked as shown below: 

#intent:give_course 

- The course is [English with Elements of Literature](course_name) 

- The course is [LITERATURE IN FRENCH II](course_name) 

- The course is [LITERATURE IN FRENCH](course_name) 

- The course is [ENVIRONMENTAL AND SOCIAL STUDIES I](course_name) 

- The course is [ENVIRONMENTAL AND SOCIAL STUDIES](course_name) 

- The course is [MATHEMATICS II (GEOMETRY AND TRIGONOMETRY 

)](course_name) 
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- The course is [MATHEMATICS](course_name) 

- The course is [GEOMETRY AND TRIGONOMETRY](course_name) 

- The course is [CHILD AND ADOLESCENT DEVELOPMENT AND 

LEARNING](course_name) 

- [JEN 123](course_name) 

- [JMC 122 MATHEMATICS II (GEOMETRY AND TRIGONOMETRY )](course_name) 

- [METHODS OF TEACHING RELIGIOUS AND MORAL EDUCATION](course_name) 

- [CHILD AND ADOLESCENT DEVELOPMENT AND LEARNING](course_name) 

- The course is [Literature in French](course_name) 

 

Based on the entities I create slots to let RASA know the kind of data to expect and how to 

store them. The entity names and slot names must match for RASA to be able to extract 

the information to fill the slots. These slots are used to store entities to perform other 

actions. The slots are defined as: 

name: 

 type: text 

 

last_name: 

 type: text 

 

course_name: 

 type: text 

 

The above means there three slots to fill and each would have a data type of text. 

Once the intents, entities, and slots have been defined, the next step is to train the NLU on 

the intents and entities. The NLU proceeds to learn the various ways a user can express 

intents and entities to process entirely new input when asked.  

4.1.2 RASA Core 

Creating Stories 

The Core is responsible for managing the conversation and performing 

corresponding actions. With the core, the first step is to create stories which represent 

possible conversations the bot might have with users. An example story that the Chalkboard 

Bot would find useful is 
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## story_login_01 

* login 

  - utter_ask_for_name 

* give_name{"name":"Ayorkor", "last_name":"Brown-Pobee"} 

  - action_send_token 

  - utter_useful 

* affirm 

  - utter_thanks 

 

In the above, the name of the story is ‘story_login_01,' and the first thing that would trigger 

the story is the user expressing the intent ‘login.' Once this is expressed, the bot will execute 

the action (more on actions in the subsequent sections) ‘utter_ask_for_name’ which would 

ask the user for their name. The bot expects the user to give it a name as shown by the 

‘give_name’ intent. The ‘name’ and ‘last_name’ in the curly braces represent entities for 

the bot to look out for. The names by them are placeholders. The bot knows to expect some 

names. After giving the name, the chatbot runs the action ‘action_send_token.’ This action 

checks the names given against the database available and returns the token for the given 

student. The user is then asked if they found the solution they were given was useful. In this 

story, the user answers in a positive manner with the intent ‘affirm’ and the chatbot thanks 

them using the action ‘utter_thanks 

I define different variations of stories for a single intent to capture the different ways the 

conversation with the user might go similar to below: 

## story_login_01 

* login 

  - action_write_log 

  - utter_ask_for_name 

* give_name{"name":"Ayorkor", "last_name":"Brown-Pobee"} 

  - action_write_log 

  - action_send_token 

  - utter_useful 

* affirm 

  - action_write_log 

  - utter_thanks 

## story_login_02 

  * login 

    - action_write_log 

    - utter_ask_for_name 
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  * give_name{"name":"Ayorkor", "last_name":"Brown-Pobee"} 

    - action_write_log 

    - action_send_token 

    - utter_useful 

  * deny 

    - action_write_log 

    - utter_refer_to_person 

    - action_send_email 

 

Login story 01 handles what would happen if the action carried out by the chatbot is 

successful while login story 02 handles the negative situation. This makes RASA more 

flexible and more natural. 

Many stories are defined to try to capture the multiple ways users may interact with the 

chatbot. This is suitable for Chalkboard because the actions that can be taken are finite; 

hence there are only a few known things students can want to do. There is an action to send 

an automated email to Operations in the event of a persistent problem thereby ensuring only 

the most important need human intervention. 

 

Actions 

There are different actions that carry out various results. Some actions are simply response 

actions that display text to the user. These are utter actions as shown below: 

  utter_name: 

  - text: "Hey there! Tell me your name." 

 

  utter_greet: 

  - text: "Nice to you meet you {name}. How can I help?" 

 

  utter_goodbye: 

  - text: "Talk to you later!" 

 

  utter_thanks: 

  - text: "My pleasure." 

 

  utter_ask_for_name: 

  - text: What's your full name 
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  utter_full_name: 

  - text: "Your first name is {name} and your last name is {last_name}" 

 

  utter_useful: 

  - text: "Was that useful?" 

 

  utter_try_again: 

  - text: "Okay, {name} lets try this again" 

 

  utter_refer_to_person: 

  - text: "Looks like your issue is a bit more nuanced and I will forward it to Operations to 

get in touch with you shortly" 

 

  utter_restart: 

  - text: "Anything else" 

 

  utter_ask_for_course: 

  - text: "What course is this" 

 

These are the most commonly used as they help the robot maintain a conversation with and 

direct the user. More complex Actions are then defined to make the chatbot more useful to 

the user. These actions make use of Python classes. The class has two methods: a name 

method and a run method. The name method returns the name of the action as specified in 

the domain file. The name here must match the name in the domain file for the Dialog 

Engine and Action Manager to communicate successfully. When the name method is called 

and returns successfully, the run method is called to execute the action. For instance, the 

action 'action_send_token' takes the first name and last name of the user from the slots 

activates the Twilio API and sends the user their login link via SMS. Another action is the 

'action_send_email' action that sends an email to Chalkboard Personnel when the chatbot is 

unable to handle a user query 

class ActionSendEmail(Action): 

    def name(self): 

        return "action_send_email" 

 

    def run(self, dispatcher, tracker, domain): 

        output = open('Output.txt') 

        smtpserver='smtp.gmail.com:587' 

        from_addr = 'insightnetwork.15@gmail.com' 

        to_addr_list = ['insightnetwork.15@gmail.com'] 
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        cc_addr_list = [''] 

        subject = "Customer query I cannot handle" 

        message = output.read() 

        login = 'insightnetwork.15@gmail.com' 

        password = 'fqpvbcjkwunvzqdk' 

        header  = 'From: %s\n' % from_addr 

        header += 'To: %s\n' % ','.join(to_addr_list) 

        header += 'Cc: %s\n' % ','.join(cc_addr_list) 

        header += 'Subject: %s\n\n' % subject 

        message = header + message 

 

        server = smtplib.SMTP(smtpserver) 

        server.starttls() 

        server.login(login,password) 

        problems = server.sendmail(from_addr, to_addr_list, 

message) 

        server.quit() 

        date = datetime.datetime.today().strftime('%Y-%m-%d') 

        f_name = tracker.get_slot('name') 

        l_name = tracker.get_slot('last_name') 

        os.rename("Output.txt", "Errors/"+f_name 

+"_"+l_name+"_"+date+"_"+".txt") 

        open('Output.txt', 'w').close() 

        return problems 

 

After each query the chatbot runs the 'action_write_log' action to record the utterances of 

the user to an output file and stores it. This file is used to store user sentences for training 

the NLU to be more accurate. It is also used when the chatbot cannot handle a query and 

needs to be referred to personnel as shown above. In this way, the chatbot can learn from 

new queries and to let personnel know of difficult situations. 

Below is a summary of all some of the actions defined and what they accomplish: 

utter_name: Asks the user for their name 

utter_thanks: Says thank you to the user 

used to test that the chatbot was capturing the first name and last name from the full name 

given. 

action_send_token: Interacts with the Twilio API to send the user their login link through 

SMS 

action_enrol_student: Enrols the student in a course so they can see course material on their 

dashboard 

action_list_all_courses: Lists all available courses for a student 

action_send_manual: Sends the user a pdf form of the walkthrough manual directly as an 

attachment 

action_write_log: Records user utterances and query into a text file and saves it 

action_send_email: Sends the content of conversation log as an email to Chalkboard 

personnel 
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Actions are declared as python classes with the main action to be accomplished declared as 

a run method as seen above.  

Every single nontext action that has to be performed is declared in a Python file called 

actions.py. 

 

Domain 

After the actions, stories, intents, entities, and slots are defined, a domain file is 

created that contains all necessary defined components the chatbot needs to be aware of. If 

a component is defined in the domain file but not elsewhere, RASA would report an error. 

In the same way, if a component is defined elsewhere but not in the domain file, it would 

not be functional. All actions, stories, intents, entities, and slots go into the domain file. 

Below are some of the contents of the domain file: 

intents: 

- greet 

- goodbye 

- thanks 

- deny 

- give_course 

- give_name 

- login 

- navigation 

- enrollment 

- affirm 

- list_course 

 

 

entities: 

- name 

- last_name 

- course_name 

 

 

slots: 

  name: 

    type: text 
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  last_name: 

    type: text 

 

  course_name: 

    type: text 

 

 

actions: 

- utter_try_again 

- utter_refer_to_person 

- utter_ask_for_course 

- action_enrol_student 

- action_list_all_courses 

- utter_send_manual 

- action_send_manual 

- action_write_log 

- action_send_email 

 

 

templates: 

  utter_name: 

  - text: "Hey there! Tell me your name." 

 

  utter_greet: 

  - text: "Nice to you meet you {name}. How can I help?" 

 

  utter_full_name: 

  - text: "Your first name is {name} and your last name is {last_name}" 

 

  utter_useful: 

  - text: "Was that useful?" 

 

  utter_try_again: 

  - text: "Okay, {name} lets try this again" 

 

 

Facebook Messenger routing 

A page is created on Facebook, and the Messenger Platform added, to enable it to use 

Messenger to send and receive messages. Credentials were generated to grant the chatbot 
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application permission send and receive 

messages through Messenger. A webhook 

with a callback URL is set up to receive 

facebook messenger messages. The output is 

shown below.  
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API and Third Party Application Implementation 

Twilio API 

An account is set up with Twilio which is a cloud communications platform that 

allows developers to make and receive phone calls and text messages using its APIs. An 

account ID and Auth Token are obtained from the Twilio account, and this is used in the 

Action Manager to send smses to a selected number. Message to be sent is the login link 

based on the name given. Below is the Action that makes the API call:  

 
class ActionSendToken(Action): 

 def name(self): 

  return "action_send_token" 

 

 def run(self, dispatcher, tracker, domain): 

  mydb = 

mysql.connector.connect(host="35.166.18.143",user="emmanuel.annan"

,passwd="emmanuel.annan",database="webtech_emmanuel_annan") 

        mycursor = mydb.cursor() 

        f_name = tracker.get_slot('name') 

        l_name = tracker.get_slot('last_name') 

        sql = "SELECT * FROM students WHERE first_name = %s AND 

last_name = %s" 

        adr = (f_name,l_name) 

        mycursor.execute(sql,adr) 

 myresult = mycursor.fetchall() 

  if len(myresult) == 0: 

      student = "Sorry " + f_name + " " + l_name +" you 

are not in our system" 

  else: 

   account_sid = 

"AC76cd680bb5124eda66ee5bbb80303c65" 

   auth_token = "401bafdcb494987ec8e83b44ae622f7d" 

   client = Client(account_sid, auth_token) 

 

   message = client.messages \ 

     .create( 

          body="Your login token is: " + 

myresult[0][4]] + "\nKeep the token safe!", 

          from_='+13475234873', 

          to=myresult[0][3] 

      ) 

   student = "Your login URL has been sent to your 

phone number. Check and let me know if this was helpful" 

   dispatcher.utter_message(student) 

   return [] 
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SMTP Library Module 

The emails are sent using the smtplib module in python. The smptp server used is 

from Gmail. The module is supplied the destination address, subject, message and header 

information which would be used to send the email. It uses the sending email address to 

login and a generated password for the application to have permission to send emails. The 

Action to send an email can be found below: 

 

 def sendemail(from_addr, to_addr_list, cc_addr_list, subject, 

message, login, password,smtpserver='smtp.gmail.com:587'): 

    header  = 'From: %s\n' % from_addr 

    header += 'To: %s\n' % ','.join(to_addr_list) 

    header += 'Cc: %s\n' % ','.join(cc_addr_list) 

    header += 'Subject: %s\n\n' % subject 

    message = header + message 

  

    server = smtplib.SMTP(smtpserver) 

    server.starttls() 

    server.login(login,password) 

    problems = server.sendmail(from_addr, to_addr_list, message) 

    server.quit() 

    return problems 

 

This action implementation does not require information from RASA; hence it is not written 

with Python classes like previous actions. The email is information obtained from the log 

file that is written as a conversation occurs and is the only required part of the email. 

Database connection 

An SQL database modeled after the data on Chalkboard's actual database is hosted on a live 

server. Every Action that requires interacting with a database connects to this live server 

before executing the necessary SQL statements. The connection is established as: 

 
mydb = mysql.connector.connect(host=[live server 

address],user=[username],passwd=[password],database=[database 

name]) 

mycursor = mydb.cursor()  
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Chapter 5: Testing and Evaluation 

This chapter considers the implementation and whether it met the requirements 

specified earlier in the document. The below table lists the requirement to be tested, how it 

was tested, the outcome of the test and verdict. User testing was carried out with ten users. 

All percentage breakdowns of user feedback are available in the Appendix. 

 

Requirement 

Specification 

Test Parameters 

and Specifications 

Type of test Outcome 

Problem Resolution Testing: Testing how well the bot solves users problems 

The bot should be 

able to resolve login 

issues 

80% of users tested 

should have their 

login issues resolved 

User Testing: Users 

indicated Yes, No or 

Yes with a few tries 

when asked if the bot 

resolved their login 

issues 

100% of users tested 

indicated they had 

their login issues 

resolved. 50% 

indicated it was 

resolved outright 

while the other 50% 

indicated it took 

several tries to solve it 

The bot should be 

able to recognize 

registered users of 

Chalkboard 

The bot should be 

able to confirm the 

identities of 80% of 

tested users accurately 

User Testing: Users 

indicated Yes, No or 

Yes with a few tries 

when asked if the bot 

could recognize them 

as users of 

Chalkboard or not 

50% of users 

indicated that the bot 

was able to tell if they 

were a registered user 

or not outright and 

30% were able to 

after several tries. 

20% indicate the bot 

could not recognize 

them. 

The bot should be 

able to solve 

enrolment issues  

80% of users should 

have their enrolment 

issues resolved 

User Testing: Users 

indicated Yes, No or 

Yes with a few tries 

when asked if the bot 

resolved their 

enrolment issues 

80% of users 

indicated that the bot 

was able to resolve 

enrolment issues. 

50% indicated that it 

was resolved outright 

while 30% indicated 

it took several tries. 

20% indicated that the 

issue was not resolved 

at all 

The bot should be 

able to solve 

100% of users should 

be able to access 

User Testing: Users 

indicated Yes, No or 

100% of users 

indicated that the bot 



32 

navigation issues of 

users 

resources to be able to 

learn how to use the 

application 

Yes with a few tries 

when asked if the bot 

resolved their 

navigation issues 

was able to resolve 

their navigation issue. 

80% indicated that the 

issue was resolved 

outright and 20% 

indicated that it took 

several tries. 

The bot should be 

able to resolve user 

queries in less time 

than its human 

counterpart 

The bot should 

resolve all queries in 

the Issue base times 

table (Appendix 2.1) 

in no more time than 

it takes the human 

personnel 

User and System 

Level Testing 

100% if users 

indicated that when 

the bot resolved their 

issues, it took 

between 1 to 5 

seconds to resolve it. 

The system was also 

tested without users 

and queries took less 

than 5 seconds to 

resolve. 

 

5.1 Analysis of Problem Resolution Testing 

The bot was successfully able to resolve the three main issues for which it was built. 

For some users, it took several tries for the bot to solve their problem. It was observed that 

the bot would have difficulty in extracting their name if their first name was a two-word 

name such as ‘Paa Kofi’ evident in Fig 1.1 in the Appendix. This resulted in the bot not 

being able to recognize 20% of users at some point in the conversation. In one unusual case, 

as shown in Fig 1.2 in the Appendix, when the user said ‘I am Dennis Owusu,’ the bot easily 

identifies the name but when the query is phrased as ‘My name is Dennis Owusu,’ it is 

unable to. Another user said ‘My name is Kwasi Korboe’ and the bot was able to extract the 

name in that instance. Once the bot was able to receive the name, it was successfully able 

to execute the follow-up action which was to solve enrollment, log in or navigation issues 

if the user was registered with Chalkboard and reject them if they were not. The rejection 

can be seen in Fig 1.3. The bot being unable to identify the names resulted in 50% of the 

users needing to make the query multiple times for Login problems and 30% for enrolment. 

20% of users making enrollment queries did not have their issues resolved. The enrolment 

issue had another layer of difficulty because, beyond the name of the user, the bot also 
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required the names of the courses for which the student is enrolling. The available courses 

can be identified by course code, course name or both. Below are some of the courses: 

JEN 123 - ENGLISH WITH ELEMENTS OF LITERATURE 

JFL 127 - LITERATURE IN FRENCH II 

JES 445 -  FRENCH AS A FIRST LANGUAGE 

JES 322 - DATA STRUCTURES 

JES 128 - ENVIRONMENTAL AND SOCIAL STUDIES I 

When a user tried to identify a course using course codes multiple times, the user was unable 

to enroll because the bot identified the wrong course. When another user identified the 

course by writing part of its name, the user was also unable to enroll because the bot once 

again identified the wrong course. The users who succeeded in getting enrolled used the full 

course name combined with the course code. The user who had to try multiple times 

attempted to register for multiple courses at once, and the bot could not identify the multiple 

courses. Hence they submitted singular queries after. 100% of users indicated that once the 

bot received the necessary information for a query, they received a response within 1 to 5 

seconds. This is very important to the effectiveness of the dialog system as from the 

interview with the Chalkboard Operations Associate; the chatbot had to perform support 

processes much faster than the base time human personnel took. These base times can be 

found in Table 1.1 in the Appendix. By comparison, we can see that the bot performing in 

1 to 5 seconds is a good improvement on the human personnel. Fig 1.5 in the Appendix 

shows a successful enrollment resolution. 

 

Error handling and conversation logging testing: Testing how the well the bot can handle 

errors such as mistakes in query text and queries for which it does not know how to 

resolve as well as its ability to write logs of conversation for future learning 

The system should be 

able to learn from  

The system should 

write and store a log 

Component level 

testing 

The system writes, 

and stores log files of 
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real-time queries to be 

more capable of  

handling queries it 

has not been trained 

on 

file of user 

conversations for 

100% of all tested 

conversations 

conversations for all 

100% conversations 

tested 

The bot should be 

able to identify when 

it cannot solve a 

problem and refer to 

personnel 

The bot should be 

able to send an email 

to Chalkboard 

personnel about a 

query it could not 

resolve only after 

trying at least once. 

100% of times it 

cannot resolve a 

query it should report 

that fact back to the 

user and send the 

appropriate email 

System Level and 

User Testing 

80% of users 

indicated that the bot 

was able to tell them 

it was referring their 

problem to personnel 

when it could not 

handle it. 60% said it 

was able to do so 

right away and 20% 

said it could go after 

multiple tries. 20% of 

respondents indicated 

that the bot did not 

tell them it was 

referring to them to 

personnel 

The bot should be 

able to work through 

simple spelling 

mistakes 

The bot should be 

able to generate a 

response for the same 

ten sentences with at 

spelling errors in at 

least two words 

System-level Testing 90% percent of users 

indicated that the bot 

was able to give 

useful responses when 

they made spelling 

mistakes. Users made 

deliberate spelling 

mistakes in repeated 

queries, and the bot 

was able to respond to 

their queries 

 

5.2 Analysis of Error handling and conversation logging testing 

The dialog system being able to write a log of the conversation was very crucial to its 

effectiveness. The logs serve as a way to automatically record user utterances for future use 

in retraining and diagnosing faults. That component of the system can do this regardless of 

its ability to generate the expected response. Fig 1.6 in the Appendix shows the folder on 

the local testing environment which stores the logs of conversation in text form. The bot 

was able to identify that it cannot handle a query and email personnel for 80% of the users. 

This 80% comprises of 60% who were told right away and 20% who were able to after 
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several tries. It was observed the 20% who needed multiple attempts, and the 20% who did 

not get referred at all met that change when they tried to resolve an enrollment issue. The 

bot kept extracting the wrong course name from the course names given due to the similarity 

in the course codes. Hence it would enroll the student for the wrong course and not identify 

that there is a problem. 90% of users indicated that the bot was able to work through spelling 

mistakes in similar queries. The users tested this by increasingly varying letters in words in 

their queries. The bot was able to maintain accuracy for four-letter changes in different 

words after which it generated inaccurate responses. Users used a maximum of 7 words in 

their queries; hence four letter changes are spread across the seven words. Fig 1.7, 1.8 and 

1.9 in the Appendix shows an instance of a user incorporating spelling mistakes in its query. 

 

User Experience testing: Testing the chatbot’s naturalness, ability to generate intelligible 

responses and flexibility. 

The system should be 

able to process 

queries that have the 

same idea but appear 

in different forms and 

contexts. 

The system should be 

able to generate 

accurate responses for 

three variations of a 

query given by users 

System Level Testing 

and User Testing; 

System-Level Testing 

was done by inputting 

three variations of a 

query and observing 

the response. User 

testing saw users rate 

on a Linkert scale of 1 

to 5 how well it was 

able to maintain 

accurate responses 

varying forms of a 

query were given 

40% of users 

indicated that the bot 

was able to maintain 

accurate responses 

when they varied the 

form of the same 

query. 40% indicated 

that it was okay and 

20% of users 

indicated that it did 

this badly. 

The system should be 

able to respond to a 

few non-problem 

oriented queries to 

maintain some level 

of interactivity with 

the user. 

The bot should be 

able to generate 

responses for up to 6 

‘off-topic’ queries 

(small talk) 

System Level Testing The bot can generate 

responses for 8 ‘off-

topic' queries 

Talking to the bot 

should feel like 

talking to a human 

being 

70% of tested users 

should give a score of 

7 or higher on a 

Likert scale to 

User Testing: Users 

are asked to rate on a 

Linkert scale from 1 

to 5 where 1 

70% of tested users 

indicated that the 

conversation with the 

bot felt quite human 
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indicate how human 

the conversation felt 

represents very robot 

like and five 

represents very 

human 

with 50% giving a 

score of 4 and 20% 

giving a score of 5. 

30% indicated it felt 

quite robotic, giving a 

score of 2. 

The bot should be 

able to respond to 

user queries in under 

20 seconds 

Bot response time 

should be less than 20 

seconds 

User Testing: Users 

were asked to indicate 

how long the bot 

generally took to give 

a response with 

ranges of time in 

seconds given. 

The bot sends 

responses to queries 

in less than 5 seconds. 

90% of users 

indicated that across 

the bot to between 1 

and 5 seconds and 

10% indicated that it 

took between 5 and 

10 seconds. 

Users should be able 

to type in any 

problems they have or 

queries they need to 

be answered 

Facebook Messenger 

platform should be 

online and 

Chalkboard page set-

up to receive inputs 

Component Testing The Facebook 

Messenger platform 

connection was 

successful and was 

able to run throughout 

the testing period 

The user should be 

able to read the 

generated response. 

The response should 

be in a form easily 

understandable by the 

user.   

At least 80% of tested 

users should be able 

to attest that they 

understood system 

responses or 100% of 

10 test queries should 

produce intelligible 

responses 

User Testing 80% of users 

indicated that the bot 

was able to maintain 

accurate responses 

when they varied the 

form of the same 

query. 

 

5.3 Analysis of User Experience Testing 

The result of testing the bots ability to maintain accurate responses when the same query 

structure was varied can be described as mixed. 80% rated 3 and 4, and 20% rated 2. No 

user said it was able to maintain accuracy very well or very badly. Fig 2.1 in the Appendix 

shows an instance of the bot responding to varied queries. A potential explanation of this is 

the lack of training data with some intents. Some intents have about 7 to 15 sentences 

defined and hence would not make for a robust model for determining and classifying 

intents. It would identify some and miss others. There were also some out-of-vocabulary 



37 

words in some query variations and hence the trained model would not have any word 

embeddings for these words. Potential solutions to this would be discussed in the next 

chapter. The bot can generate responses to non-problem oriented queries. As mentioned 

earlier, small talk intents were added to the training data, and these small talk queries form 

part of the queries users varied and tested earlier. With regards to testing how human a 

conversation with the bot felt, 30% indicated it felt robotic with a Linkert scale of 2 whiles 

50% and 20% gave it a score of 4 and five respectively. I observed that some users attempted 

to ask to follow up questions to the small talk intents for which the bot has not been designed 

to handle. It would respond with a generic greeting instead. The bots general response time 

was successfully less than 20 seconds. 100% of users indicated the bot took less than 20 

seconds to respond. One user suggested that the bot took between 5 and 10 seconds to 

respond and it was observed that this was due to a lag in the internet connection that delayed 

the query being sent and response being delivered. Finally, the ability of the bot to respond 

well even when spelling mistakes were included also passes the test of its ability to generate 

an intelligible response when it receives a query.  

 

Security Testing 

The bot should not 

give out sensitive 

information during 

the conversation 

The bot should never 

reveal user log in the 

link directly but 

should be able to 

resolve the issue still 

Component Level 

Testing 

The bot successfully 

uses the Twilio API to 

send an SMS with the 

link to the user's 

phone number thereby 

preventing direct 

access of login links 

5.3 Analysis of Security Testing 

Security was a key concern in using the bot. The bot needed to avoid revealing key 

information directly but still being useful to users. The bot is successfully able to send a 
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request to the Twilio API to send an SMS to the user's phone number to avoid revealing 

student details. Fig 2.2 Shows the text login message sent from Twilio  
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Chapter 6: Conclusions and Recommendations 

The bot can solve the three main problems of login, navigation, and enrollment. Its 

ability is hampered slightly by its ability to extract entities from diverse query structures. If 

it was able to, it successfully executed the necessary actions to resolve the problem. This 

means that improvement has to be made on the bots entity extraction to enable to identify 

entities in a query better. With this, users would not have to ask multiple times to have a 

problem resolved, and those who did not have it resolved altogether would not be in the 

same situation. Enrollment, in particular, has an added layer of difficulty because beyond 

needing the user name the bot needed the course name. The structure of the course names 

as a combination of similar course codes and course names made it difficult for the bot to 

distinguish between the different course names. This was primarily a problem when users 

sought to use shortened versions of course names instead of the full thing. A 

recommendation for this is to define synonyms in the training data that consist of shortened 

versions of longer course names. The ner_synonyms component in RASA can help define 

these synonyms to make the bot better at identifying course name entities. In this way, if a 

user uses a shorter version of the course name the bot would be able to identify it as a 

synonym and fill the appropriate slot with the full data. The bot can also omit course codes 

when listing courses and only show course names to encourage the user to use course names. 

The bot can also ask the user to affirm his choice of course name when the course codes are 

ambiguous.  

Another recommendation, mainly geared towards addressing name extraction, 

would be to add more training data featuring more names existing in Chalkboards users. 

This would be useful since ultimately the system would be used primarily by students on 

Chalkboard's platform. In this way, the bot would be able to identify more easily the names 

of users, and repeated attempts won't need to be made to solve a problem. This would also 
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help the bot maintain accurate responses when a query is varied. More data on the small talk 

can be added to improve the humanity of the bot. This includes possible follow up questions 

to the small talk queries. 

A recommendation for better handling out-of-vocabulary words and spelling 

mistakes would be to use language models trained on a larger corpus to give the bots model 

word embedding for a more significant number of words.  The accuracy of the bot can be 

increased by ensuring that there are a balanced number of training examples per intent. The 

intents specified for the Chalkboard bot were not balanced as intents like the login intent 

had 25 samples and the hobby intent had seven examples. A lack of balance in training data 

can result in a biased classifier which can affect its accuracy negatively. Hence the 

recommendation here is to ensure balance in training examples 

In terms of speed and efficiency, the bot can respond to queries and execute actions 

in less than 20 seconds as targeted. It must be noted however that it is at the mercy of internet 

speed hence various ways to improve speed times in future work are welcome. 

All in all, I believe the project meets functional requirements to a suitable degree as 

the bot has the proven ability to resolve the three main problems outlined by the Chalkboard 

staff. The inaccuracies of the bot are helped by its ability to write and persist log data for 

future training. The bot is far from perfect, and the ability of the bot to successfully write 

logs is instrumental in getting it there. Its ability to also refer problems to personnel deserves 

to be highlighted as it enables demanding user queries to be still resolved by being brought 

to the attention of human personnel while solving the simpler ones. In this way, it reduces 

the amount of work the Operations staff to perform and frees them to perform other tasks. 
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6.1 Future Work 

Considering the prevalence of USSD applications in West Africa (find source), the 

chatbot can also be made accessible through a USSD application to enable it to be used 

without internet access. More training sentences and stories should be added for the chatbot 

to be trained on to make it even more conversational and human. It should also be tested 

with an even higher number of users to capture new intents, sample sentences, and 

conversations that can help to improve the bot. The recommendations highlighted above 

should also be implemented to make the bot more effective.  
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Appendices 

Table 1.1: Showing the base times taken for problem resolution at Chalkboard 

Information Obtained from Interview with Paa Kofi Antwi Larbi, an Operations Associate at 

Chalkboard Education  

Issue Type Reasons 

Estimated Base 

Time (Best Time) Steps 

Login Issue Misplaced URL 120 seconds 

Go into API 

Search for client name with CTRL+F 

Check box by name 

Click Send URL button 

Navigation Issue 

Not knowing how to 

move through the app 10 seconds Refer to manual by sending link 

Content Issue 

Cannot access 

course/Course not 

showing 

150 seconds 

Go into API 

Navigate to institution courses 

Select the course client says is not 

showing. 

Navigate to students enrolled in that 

course 

Check client name 

Click assign button 

Ask the client to refresh. 
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Fig 1.1  

Fig 1.2 
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Fig 1.3 

 
Fig 1.4 
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Fig 1.5 

 
Fig 1.6 
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Fig 1.7 

 
Fig 1.8 



47 

 
Fig 1.9 

 
Fig 2.1 
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Fig 2.2 

 

 

 

Full Bot Domain: 

intents: 

- greet 

- goodbye 

- thanks 

- deny 

- give_course 

- joke 

- give_name 

- login 

- navigation 

- enrollment 

- affirm 

- list_course 

- introduction 

- age 

- beautiful 

- birthday 

- boss 
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- help 

- good 

- hobby 

 

 

entities: 

- name 

- last_name 

- course_name 

 

 

slots: 

  name: 

    type: text 

 

  last_name: 

    type: text 

 

  course_name: 

    type: text 

 

 

actions: 

- utter_name 

- utter_thanks 

- utter_greet 

- utter_goodbye 

- action_joke 

- action_send_token 

- utter_ask_for_name 

- utter_full_name 

- utter_useful 

- utter_try_again 

- utter_refer_to_person 

- utter_ask_for_course 

- action_enrol_student 

- action_list_all_courses 

- utter_send_manual 

- action_send_manual 

- action_write_log 

- action_send_email 

- utter_introduction_response 

- utter_age_response 

- utter_beautiful_response 

- utter_birthday_response 

- utter_boss_response 

- utter_help_response 

- utter_good_response 

- utter_hobby_response 
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templates: 

  utter_name: 

  - text: "Hey there! Tell me your name." 

 

  utter_greet: 

  - text: "Nice to you meet you {name}. How can I help?" 

 

  utter_goodbye: 

  - text: "Talk to you later!" 

 

  utter_thanks: 

  - text: "My pleasure." 

 

  utter_ask_for_name: 

  - text: What's your full name 

 

  utter_full_name: 

  - text: "Your first name is {name} and your last name is {last_name}" 

 

  utter_useful: 

  - text: "Was that useful?" 

 

  utter_try_again: 

  - text: "Okay, {name} lets try this again" 

 

  utter_refer_to_person: 

  - text: "Looks like your issue is a bit more nuanced and I will forward it to Operations to 

get in touch with you shortly" 

 

  utter_restart: 

  - text: "Anything else" 

 

  utter_ask_for_course: 

  - text: "What course is this" 

 

  utter_send_manual: 

  - text: "You will find a complete walkthrough of the application here: 

https://drive.google.com/file/d/1gZfHbhaDabDfCz3dXBMMoSEnW6L2aAgs/view?usp=s

haring" 

 

  utter_introduction_response: 

  - text: "My name is Sally, and I work for Chalkboard. I love listening to your problems 

and sending emails!" 

 

  utter_age_response: 

  - text: "I'm about two months old you know!" 

 

  utter_beautiful_response: 

  - text: "Why thank you very much! I'm sure you look great too!" 
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  utter_birthday_response: 

  - text: "I was born on 3rd May 1996. Same as my creator!" 

 

  utter_boss_response: 

  - text: "I was made by Yoofi Brown-Pobee so I guess he is my boss" 

 

  utter_help_response: 

  - text: "I am here for you 24/7" 

 

  utter_good_response: 

  - text: "Thanks! Be sure to let my creator know!" 

 

  utter_hobby_response: 

  - text: "I like to sit here and wait till you have a problem!" 
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