

ASHESI UNIVERSITY COLLEGE

AUTOMATING CHALKBOARD SUPPORT PROCESSES USING A

CHATBOT

Applied Project

B.Sc. Management Information Systems

Joseph-Peter Yoofi Brown-Pobee

April 2019

I

ASHESI UNIVERSITY COLLEGE

Automating Chalkboard Support Processes using a Chatbot

Applied Project

Applied Project submitted to the Department of Computer Science,

Ashesi University College in partial fulfillment of the requirements for

the award of Bachelor of Science degree in Management Information

Systems

Joseph-Peter Yoofi Brown-Pobee

April 2019

II

DECLARATION

I hereby declare that this Applied Project is the result of my own original work and

that no part of it has been presented for another degree in this university or elsewhere.

Candidate’s Signature:

……………………………………………………………………………………………

Candidate’s Name:

……………………………………………………………………………………………

Date:

……………………………………………………………………………………………

III

ACKNOWLEDGEMENTS

I would like to thank my supervisor Dennis Owusu for the splendid feedback

and guidance he has given me throughout the period. I am also grateful to

Chalkboard Education for giving me key information necessary to the

completion of this project

IV

ABSTRACT

 This project seeks to apply natural language processing techniques to automate the

support processes of Chalkboard Education, a startup in Ghana. The company has many

users but currently has only two operations personnel responsible for responding to

customer queries. Their support processes can be made easier with the use of a chatbot. The

project references work from early chatbots like ELIZA and Cleverbot as well as more

recent ones like MOOCBuddy and SuperAgent. The chatbot is built on RASA Natural

Language Interpreter and uses third party APIs like Twilio and Database connections to

mirror human support processes. Upon implementation, the chatbot is suitably able to

perform the repetitive human tasks the operations personnel were carrying out, successfully

and in shorter time. In the event that the chatbot cannot handle a query, the problem is

forwarded to the aforementioned operations personnel. Upon evaluation, it was discovered

that the chatbot has could improve its accuracy and effectiveness with techniques such as

adding more training data and using different language models for embeddings. In the

future, the chatbot can be implemented via a USSD application to enable Chalkboard

capitalize on the prevalence of USSD application in Africa.

V

TABLE OF CONTENTS
DECLARATION II

ACKNOWLEDGEMENTS III

ABSTRACT IV

Chapter 1: Introduction 1

1.1 Background & Motivation 2

1.2 Related Work 3

1.2.1 ELIZA 3

1.2.2 Cleverbot 4

1.2.3 Super Agent: A Customer Service Chatbot for E-commerce websites 5

1.2.4 MOOCBuddy 5

1.2.5 E-business Chatbot Using AIML and LSA 6

Chapter 2: Requirement Specification 7

2.1 User Identification and Use Case 7

2.2 Procedure for Requirements Gathering 7

2.3 Requirement analysis 8

2.3.1 Functional Requirements 8

2.3.2 Non Functional Requirements 9

Chapter 3: Architecture and Design 10

3.1 High Level Architecture of Project 10

 10

3.2 Key Modules in the Architecture/Design 10

3.2.1 Facebook Messenger Application 10

3.2.2 Dialog Engine 10

3.2.3 NLU Interpreter 11

Training with the NLU Interpreter 11

Dialog Manager 14

3.2.3 Action Manager 15

3.2.4 Third Party Connectors 16

3.3 Design Component to Requirements Mapping 16

Chapter 4: Implementation 18

4.1 RASA Core and NLU 18

4.1.1 RASA NLU 18

Defining Intents 18

Marking Entities 20

4.1.2 RASA Core 21

Creating Stories 21

VI

Actions 23

Domain 26

Facebook Messenger routing 27

API and Third Party Application Implementation 29

Twilio API 29

SMTP Library Module 30

Database connection 30

Chapter 5: Testing and Evaluation 31

5.1 Analysis of Problem Resolution Testing 32

5.2 Analysis of Error handling and conversation logging testing 34

5.3 Analysis of User Experience Testing 36

5.3 Analysis of Security Testing 37

Chapter 6: Conclusions and Recommendations 39

6.1 Future Work 41

Appendices 42

References 52

1

Chapter 1: Introduction

 Many businesses in Ghana make use of customer service call centers to

respond to the queries of customers and resolve any issues they may have. A simple search

on-line would produce a list of jobs available at said call centers. In principle, these centers

are very instrumental to the business operations as they serve as a contact point to customers

who are revenue drivers for the business. However, practicality dictates otherwise. In some

cases, the numbers provided for customer service are no longer in service (some have been

changed but not updated). In other cases, the call experience is marred by the emotional

state of calling customers or the receiving agents at a given point in time. Even beyond these

issues exist a more significant problem of cost. For companies, as they scale up and acquire

more customers, there is a need to hire more customer service personnel to cater to the needs

of customers.

 An already existing solution to this problem is the use of automated conversational

systems to respond to the queries of customers. Intelligent systems exist that can quickly

serve numerous customers at any given time before deciding if human intervention is

needed. Systems differ to varying extents based on the contents of their domain. A domain,

in this case, is merely the scope of questions, statements, and classes that all communication

can be categorized under. Hence, even though many automated systems function similarly,

they need to be built for a specific domain to be effective.

 Chalkboard Education is a startup that hosts an education platform. The company

allows schools to make all their content digital and enrolls their students onto a platform to

access it. The school gives their course material to Chalkboard Education who digitize it,

upload it to the platform and create accounts for all the students who can then access the

content from their mobile phone via a 6-character login token. Problems with the platform

are thus handled solely by Chalkboard and not the school. This results in many individual

2

students always calling and direct messaging Chalkboard’s customer service support line

for help. The company currently has only two people available for this job. This project’s

main contribution is to automate some of Chalkboard’s support processes using a task-

oriented dialog agent to resolve common recurring user problems. By the end of this project,

the goal is to build a full-functioning chatbot to handle all of Chalkboard’s support issues.

 1.1 Background & Motivation

 The use of conversational agents and dialog systems can be traced as far back

as 1966 with the development of ELIZA, an early natural language processing computer

program to present day Siri and Alexa of Apple and Amazon respectively. Natural Language

Processing and its related fields have provided a means for us, humans, to communicate

with machines and machine systems in ways similar to how we do with each other. There

are many systems with different implementations and nuances, but the majority generally

fall in two classes: Task-oriented dialog agents and Chatbots.

 Task-oriented dialog agents are predominantly concerned with specific tasks and

designed to have as very little interactions as possible to accomplish the task [1]. Examples

include digital assistants like the Siri above and Alexa. This class of dialog systems is mostly

employed by companies on their websites and products to enable customers and users to

address problems and answer questions. Key benefits of these systems, especially to

businesses and their customers, include faster and more convenient query handling as well

as lower costs relative to hiring of human agents. They are not designed to have prolonged

conversations. However, chatbots, the second class of dialog systems, are designed for that.

 Chatbots are set up to mimic the natural conversational characteristics of human

beings. They are designed to have more casual and less directed conversations than task

oriented dialog agents. Cleverbot is a chatbot capable of carrying on prolonged

3

conversations with humans and exists mainly for entertainment purposes [5]. These are

more suited for social uses such as for psychological analysis and entertainment purposes.

A form of evaluation for many chatbots is a test called the Turing Test developed by Alan

Turing in 1950. A Turing Test is a method of inquiry for determining whether or not a

computer/system is capable of thinking like a human being[2]. A human should be able to

find the two systems indistinguishable to pass the Turing Test. A chatbot that can pass this

test can be said to be a good one.

 The existence of the above systems in the field of natural language processing have

made it possible for the application of knowledge to different scenarios and domains.

Chalkboard Education’s particular situation presents an opportunity to apply this knowledge

in a local context. The startup has been running for close to three years and currently has

over 4000 students enrolled on its platform. Customer queries are handled mainly through

WhatsApp and voice phone calls and require employees to be present to respond at all times.

The creation of a dialog system using the information and queries specific to Chalkboard

appears a potential solution to solve the problem by removing the need for the physical

presence of human and saving costs for the startup. As the startup scales, the system does

not have to scale proportionally; hence the cost of customer service can be minimal for a

given number of users.

1.2 Related Work

1.2.1 ELIZA

ELIZA is an early natural language processing computer program created from 1964

to 1966 [3]. It was created by Joseph Weizenbaum at the MIT Artificial Intelligence

Laboratory to demonstrate communication between humans and machines using natural

4

language. It works by breaking down a sentence, ranking its keywords and transforming the

user’s sentence into a proper response using rules from its pre-programmed learning script.

The system was modeled after a Rogerian psychotherapist in that it allowed the program do

not need to have a knowledge base of the topic the human was discussing [Weizenbaum,

1966]. By merely transforming the sentences based on keywords in the user's query, the

program can appear to be engaging in conversation regardless of the topic. ELIZA would

turn user input into a question which kept the users engaged. There were several reports of

human test subjects developing an emotional connection to the system; a testament of how

well it was able to sustain a regular conversation. This system formed the basis for the

creation of other conversational agents and improvements in the field of natural language

processing.

1.2.2 Cleverbot

Cleverbot is a web-based chatbot that uses artificial intelligence to have

unsupervised conversations with humans and is created by Rollo Carpenter. It holds the

distinction of having passed the Turing Test. As mentioned earlier, the idea of the test is for

a machine to pretend to be a human and will only pass if this pretense is found to be

convincing [4]. Cleverbot has performed quite well in Turing Test competitions, giving it

some credibility [4]. Unlike ELIZA, Cleverbot learns how to have a conversation as it

interacts with more humans. Its responses at any given time are as a result of an analysis of

previous conversations it has had with other humans. This contributes to its ability to

perform well on the Turing Test. Despite the difference in how ELIZA and Cleverbot are

implemented, they are both capable of holding a conversation with a human for a

considerable length of time.

5

1.2.3 Super Agent: A Customer Service Chatbot for E-commerce websites

This paper highlights the need for the use of automated systems like chatbots in a business

environment. It labels customer service as one of the most resource intensive departments

within a company, consuming a lot of time and money. Customer queries are repetitive, and

customer service agents cannot be present 24/7. Both of these can be resolved through the

use of chatbots as the paper points out. Chatbots are economical, indefatigable and would

enable support staff to spend more time on other things. The bot created in the paper,

SuperAgent, leverages ‘large-scale and publicly available e-commerce data’ to respond to

customer queries. A key contribution of the paper to this proposed project work was how to

involve a ‘chit-chat engine’ to satisfy usability in terms of customer experience and achieve

the non-functional requirement of naturalness of conversation. SuperAgent uses a chit-chat

engine to reply to queries that cannot be answered by all other engines and to respond to

small talk off-topic user inputs. The provision of this engine helps push the conversation

with the chatbot to look closer to that of a customer service agent.

1.2.4 MOOCBuddy

MOOCBuddy is a chatbot that serves as a recommender system to help users find the best

courses on Massive Open Online Courses like Coursera and edX. It is created based on the

user’s social media profile and is managed through Facebook Messenger. The paper by

Holotescu [8] tells of how the creation of Facebook's Messenger service, which leverages

billions of individual users and businesses on Facebook, has led to the increase in the

number of chatbots available. These chatbots are built and run through the Messenger API.

Dialogues are modeled as structured messages with URLs connected to enable users to make

choices. It also offers users the ability to search using topics, languages, and dates among

others. This paper ultimately serves as an example of the use of chatbot for an online

6

educational platform built with Facebook Messenger. This is similar to what is being done

for Chalkboard Education throughout this applied paper and hence serves as a basic proof

of concept.

1.2.5 E-business Chatbot Using AIML and LSA

 This work proposes building a chatbot using a combination of Artificial Intelligence

Markup Language(AIML) and Latent Semantic Analysis (LSA) as a solution for improving

customer service. Similar to other works on the topic, the paper outlines some of the

inadequacies of humans in the customer service department and the great benefits of

employing an automated system. AIML is a dialect used for creating natural language

system agents. They use AIML to handle general queries like ‘Whats up' and ‘hello.' It

cannot be used for more specific queries because it requires the developer to anticipate all

the specific ways the user might express an intent. LSA is used here to find the similarity

between words in vector representation form. The combination of these two can help the

chatbot understand user input and generate a suitable response. Inputs are first handled by

the AIML, and if the input exists in the templates, the appropriate prepared answer is given.

If not, it is passed to the LSA to produce a semantic-based answer. The LSA is trained on

FAQs from the given business. The main benefit of the paper to the project is to help

understand and view other implementations of chatbots, validate the problem-solution fit

once again and to understand the flow of processes a chatbot might go through to produce

a response.

7

Chapter 2: Requirement Specification

 The chapter seeks to give an analysis of the functionality the task dialog system would offer

as well as the scope of its capability. The application would make use of frequently entered

user inputs to learn and generate appropriate responses to user queries. The learning and

generation of responses will be done without human supervision. Requirements would be

obtained from Chalkboard Education as well as literature such as Speech and Language

Processing by Daniel Jurafsky [1] to identify the necessary components for building a task

dialog system. At various parts of this document, the system may be referred to as a bot.

2.1 User Identification and Use Case

The application would be used primarily by students of schools that use Chalkboard

Education’s platform to manage their content. The service would run on Facebook

Messenger; hence users would need Internet access and a subscription to a mobile carrier to

access the dialog system. The primary use cases for which the chatbot is being built are

outlined below to understand better how the application will be used:

1. A student of a newly added school (freshly added to Chalkboard’s platform) attempts to

access the platform but does not know how to log in/does not have their log in details.

2. A student of a newly added school can log in but does not know how to navigate the site

and access resources.

3. A student of an already existing school on the platform is unable to find specific course

material on the platform.

2.2 Procedure for Requirements Gathering

The requirements were obtained through the following means:

8

Interview: Interview with an Operations Associate at Chalkboard Education. Through this

interview, we can identify the key problems that the dialog system needs to resolve and the

extra Chalkboard specific information and resources the bot would need to accomplish the

task.

Literature Review on Chatbots and Dialog Systems: Books such as Speech and Language

Processing by Dan Jurafsky help identify some universal concerns and usability issues to

address when building conversational systems in general. The concerns are not specific to

Chalkboard but are more general to any conversational system being built.

2.3 Requirement analysis

 The main function of the task dialog system is to provide appropriate generated

answers to user queries through Facebook Messenger without human supervision. A key

input is a set of previously asked queries to enable the system to learn queries and match

them to appropriate responses. All use cases would involve the user querying the system.

2.3.1 Functional Requirements

● Users should be able to type in any problems they have or queries they need to be

answered.

● The system should be able to read the queries as input and generate a response that

best answers the query.

● The user should be able to read the generated response. The response should be in a

form readily understandable by the user.

● The system should be able to process queries that have the same idea but appear in

different forms and contexts.

9

● The system should be able to learn from real-time queries to be more capable of

handling queries it has not been trained on

● The bot should be able to resolve login issues

● The bot should be able to resolve enrolment issues

● The bot should be able to resolve navigation issues

● The bot should be able to recognize registered users of Chalkboard

● The bot should be able to resolve user queries in less time than its human counterpart

2.3.2 Non Functional Requirements

● The bot should be able to respond to user queries in under 20 seconds.

● Talking to the bot should feel like talking to a human being.

● The bot should not give out sensitive information during the conversation.

● The system should be able to respond to a few non-problem oriented queries to

maintain some level of interactivity with the user.

● The bot should be able to identify when it cannot solve a problem and refer to

personnel.

● The bot should be able to work through simple spelling mistakes.

All requirements outlined above will be addressed in this project.

10

Chapter 3: Architecture and Design

3.1 High-Level Architecture of Project

Fig 3.1

3.2 Key Modules in the Architecture/Design

3.2.1 Facebook Messenger Application

Facebook's Messenger Application will be used to receive inputs and send generated

responses to users. The pervasiveness of Facebook and the large number of users who access

it make this a suitable medium.

3.2.2 Dialog Engine

Below is a more detailed illustration of the architecture of the dialog engine component:

11

Fig 3.2

Source: https://rasa.com/docs/core/architecture/

3.2.3 NLU Interpreter

This component is responsible for understanding user input. For a given input, it

breaks it down by words to identify the intent of the user. It does this using pre-trained

sentences for given intents and compares similarity. It also extracts entities from the input.

Entities are key objects that are useful when executing actions and generating responses.

The interpreter is also responsible for slot filling. Slots represent information required for

certain actions. For instance, if a user wants to enroll for a course, a slot to be filled is the

user's name and the course name.

Training with the NLU Interpreter

Intent Classification

RASA can use different pipelines to process user messages. A pipeline defines

different components which process a user message sequentially and ultimately lead to the

classification of user messages into intents and the extraction of entities [10]. The two most

important pipelines RASA uses are tensorflow_embedding and spacy_sklearn[11].

spacy_sklearn is more suitable for this project because it uses pre-trained word vectors

https://rasa.com/docs/core/architecture/

12

which is very useful when training data is limited. Using this pipeline, RASA takes each

piece of training data and its marked intent to create a training data object. This object has

the text of the document, its intent and the entities marked as keys in the object. RASA uses

a Sklearn [15] Intent Classifier. The classifier uses spaCy, an open source library for natural

language processing, to convert each training object into a list of tokens(words), creating a

bag of words. This is referred to as tokenization. RASA then moves to feature this bag of

words by converting the tokens into word vectors. These are known as Word embeddings

which can capture semantic and syntactic aspects of words [10]. Machine Learning

Algorithms understand numerical data which is why the words need to be converted to word

vectors. The features are then labeled with the intents they describe in a numerical format.

Hence instead of labels like [login, list_courses], numbers will be assigned to represent the

labels.

The Sklearn Intent Classifier uses GridSearch [15] with intent names as labels and

features as those generated by the feature to generate a Machine Learning Model. The

Machine Learning Model is a mathematical representation of a real word process; in this

case, determining whether a given text belongs to a particular intent. GridSearch is a

hyperparameter tuning algorithm that helps identify the optimal hyperparameter to use in a

machine learning model. It works by building and evaluating a machine learning model for

each combination of parameters specified. Hyperparameters are values that help a model

produce the most accurate predictions but cannot be estimated from the data. Selecting

hyperparameters can be likened to tuning a radio for the right frequency. Once this is done,

it stores the model in a persisted file. The final output is an Interpreter object which can

classify an intent based on the model. When a new input is provided, the Interpreter returns

a numerical value based on the model trained which needs to be decoded to arrive at the

13

actual intent tag. A set of confidence values are created for each prediction, and the highest

confidence value is selected as the intent.

Entity Extraction

RASA uses Named Entity Recognition using Conditional Random Fields

(NER_CRF) as the algorithm for entity extraction [11]. Named Entity Recognition is used

to identify and classify words in a document into defined categories/labels. [12]. Conditional

Random Fields are used to predict the most likely sequence of labels based on a sequence

of inputs [13]. Here, again, as part of preprocessing, the text is tokenized but in this case

stop, words are not removed as is the case in other NLP techniques. This is because, with

NER_CRF, every feature depends on features preceding and succeeding it. The training data

is converted with entities to a list of tuples with a start_index, end_index, and entity. So for

instance, the marked training data “I am Dennis[first_name]” would have a tuple of [(5,10,

‘first_name’)] to denote where the entity starts and ends in that sample. The range (5, 10) is

regarded as the offset of the entity. This helps tag tokens from the preprocessing step.

BILOU (Begin, Inside, Last, Other, Unigram) tagging is a way of encoding information in

a set of labels by recognizing the Beginning, Inside and the Last token of data relating to

entities and differentiate them from Other tokens and unigram tokens. It is used for each

token whereby if the token falls within the offset of the entity tag, an entity tag is attached

to it; if the token does not, it is given a value of 0. We end up with each token and its assigned

entity in each training example. After this is completed each token is again analyzed to

determine further characteristics about the word for training. Characteristics like the

previous word, whether the previous words is a title, whether the current word is a digit and

whether it is at the end of a sentence are taken. This information together with the

information from BILOU tagging is used to train and fit a CRF model for prediction. During

14

prediction, the text entered by the user is broken into tokens and processed to arrive at the

breakdown of its characteristics. This breakdown is then fed to the CRF model for

classification. We obtain a list with the probability that a token has a BILOU tag. Tags with

0 are ignored. A new entry like ‘I am Jesse’ would result in a result in a result such as

[{‘start’: 5, ‘end’:9, ‘value’:’Jesse,’ ‘entity’: ‘first_name’}].

Dialog Manager

This component is responsible for keeping track of the conversation state at all times.

It makes use of a Dialogue State Tracker and Policy objects as seen in Fig 3.2. The Tracker

stores and maintains the state of the dialogue with a single user [11]. Events describe

everything that occurs in a conversation and are stored in the tracker. The Tracker stores

Events such as:

● The user saying something to the bot.

● The bot saying something to the user

● The user specifying the value for a slot

● The bot restarting a conversation

● The conversation being paused and resumed

● An Action being executed or rejected

● The last action executing

● The number of state turns and intents made

The Tracker also stores current slot and entity values. It passes its state to the Policy

object which decides what action to take at every step in the dialogue[11]. The Policy

predicts the next action the bot should take after being passed the tracker. It produces a list

of probabilities/confidence scores for the next actions based on the state of the Tracker and

selects the one with the highest probability. The Policy can decide by training on the

Trackers it receives. The Tracker provides a bag of active features which consist of Events

15

that have been recorded. Policy converts these features into vector representation with an

array containing the target class labels encoded as one-hot vectors[11]. It does this using

multiple Featurizers. For instance, the BinarySingleStateFeaturizer creates a binary one-hot

encoding with the vector indicating the presence of an intent, entity, previous action or slot

[11]. After featurizing, te Policy trains on the Tracker features and then predicts the action

probabilities. Keras and Memoization Policies are some policies RASA uses. The former

uses a neural network implemented in Keras to select the next action and the latter simply

memorizes the conversations in the training data and predicts the next action based on

this[11]. If the Policy used returns low confidence in multiple stages, a two-stage Fallback

Policy is used which asks the user to first affirm the intent. If is affirmed, the conversation

continues with the affirmed intent and if not the user is asked to rephrase their message. If

the rephrased message produces high confidence, the conversation continues; if not, the user

is asked to affirm again. If the user affirms the second time the conversation continues, if

not a fallback action is executed by the Action Manager.

The action to be taken next is passed to the action manager. Upon executing the

action, the action manager sends the output of the action to the dialog manager who then

generates a response to be sent back to the user.

3.2.3 Action Manager

 This component is responsible for generating and executing the necessary code for

successfully executing actions. It works with a database by generating and executing

necessary SQL queries to cull data. It also formats the data received from the database in a

form suitable for the dialog manager. The Action Manager also interacts with the Twilio

API to send text messages to a number provided by the Dialog Manager. Login URLs will

be sent through this means. It also uses the Python SMTP Library to send an email to

personnel at Chalkboard in the event the chatbot receives queries it is unable to handle. The

16

Manager stores all the tokens that are necessary to interact with these APIs. The Manager is

also responsible for writing logs of conversations with users for storage.

3.2.4 Third Party Connectors

The Action Manager will interact with a MySQL database, the Twilio API and

SMTP Library. This will enable it to extract database information, send SMS’s and emails

respectively.

3.3 Design Component to Requirements Mapping

Requirement Architecture component responsible for

addressing requirement

Users should be able to type in any

problems they have or queries they need to

be answered.

Facebook Messenger Front End

Integration

The system should be able to read the

queries as input and generate a response that

best answers the query.

Dialog Engine

The user should be able to read the

generated response. The response should be

in a form easily understandable by the user.

Dialog Engine, Facebook Messenger Front

End Integration

The system should be able to process

queries that have the same idea but appear

in different forms and contexts.

Dialog Engine (NLU Interpreter)

The system should be able to learn from real-

time queries to be more capable of handling

queries it has not been trained on

Action Manager

The bot should be able to respond to user

queries in under 20 seconds.

Dialog Engine, Action Manager

Talking to the bot should feel like talking to

a human being.

Dialog Engine

The bot should not give out sensitive

information during the conversation.

Action Manager, Twilio API

The system should be able to respond to a

few non-problem oriented queries to

Dialog Engine

17

maintain some level of interactivity with the

user.

The bot should be able to identify when it

cannot solve a problem and refer to

personnel.

Action Manager, Gmail API,

The bot should be able to work through

simple spelling mistakes.

Dialog Engine (NLU Interpreter)

The bot should be able to resolve login

issues

Dialog Engine, Action Manager, Database,

Twilio API

The bot should be able to resolve enrolment

issues

Dialog Engine, Action Manager, Database

The bot should be able to resolve navigation

issues

Dialog Engine, Action Manager

The bot should be able to recognize

registered users of Chalkboard

Dialog Engine, Action Manager, Database

The bot should be able to resolve user

queries in less time than its human

counterpart

Dialog Engine, Action Manager

18

Chapter 4: Implementation

Overview

 This section intends to describe all the steps taken to build the dialog system and an

accompanying application to mirror the Chalkboard website. The application will have an

entry for students and administration, and the bot will make changes that are possible on the

administration platform to be reflected on the student platform. For the application and the

bot, the components used to build it and the functionality they provide will be explained to

give a full picture of the implementation

4.1 RASA Core and NLU

RASA is an open source platform with tools for building virtual assistants and

conversational systems. It features a Natural Language Understanding (NLU) and Core

components. The former is used to help the bot understand what the user is saying while the

latter is used to manage the flow of the conversation and the performing of corresponding

actions.

4.1.1 RASA NLU

The Natural Language Understanding tool is essential for intent classification and

entity extraction. For a given sentence, the NLU helps identify what the user wants to do

and the resources available to do it.

Defining Intents

When building the bot for this system, the first step was to define the intents for the

system. Intents represent what the students seek to do with the system. For instance, if a

user types ‘I am unable to log in,' the intent here is to report difficulty with logging in. I

defined intents for our system listed below:

19

- greet: When a user intends to greet the bot

- goodbye: When a user intends to leave the bot

- thanks: When a user intends to express gratitude

- deny: When a user seeks to answer negatively to a question or statement

- give_course: When a user seeks to give the name of a course

- give_name: When a user intends to give their name

- login: When a user intends to report an issue about logging in

- navigation: When a user intends to report an issue about navigation and generally using

the application

- enrollment: When a user intends to report an issue about enrolling

- affirm: When a user seeks to answer position to a question or statement

- list_course: When a user seeks to see a list of all the courses being offered

- introduction: When a user seeks to introduce the

- age

- beautiful

- birthday

- boss

- help

- good

- hobby

- occupation

- origin

- how_are_you

- my_birthday

For each intent, the bot needs several sample sentences that show how a user might express

the various intents. The bot needs this to be able to train to identify an intent given a new

sentence. Hence for each intent, sample sentences where given. Below are some of the

sentences given for the ‘login' intent

intent:login

- I cannot log in

- Cannot log in

- I have login issues

- I don’t know where to find my URL

- Can you send me my login URL

- Cannot find URL

- Cannot log in

- Where is my link

- There are supposed to be six characters. How do I get my six characters

- I cant see my log in link

- I cannot see my six characters

- My URL is not working

- I did not get a text message from you

- I did not receive an SMS

20

This is done for all intents listed above.

Marking Entities

For some intents, there is a need to mark entities in the sample sentences to enable

RASA identify them when new input is provided. An entity is any item of interest that can

be used to perform some further action. For the ‘give_name’ intent, the sample sentences

have been marked as shown below:

intent:give_name

- My name is [Yoofi](name) [Brown-Pobee](last_name)

- I am [Ebenezer](name) [Lamptey](last_name)

- I'm [Elvis](name) [Boateng](last_name)

- People call me [Sarah](name) [Agyapong](last_name)

- It's [Judith](name) [Asaaba](last_name)

- Usually people call me [Julian](name) [Adusei](last_name)

- My name is [Adam](name) [Serwaa](last_name)

- You can call me [Abigail](name) [Adamtey](last_name)

- Please call me [Mary](name) [Brakoh](last_name)

- Name name is [Blankson](name) [Frimpong](last_name)

- I am [Aku](name) [Nsowine](last_name)

- I'm [Adel](name) [Amponsah](last_name)

- Call me [Faustina](name) [Adjei](last_name)

The entities used here are ‘name’ to represent the user’s first name and ‘last_name’ to

represent their last name. The bot for the Chalkboard system requires three entities:

- name

- last_name

- course_name

Hence in the ‘give_course' intent I use the sample sentences marked as shown below:

#intent:give_course

- The course is [English with Elements of Literature](course_name)

- The course is [LITERATURE IN FRENCH II](course_name)

- The course is [LITERATURE IN FRENCH](course_name)

- The course is [ENVIRONMENTAL AND SOCIAL STUDIES I](course_name)

- The course is [ENVIRONMENTAL AND SOCIAL STUDIES](course_name)

- The course is [MATHEMATICS II (GEOMETRY AND TRIGONOMETRY

)](course_name)

21

- The course is [MATHEMATICS](course_name)

- The course is [GEOMETRY AND TRIGONOMETRY](course_name)

- The course is [CHILD AND ADOLESCENT DEVELOPMENT AND

LEARNING](course_name)

- [JEN 123](course_name)

- [JMC 122 MATHEMATICS II (GEOMETRY AND TRIGONOMETRY)](course_name)

- [METHODS OF TEACHING RELIGIOUS AND MORAL EDUCATION](course_name)

- [CHILD AND ADOLESCENT DEVELOPMENT AND LEARNING](course_name)

- The course is [Literature in French](course_name)

Based on the entities I create slots to let RASA know the kind of data to expect and how to

store them. The entity names and slot names must match for RASA to be able to extract

the information to fill the slots. These slots are used to store entities to perform other

actions. The slots are defined as:

name:

 type: text

last_name:

 type: text

course_name:

 type: text

The above means there three slots to fill and each would have a data type of text.

Once the intents, entities, and slots have been defined, the next step is to train the NLU on

the intents and entities. The NLU proceeds to learn the various ways a user can express

intents and entities to process entirely new input when asked.

4.1.2 RASA Core

Creating Stories

The Core is responsible for managing the conversation and performing

corresponding actions. With the core, the first step is to create stories which represent

possible conversations the bot might have with users. An example story that the Chalkboard

Bot would find useful is

22

story_login_01

* login

 - utter_ask_for_name

* give_name{"name":"Ayorkor", "last_name":"Brown-Pobee"}

 - action_send_token

 - utter_useful

* affirm

 - utter_thanks

In the above, the name of the story is ‘story_login_01,' and the first thing that would trigger

the story is the user expressing the intent ‘login.' Once this is expressed, the bot will execute

the action (more on actions in the subsequent sections) ‘utter_ask_for_name’ which would

ask the user for their name. The bot expects the user to give it a name as shown by the

‘give_name’ intent. The ‘name’ and ‘last_name’ in the curly braces represent entities for

the bot to look out for. The names by them are placeholders. The bot knows to expect some

names. After giving the name, the chatbot runs the action ‘action_send_token.’ This action

checks the names given against the database available and returns the token for the given

student. The user is then asked if they found the solution they were given was useful. In this

story, the user answers in a positive manner with the intent ‘affirm’ and the chatbot thanks

them using the action ‘utter_thanks

I define different variations of stories for a single intent to capture the different ways the

conversation with the user might go similar to below:

story_login_01

* login

 - action_write_log

 - utter_ask_for_name

* give_name{"name":"Ayorkor", "last_name":"Brown-Pobee"}

 - action_write_log

 - action_send_token

 - utter_useful

* affirm

 - action_write_log

 - utter_thanks

story_login_02

 * login

 - action_write_log

 - utter_ask_for_name

23

 * give_name{"name":"Ayorkor", "last_name":"Brown-Pobee"}

 - action_write_log

 - action_send_token

 - utter_useful

 * deny

 - action_write_log

 - utter_refer_to_person

 - action_send_email

Login story 01 handles what would happen if the action carried out by the chatbot is

successful while login story 02 handles the negative situation. This makes RASA more

flexible and more natural.

Many stories are defined to try to capture the multiple ways users may interact with the

chatbot. This is suitable for Chalkboard because the actions that can be taken are finite;

hence there are only a few known things students can want to do. There is an action to send

an automated email to Operations in the event of a persistent problem thereby ensuring only

the most important need human intervention.

Actions

There are different actions that carry out various results. Some actions are simply response

actions that display text to the user. These are utter actions as shown below:

 utter_name:

 - text: "Hey there! Tell me your name."

 utter_greet:

 - text: "Nice to you meet you {name}. How can I help?"

 utter_goodbye:

 - text: "Talk to you later!"

 utter_thanks:

 - text: "My pleasure."

 utter_ask_for_name:

 - text: What's your full name

24

 utter_full_name:

 - text: "Your first name is {name} and your last name is {last_name}"

 utter_useful:

 - text: "Was that useful?"

 utter_try_again:

 - text: "Okay, {name} lets try this again"

 utter_refer_to_person:

 - text: "Looks like your issue is a bit more nuanced and I will forward it to Operations to

get in touch with you shortly"

 utter_restart:

 - text: "Anything else"

 utter_ask_for_course:

 - text: "What course is this"

These are the most commonly used as they help the robot maintain a conversation with and

direct the user. More complex Actions are then defined to make the chatbot more useful to

the user. These actions make use of Python classes. The class has two methods: a name

method and a run method. The name method returns the name of the action as specified in

the domain file. The name here must match the name in the domain file for the Dialog

Engine and Action Manager to communicate successfully. When the name method is called

and returns successfully, the run method is called to execute the action. For instance, the

action 'action_send_token' takes the first name and last name of the user from the slots

activates the Twilio API and sends the user their login link via SMS. Another action is the

'action_send_email' action that sends an email to Chalkboard Personnel when the chatbot is

unable to handle a user query

class ActionSendEmail(Action):

 def name(self):

 return "action_send_email"

 def run(self, dispatcher, tracker, domain):

 output = open('Output.txt')

 smtpserver='smtp.gmail.com:587'

 from_addr = 'insightnetwork.15@gmail.com'

 to_addr_list = ['insightnetwork.15@gmail.com']

25

 cc_addr_list = ['']

 subject = "Customer query I cannot handle"

 message = output.read()

 login = 'insightnetwork.15@gmail.com'

 password = 'fqpvbcjkwunvzqdk'

 header = 'From: %s\n' % from_addr

 header += 'To: %s\n' % ','.join(to_addr_list)

 header += 'Cc: %s\n' % ','.join(cc_addr_list)

 header += 'Subject: %s\n\n' % subject

 message = header + message

 server = smtplib.SMTP(smtpserver)

 server.starttls()

 server.login(login,password)

 problems = server.sendmail(from_addr, to_addr_list,

message)

 server.quit()

 date = datetime.datetime.today().strftime('%Y-%m-%d')

 f_name = tracker.get_slot('name')

 l_name = tracker.get_slot('last_name')

 os.rename("Output.txt", "Errors/"+f_name

+"_"+l_name+"_"+date+"_"+".txt")

 open('Output.txt', 'w').close()

 return problems

After each query the chatbot runs the 'action_write_log' action to record the utterances of

the user to an output file and stores it. This file is used to store user sentences for training

the NLU to be more accurate. It is also used when the chatbot cannot handle a query and

needs to be referred to personnel as shown above. In this way, the chatbot can learn from

new queries and to let personnel know of difficult situations.

Below is a summary of all some of the actions defined and what they accomplish:

utter_name: Asks the user for their name

utter_thanks: Says thank you to the user

used to test that the chatbot was capturing the first name and last name from the full name

given.

action_send_token: Interacts with the Twilio API to send the user their login link through

SMS

action_enrol_student: Enrols the student in a course so they can see course material on their

dashboard

action_list_all_courses: Lists all available courses for a student

action_send_manual: Sends the user a pdf form of the walkthrough manual directly as an

attachment

action_write_log: Records user utterances and query into a text file and saves it

action_send_email: Sends the content of conversation log as an email to Chalkboard

personnel

26

Actions are declared as python classes with the main action to be accomplished declared as

a run method as seen above.

Every single nontext action that has to be performed is declared in a Python file called

actions.py.

Domain

After the actions, stories, intents, entities, and slots are defined, a domain file is

created that contains all necessary defined components the chatbot needs to be aware of. If

a component is defined in the domain file but not elsewhere, RASA would report an error.

In the same way, if a component is defined elsewhere but not in the domain file, it would

not be functional. All actions, stories, intents, entities, and slots go into the domain file.

Below are some of the contents of the domain file:

intents:

- greet

- goodbye

- thanks

- deny

- give_course

- give_name

- login

- navigation

- enrollment

- affirm

- list_course

entities:

- name

- last_name

- course_name

slots:

 name:

 type: text

27

 last_name:

 type: text

 course_name:

 type: text

actions:

- utter_try_again

- utter_refer_to_person

- utter_ask_for_course

- action_enrol_student

- action_list_all_courses

- utter_send_manual

- action_send_manual

- action_write_log

- action_send_email

templates:

 utter_name:

 - text: "Hey there! Tell me your name."

 utter_greet:

 - text: "Nice to you meet you {name}. How can I help?"

 utter_full_name:

 - text: "Your first name is {name} and your last name is {last_name}"

 utter_useful:

 - text: "Was that useful?"

 utter_try_again:

 - text: "Okay, {name} lets try this again"

Facebook Messenger routing

A page is created on Facebook, and the Messenger Platform added, to enable it to use

Messenger to send and receive messages. Credentials were generated to grant the chatbot

28

application permission send and receive

messages through Messenger. A webhook

with a callback URL is set up to receive

facebook messenger messages. The output is

shown below.

29

API and Third Party Application Implementation

Twilio API

An account is set up with Twilio which is a cloud communications platform that

allows developers to make and receive phone calls and text messages using its APIs. An

account ID and Auth Token are obtained from the Twilio account, and this is used in the

Action Manager to send smses to a selected number. Message to be sent is the login link

based on the name given. Below is the Action that makes the API call:

class ActionSendToken(Action):

 def name(self):

 return "action_send_token"

 def run(self, dispatcher, tracker, domain):

 mydb =

mysql.connector.connect(host="35.166.18.143",user="emmanuel.annan"

,passwd="emmanuel.annan",database="webtech_emmanuel_annan")

 mycursor = mydb.cursor()

 f_name = tracker.get_slot('name')

 l_name = tracker.get_slot('last_name')

 sql = "SELECT * FROM students WHERE first_name = %s AND

last_name = %s"

 adr = (f_name,l_name)

 mycursor.execute(sql,adr)

 myresult = mycursor.fetchall()

 if len(myresult) == 0:

 student = "Sorry " + f_name + " " + l_name +" you

are not in our system"

 else:

 account_sid =

"AC76cd680bb5124eda66ee5bbb80303c65"

 auth_token = "401bafdcb494987ec8e83b44ae622f7d"

 client = Client(account_sid, auth_token)

 message = client.messages \

 .create(

 body="Your login token is: " +

myresult[0][4]] + "\nKeep the token safe!",

 from_='+13475234873',

 to=myresult[0][3]

)

 student = "Your login URL has been sent to your

phone number. Check and let me know if this was helpful"

 dispatcher.utter_message(student)

 return []

30

SMTP Library Module

The emails are sent using the smtplib module in python. The smptp server used is

from Gmail. The module is supplied the destination address, subject, message and header

information which would be used to send the email. It uses the sending email address to

login and a generated password for the application to have permission to send emails. The

Action to send an email can be found below:

 def sendemail(from_addr, to_addr_list, cc_addr_list, subject,

message, login, password,smtpserver='smtp.gmail.com:587'):

 header = 'From: %s\n' % from_addr

 header += 'To: %s\n' % ','.join(to_addr_list)

 header += 'Cc: %s\n' % ','.join(cc_addr_list)

 header += 'Subject: %s\n\n' % subject

 message = header + message

 server = smtplib.SMTP(smtpserver)

 server.starttls()

 server.login(login,password)

 problems = server.sendmail(from_addr, to_addr_list, message)

 server.quit()

 return problems

This action implementation does not require information from RASA; hence it is not written

with Python classes like previous actions. The email is information obtained from the log

file that is written as a conversation occurs and is the only required part of the email.

Database connection

An SQL database modeled after the data on Chalkboard's actual database is hosted on a live

server. Every Action that requires interacting with a database connects to this live server

before executing the necessary SQL statements. The connection is established as:

mydb = mysql.connector.connect(host=[live server

address],user=[username],passwd=[password],database=[database

name])

mycursor = mydb.cursor()

31

Chapter 5: Testing and Evaluation

This chapter considers the implementation and whether it met the requirements

specified earlier in the document. The below table lists the requirement to be tested, how it

was tested, the outcome of the test and verdict. User testing was carried out with ten users.

All percentage breakdowns of user feedback are available in the Appendix.

Requirement

Specification

Test Parameters

and Specifications

Type of test Outcome

Problem Resolution Testing: Testing how well the bot solves users problems

The bot should be

able to resolve login

issues

80% of users tested

should have their

login issues resolved

User Testing: Users

indicated Yes, No or

Yes with a few tries

when asked if the bot

resolved their login

issues

100% of users tested

indicated they had

their login issues

resolved. 50%

indicated it was

resolved outright

while the other 50%

indicated it took

several tries to solve it

The bot should be

able to recognize

registered users of

Chalkboard

The bot should be

able to confirm the

identities of 80% of

tested users accurately

User Testing: Users

indicated Yes, No or

Yes with a few tries

when asked if the bot

could recognize them

as users of

Chalkboard or not

50% of users

indicated that the bot

was able to tell if they

were a registered user

or not outright and

30% were able to

after several tries.

20% indicate the bot

could not recognize

them.

The bot should be

able to solve

enrolment issues

80% of users should

have their enrolment

issues resolved

User Testing: Users

indicated Yes, No or

Yes with a few tries

when asked if the bot

resolved their

enrolment issues

80% of users

indicated that the bot

was able to resolve

enrolment issues.

50% indicated that it

was resolved outright

while 30% indicated

it took several tries.

20% indicated that the

issue was not resolved

at all

The bot should be

able to solve

100% of users should

be able to access

User Testing: Users

indicated Yes, No or

100% of users

indicated that the bot

32

navigation issues of

users

resources to be able to

learn how to use the

application

Yes with a few tries

when asked if the bot

resolved their

navigation issues

was able to resolve

their navigation issue.

80% indicated that the

issue was resolved

outright and 20%

indicated that it took

several tries.

The bot should be

able to resolve user

queries in less time

than its human

counterpart

The bot should

resolve all queries in

the Issue base times

table (Appendix 2.1)

in no more time than

it takes the human

personnel

User and System

Level Testing

100% if users

indicated that when

the bot resolved their

issues, it took

between 1 to 5

seconds to resolve it.

The system was also

tested without users

and queries took less

than 5 seconds to

resolve.

5.1 Analysis of Problem Resolution Testing

The bot was successfully able to resolve the three main issues for which it was built.

For some users, it took several tries for the bot to solve their problem. It was observed that

the bot would have difficulty in extracting their name if their first name was a two-word

name such as ‘Paa Kofi’ evident in Fig 1.1 in the Appendix. This resulted in the bot not

being able to recognize 20% of users at some point in the conversation. In one unusual case,

as shown in Fig 1.2 in the Appendix, when the user said ‘I am Dennis Owusu,’ the bot easily

identifies the name but when the query is phrased as ‘My name is Dennis Owusu,’ it is

unable to. Another user said ‘My name is Kwasi Korboe’ and the bot was able to extract the

name in that instance. Once the bot was able to receive the name, it was successfully able

to execute the follow-up action which was to solve enrollment, log in or navigation issues

if the user was registered with Chalkboard and reject them if they were not. The rejection

can be seen in Fig 1.3. The bot being unable to identify the names resulted in 50% of the

users needing to make the query multiple times for Login problems and 30% for enrolment.

20% of users making enrollment queries did not have their issues resolved. The enrolment

issue had another layer of difficulty because, beyond the name of the user, the bot also

33

required the names of the courses for which the student is enrolling. The available courses

can be identified by course code, course name or both. Below are some of the courses:

JEN 123 - ENGLISH WITH ELEMENTS OF LITERATURE

JFL 127 - LITERATURE IN FRENCH II

JES 445 - FRENCH AS A FIRST LANGUAGE

JES 322 - DATA STRUCTURES

JES 128 - ENVIRONMENTAL AND SOCIAL STUDIES I

When a user tried to identify a course using course codes multiple times, the user was unable

to enroll because the bot identified the wrong course. When another user identified the

course by writing part of its name, the user was also unable to enroll because the bot once

again identified the wrong course. The users who succeeded in getting enrolled used the full

course name combined with the course code. The user who had to try multiple times

attempted to register for multiple courses at once, and the bot could not identify the multiple

courses. Hence they submitted singular queries after. 100% of users indicated that once the

bot received the necessary information for a query, they received a response within 1 to 5

seconds. This is very important to the effectiveness of the dialog system as from the

interview with the Chalkboard Operations Associate; the chatbot had to perform support

processes much faster than the base time human personnel took. These base times can be

found in Table 1.1 in the Appendix. By comparison, we can see that the bot performing in

1 to 5 seconds is a good improvement on the human personnel. Fig 1.5 in the Appendix

shows a successful enrollment resolution.

Error handling and conversation logging testing: Testing how the well the bot can handle

errors such as mistakes in query text and queries for which it does not know how to

resolve as well as its ability to write logs of conversation for future learning

The system should be

able to learn from

The system should

write and store a log

Component level

testing

The system writes,

and stores log files of

34

real-time queries to be

more capable of

handling queries it

has not been trained

on

file of user

conversations for

100% of all tested

conversations

conversations for all

100% conversations

tested

The bot should be

able to identify when

it cannot solve a

problem and refer to

personnel

The bot should be

able to send an email

to Chalkboard

personnel about a

query it could not

resolve only after

trying at least once.

100% of times it

cannot resolve a

query it should report

that fact back to the

user and send the

appropriate email

System Level and

User Testing

80% of users

indicated that the bot

was able to tell them

it was referring their

problem to personnel

when it could not

handle it. 60% said it

was able to do so

right away and 20%

said it could go after

multiple tries. 20% of

respondents indicated

that the bot did not

tell them it was

referring to them to

personnel

The bot should be

able to work through

simple spelling

mistakes

The bot should be

able to generate a

response for the same

ten sentences with at

spelling errors in at

least two words

System-level Testing 90% percent of users

indicated that the bot

was able to give

useful responses when

they made spelling

mistakes. Users made

deliberate spelling

mistakes in repeated

queries, and the bot

was able to respond to

their queries

5.2 Analysis of Error handling and conversation logging testing

The dialog system being able to write a log of the conversation was very crucial to its

effectiveness. The logs serve as a way to automatically record user utterances for future use

in retraining and diagnosing faults. That component of the system can do this regardless of

its ability to generate the expected response. Fig 1.6 in the Appendix shows the folder on

the local testing environment which stores the logs of conversation in text form. The bot

was able to identify that it cannot handle a query and email personnel for 80% of the users.

This 80% comprises of 60% who were told right away and 20% who were able to after

35

several tries. It was observed the 20% who needed multiple attempts, and the 20% who did

not get referred at all met that change when they tried to resolve an enrollment issue. The

bot kept extracting the wrong course name from the course names given due to the similarity

in the course codes. Hence it would enroll the student for the wrong course and not identify

that there is a problem. 90% of users indicated that the bot was able to work through spelling

mistakes in similar queries. The users tested this by increasingly varying letters in words in

their queries. The bot was able to maintain accuracy for four-letter changes in different

words after which it generated inaccurate responses. Users used a maximum of 7 words in

their queries; hence four letter changes are spread across the seven words. Fig 1.7, 1.8 and

1.9 in the Appendix shows an instance of a user incorporating spelling mistakes in its query.

User Experience testing: Testing the chatbot’s naturalness, ability to generate intelligible

responses and flexibility.

The system should be

able to process

queries that have the

same idea but appear

in different forms and

contexts.

The system should be

able to generate

accurate responses for

three variations of a

query given by users

System Level Testing

and User Testing;

System-Level Testing

was done by inputting

three variations of a

query and observing

the response. User

testing saw users rate

on a Linkert scale of 1

to 5 how well it was

able to maintain

accurate responses

varying forms of a

query were given

40% of users

indicated that the bot

was able to maintain

accurate responses

when they varied the

form of the same

query. 40% indicated

that it was okay and

20% of users

indicated that it did

this badly.

The system should be

able to respond to a

few non-problem

oriented queries to

maintain some level

of interactivity with

the user.

The bot should be

able to generate

responses for up to 6

‘off-topic’ queries

(small talk)

System Level Testing The bot can generate

responses for 8 ‘off-

topic' queries

Talking to the bot

should feel like

talking to a human

being

70% of tested users

should give a score of

7 or higher on a

Likert scale to

User Testing: Users

are asked to rate on a

Linkert scale from 1

to 5 where 1

70% of tested users

indicated that the

conversation with the

bot felt quite human

36

indicate how human

the conversation felt

represents very robot

like and five

represents very

human

with 50% giving a

score of 4 and 20%

giving a score of 5.

30% indicated it felt

quite robotic, giving a

score of 2.

The bot should be

able to respond to

user queries in under

20 seconds

Bot response time

should be less than 20

seconds

User Testing: Users

were asked to indicate

how long the bot

generally took to give

a response with

ranges of time in

seconds given.

The bot sends

responses to queries

in less than 5 seconds.

90% of users

indicated that across

the bot to between 1

and 5 seconds and

10% indicated that it

took between 5 and

10 seconds.

Users should be able

to type in any

problems they have or

queries they need to

be answered

Facebook Messenger

platform should be

online and

Chalkboard page set-

up to receive inputs

Component Testing The Facebook

Messenger platform

connection was

successful and was

able to run throughout

the testing period

The user should be

able to read the

generated response.

The response should

be in a form easily

understandable by the

user.

At least 80% of tested

users should be able

to attest that they

understood system

responses or 100% of

10 test queries should

produce intelligible

responses

User Testing 80% of users

indicated that the bot

was able to maintain

accurate responses

when they varied the

form of the same

query.

5.3 Analysis of User Experience Testing

The result of testing the bots ability to maintain accurate responses when the same query

structure was varied can be described as mixed. 80% rated 3 and 4, and 20% rated 2. No

user said it was able to maintain accuracy very well or very badly. Fig 2.1 in the Appendix

shows an instance of the bot responding to varied queries. A potential explanation of this is

the lack of training data with some intents. Some intents have about 7 to 15 sentences

defined and hence would not make for a robust model for determining and classifying

intents. It would identify some and miss others. There were also some out-of-vocabulary

37

words in some query variations and hence the trained model would not have any word

embeddings for these words. Potential solutions to this would be discussed in the next

chapter. The bot can generate responses to non-problem oriented queries. As mentioned

earlier, small talk intents were added to the training data, and these small talk queries form

part of the queries users varied and tested earlier. With regards to testing how human a

conversation with the bot felt, 30% indicated it felt robotic with a Linkert scale of 2 whiles

50% and 20% gave it a score of 4 and five respectively. I observed that some users attempted

to ask to follow up questions to the small talk intents for which the bot has not been designed

to handle. It would respond with a generic greeting instead. The bots general response time

was successfully less than 20 seconds. 100% of users indicated the bot took less than 20

seconds to respond. One user suggested that the bot took between 5 and 10 seconds to

respond and it was observed that this was due to a lag in the internet connection that delayed

the query being sent and response being delivered. Finally, the ability of the bot to respond

well even when spelling mistakes were included also passes the test of its ability to generate

an intelligible response when it receives a query.

Security Testing

The bot should not

give out sensitive

information during

the conversation

The bot should never

reveal user log in the

link directly but

should be able to

resolve the issue still

Component Level

Testing

The bot successfully

uses the Twilio API to

send an SMS with the

link to the user's

phone number thereby

preventing direct

access of login links

5.3 Analysis of Security Testing

Security was a key concern in using the bot. The bot needed to avoid revealing key

information directly but still being useful to users. The bot is successfully able to send a

38

request to the Twilio API to send an SMS to the user's phone number to avoid revealing

student details. Fig 2.2 Shows the text login message sent from Twilio

39

Chapter 6: Conclusions and Recommendations

The bot can solve the three main problems of login, navigation, and enrollment. Its

ability is hampered slightly by its ability to extract entities from diverse query structures. If

it was able to, it successfully executed the necessary actions to resolve the problem. This

means that improvement has to be made on the bots entity extraction to enable to identify

entities in a query better. With this, users would not have to ask multiple times to have a

problem resolved, and those who did not have it resolved altogether would not be in the

same situation. Enrollment, in particular, has an added layer of difficulty because beyond

needing the user name the bot needed the course name. The structure of the course names

as a combination of similar course codes and course names made it difficult for the bot to

distinguish between the different course names. This was primarily a problem when users

sought to use shortened versions of course names instead of the full thing. A

recommendation for this is to define synonyms in the training data that consist of shortened

versions of longer course names. The ner_synonyms component in RASA can help define

these synonyms to make the bot better at identifying course name entities. In this way, if a

user uses a shorter version of the course name the bot would be able to identify it as a

synonym and fill the appropriate slot with the full data. The bot can also omit course codes

when listing courses and only show course names to encourage the user to use course names.

The bot can also ask the user to affirm his choice of course name when the course codes are

ambiguous.

Another recommendation, mainly geared towards addressing name extraction,

would be to add more training data featuring more names existing in Chalkboards users.

This would be useful since ultimately the system would be used primarily by students on

Chalkboard's platform. In this way, the bot would be able to identify more easily the names

of users, and repeated attempts won't need to be made to solve a problem. This would also

40

help the bot maintain accurate responses when a query is varied. More data on the small talk

can be added to improve the humanity of the bot. This includes possible follow up questions

to the small talk queries.

A recommendation for better handling out-of-vocabulary words and spelling

mistakes would be to use language models trained on a larger corpus to give the bots model

word embedding for a more significant number of words. The accuracy of the bot can be

increased by ensuring that there are a balanced number of training examples per intent. The

intents specified for the Chalkboard bot were not balanced as intents like the login intent

had 25 samples and the hobby intent had seven examples. A lack of balance in training data

can result in a biased classifier which can affect its accuracy negatively. Hence the

recommendation here is to ensure balance in training examples

In terms of speed and efficiency, the bot can respond to queries and execute actions

in less than 20 seconds as targeted. It must be noted however that it is at the mercy of internet

speed hence various ways to improve speed times in future work are welcome.

All in all, I believe the project meets functional requirements to a suitable degree as

the bot has the proven ability to resolve the three main problems outlined by the Chalkboard

staff. The inaccuracies of the bot are helped by its ability to write and persist log data for

future training. The bot is far from perfect, and the ability of the bot to successfully write

logs is instrumental in getting it there. Its ability to also refer problems to personnel deserves

to be highlighted as it enables demanding user queries to be still resolved by being brought

to the attention of human personnel while solving the simpler ones. In this way, it reduces

the amount of work the Operations staff to perform and frees them to perform other tasks.

41

6.1 Future Work

Considering the prevalence of USSD applications in West Africa (find source), the

chatbot can also be made accessible through a USSD application to enable it to be used

without internet access. More training sentences and stories should be added for the chatbot

to be trained on to make it even more conversational and human. It should also be tested

with an even higher number of users to capture new intents, sample sentences, and

conversations that can help to improve the bot. The recommendations highlighted above

should also be implemented to make the bot more effective.

42

Appendices

Table 1.1: Showing the base times taken for problem resolution at Chalkboard

Information Obtained from Interview with Paa Kofi Antwi Larbi, an Operations Associate at

Chalkboard Education

Issue Type Reasons

Estimated Base

Time (Best Time) Steps

Login Issue Misplaced URL 120 seconds

Go into API

Search for client name with CTRL+F

Check box by name

Click Send URL button

Navigation Issue

Not knowing how to

move through the app 10 seconds Refer to manual by sending link

Content Issue

Cannot access

course/Course not

showing

150 seconds

Go into API

Navigate to institution courses

Select the course client says is not

showing.

Navigate to students enrolled in that

course

Check client name

Click assign button

Ask the client to refresh.

43

Fig 1.1

Fig 1.2

44

Fig 1.3

Fig 1.4

45

Fig 1.5

Fig 1.6

46

Fig 1.7

Fig 1.8

47

Fig 1.9

Fig 2.1

48

Fig 2.2

Full Bot Domain:

intents:

- greet

- goodbye

- thanks

- deny

- give_course

- joke

- give_name

- login

- navigation

- enrollment

- affirm

- list_course

- introduction

- age

- beautiful

- birthday

- boss

49

- help

- good

- hobby

entities:

- name

- last_name

- course_name

slots:

 name:

 type: text

 last_name:

 type: text

 course_name:

 type: text

actions:

- utter_name

- utter_thanks

- utter_greet

- utter_goodbye

- action_joke

- action_send_token

- utter_ask_for_name

- utter_full_name

- utter_useful

- utter_try_again

- utter_refer_to_person

- utter_ask_for_course

- action_enrol_student

- action_list_all_courses

- utter_send_manual

- action_send_manual

- action_write_log

- action_send_email

- utter_introduction_response

- utter_age_response

- utter_beautiful_response

- utter_birthday_response

- utter_boss_response

- utter_help_response

- utter_good_response

- utter_hobby_response

50

templates:

 utter_name:

 - text: "Hey there! Tell me your name."

 utter_greet:

 - text: "Nice to you meet you {name}. How can I help?"

 utter_goodbye:

 - text: "Talk to you later!"

 utter_thanks:

 - text: "My pleasure."

 utter_ask_for_name:

 - text: What's your full name

 utter_full_name:

 - text: "Your first name is {name} and your last name is {last_name}"

 utter_useful:

 - text: "Was that useful?"

 utter_try_again:

 - text: "Okay, {name} lets try this again"

 utter_refer_to_person:

 - text: "Looks like your issue is a bit more nuanced and I will forward it to Operations to

get in touch with you shortly"

 utter_restart:

 - text: "Anything else"

 utter_ask_for_course:

 - text: "What course is this"

 utter_send_manual:

 - text: "You will find a complete walkthrough of the application here:

https://drive.google.com/file/d/1gZfHbhaDabDfCz3dXBMMoSEnW6L2aAgs/view?usp=s

haring"

 utter_introduction_response:

 - text: "My name is Sally, and I work for Chalkboard. I love listening to your problems

and sending emails!"

 utter_age_response:

 - text: "I'm about two months old you know!"

 utter_beautiful_response:

 - text: "Why thank you very much! I'm sure you look great too!"

51

 utter_birthday_response:

 - text: "I was born on 3rd May 1996. Same as my creator!"

 utter_boss_response:

 - text: "I was made by Yoofi Brown-Pobee so I guess he is my boss"

 utter_help_response:

 - text: "I am here for you 24/7"

 utter_good_response:

 - text: "Thanks! Be sure to let my creator know!"

 utter_hobby_response:

 - text: "I like to sit here and wait till you have a problem!"

52

References

[1] Daniel Jurafsky and James H. Martin. 2014. Speech and language processing, Harlow:

Pearson.

[2] Anon. What is Turing test? - Definition from WhatIs.com. Retrieved October 10, 2018

from https://searchenterpriseai.techtarget.com/definition/Turing-test

[3] Corydon Ireland. 2012. Alan Turing at 100. (September 2012). Retrieved October 10,

2018 from https://news.harvard.edu/gazette/story/2012/09/alan-turing-at-100/

[4]Robert Gehl. Teaching to the Turing Test with Cleverbot. The Journal of Inclusive

Scholarship and Pedagogy24, 1-2.

[5]Carpenter. Cleverbot. Retrieved October 9, 2018 from http://www.cleverbot.com/

[6]Anjuli Kannan and Oriol Vinyals. 2017. Adversarial Evaluation of Dialogue Models.

(2017).

[7]Ming Zhou, Lei Cui, Shaodan Huang, Furu Wei, Chuanqi Tan, and Chaoqun Duan.

SuperAgent: A Customer Service Chatbot for E-commerce Websites. Retrieved April 5,

2019 from http://aclweb.org/anthology/P17-4017

[8]Carmen Holotescu. MOOCBuddy: a chatbot for personalized learning with MOOCs.

Retrieved April 5, 2019 from

http://www.cleverbot.com/
http://www.cleverbot.com/
https://searchenterpriseai.techtarget.com/definition/Turing-test
https://searchenterpriseai.techtarget.com/definition/Turing-test
https://news.harvard.edu/gazette/story/2012/09/alan-turing-at-100/
https://news.harvard.edu/gazette/story/2012/09/alan-turing-at-100/
http://www.cleverbot.com/
http://www.cleverbot.com/
http://aclweb.org/anthology/P17-4017

53

https://www.researchgate.net/publication/304037510_MOOCBuddy_a_chatbot_for_perso

nalized_learning_with_MOOCs

[9]N.T. Thomas. 2016. An e-business chatbot using AIML and LSA. 2016 International

Conference on Advances in Computing, Communications and Informatics

(ICACCI)(2016). DOI:http://dx.doi.org/10.1109/icacci.2016.7732476

[10]Tobias Wochinger. 2019. Rasa NLU in Depth: Part 1 - Intent Classification. (February

2019). Retrieved April 22, 2019 from https://medium.com/rasa-blog/rasa-nlu-in-depth-

part-1-intent-classification-cb17e27fb169

[11]Anon. Choosing a Rasa NLU Pipeline. Retrieved April 22, 2019 from

https://rasa.com/docs/nlu/choosing_pipeline/

[12]K.u. Senevirathne, N.s. Attanayake, A.w.m.h. Dhananjanie, W.a.s.u. Weragoda, A.

Nugaliyadde, and S. Thelijjagoda. 2015. Conditional Random Fields based Named Entity

Recognition for Sinhala. 2015 IEEE 10th International Conference on Industrial and

Information Systems (ICIIS) (2015). DOI:http://dx.doi.org/10.1109/iciinfs.2015.7399028

[13]Charles Sutton and Andrew McCallum. 2012. An Introduction to Conditional Random

Fields. Foundations and Trends® in Machine Learning 4, 4 (2012), 267–373.

DOI:http://dx.doi.org/10.1561/2200000013

https://www.researchgate.net/publication/304037510_MOOCBuddy_a_chatbot_for_personalized_learning_with_MOOCs
https://www.researchgate.net/publication/304037510_MOOCBuddy_a_chatbot_for_personalized_learning_with_MOOCs
http://dx.doi.org/10.1109/icacci.2016.7732476
https://medium.com/rasa-blog/rasa-nlu-in-depth-part-1-intent-classification-cb17e27fb169
https://medium.com/rasa-blog/rasa-nlu-in-depth-part-1-intent-classification-cb17e27fb169
https://rasa.com/docs/nlu/choosing_pipeline/
http://dx.doi.org/10.1109/iciinfs.2015.7399028
http://dx.doi.org/10.1561/2200000013

54

[14]Freddy Boulton. 2018. Conditional Random Field Tutorial in PyTorch . (May 2018).

Retrieved April 22, 2019 from https://towardsdatascience.com/conditional-random-field-

tutorial-in-pytorch-ca0d04499463

[15]Fabian Pedregosa et al.2011. Scikit-learn: Machine Learning in Python. Journal of

Machine Learning Research(October 2011), 2825–2830.

[16]Anon. Keras: The Python Deep Learning library. Retrieved April 23, 2019 from

https://keras.io/

https://towardsdatascience.com/conditional-random-field-tutorial-in-pytorch-ca0d04499463
https://towardsdatascience.com/conditional-random-field-tutorial-in-pytorch-ca0d04499463
https://keras.io/

