
ASHESI UNIVERSITY

CONNECTING ERP TO E-COMMERCE: NPONTU AS A CASE STUDY

APPLIED PROJECT

B.Sc. Management Information Systems

Allotei Pappoe

2021

ASHESI UNIVERSITY COLLEGE

CONNECTING ERP TO ECOMMERCE: NPONTU AS A CASE STUDY

APPLIED PROJECT

Applied Project submitted to the Department of Computer Science, Ashesi

University College in partial fulfilment of the requirements for the award of

Bachelor of Science degree in Management Information Systems.

Allotei Pappoe

2021

I

DECLARATION

I hereby declare that this Applied project is the result of my own original work and that no

part of it has been presented for another degree in this university or elsewhere.

 Allotei Pappoe

.

Date: 14th May 2021

I hereby declare that preparation and presentation of Applied project were supervised in

accordance with the guidelines on supervision of Applied project laid down by Ashesi

University College.

 Stephane Nwolley

Date: 17/05/2021

II

ACKNOWLEDGEMENTS

I would like to acknowledge all the individuals who aided in completing this project:

Stephane Nwolley (PhD), my supervisor, who was of immense help throughout the completion

of this project; his advice and technical insight guided me throughout. Abraham Odoi and the

engineering team at Npontu Technologies for providing me with the interfaces and help for

which this project could not have been completed without. Also, a big thanks to my family,

who provided me with unending support, notably my brother, Allotey Pappoe, for reviewing

the paper. To the Beta testers, who without their user insight, the project would not have been

completed, thank you. Finally, to Marian-Bernice Haligah for her unrelenting support and

encouragement. Without you all, I would not have been able to complete this project.

III

Abstract

Enterprise Resource Planning (ERP) is a business process that enables companies to

manage and integrate their essential business processes. ERP applications are available for

companies to use for integrating all their business functions into one single system. It allows

companies to manage their daily activities, including accounting, procurement, and inventory

management. E-commerce, also referred to as electronic commerce, is the buying and selling

(trading) of goods and services on the internet. E-commerce platforms give sellers the needed

tools to provide 24/7 services to their customers unrestricted by distance. They allow sellers to

accept and track orders from their customers, which helps fulfil their value proposition in ways

that were not possible with previous brick-and-mortar stores. Studies show that ERP users in

Ghana hardly use E-commerce and the internet as tools to expand their market. This project is

aimed at integrating e-commerce systems into ERPs such that business owners can use their

ERP and e-commerce system in one software suite to give business owners access to the online

market.

IV

TABLE OF CONTENTS

DECLARATION.. I

ACKNOWLEDGEMENTS ... II

Abstract ... III

TABLE OF CONTENTS .. IV

Chapter 1: Introduction .. 1

1.1 Background ... 1

1.2 Problem Statement ... 2

1.3 Motivation ... 2

1.4 Significance ... 3

1.5 Related Works .. 3

1.6 The Kedebah ERP case study ... 5

1.7 Proposed Solution ... 5

1.7 Features of the proposed solution ... 5

Chapter 2: Requirement Analysis .. 7

2.1 Introduction .. 7

2.2 Overall Description .. 7

2.3 Requirements .. 8

2.3.1 Requirement gathering: .. 8

2.3.2 Requirement Analysis ... 10

2.3.3 Requirement Modelling .. 10

2.3.3.1 Users ... 10

V

2.3.3.2 Use Case ... 11

2.3.3.3 Functional Requirements ... 11

2.3.3.3.1 ERP:... 11

2.3.3.3.2 Ecommerce: .. 13

2.3.3.4 Non-Functional Requirements ... 13

2.3.4 Summary of Requirements to be worked on... 14

Chapter 3: System Architecture ... 16

3.1 Introduction .. 16

3.2 System Architecture ... 16

3.3 Software Architecture .. 16

3.4 High level System Overview .. 18

3.6 Database .. 21

3.7 REST APIs for Bi-Directional Communication .. 22

3.7.1 High level overview: .. 22

Chapter 4: Implementation ... 25

4.1 Introduction .. 25

4.2. Software Development Technique ... 25

4.3 Key Technologies .. 25

4.3.1 Languages ... 25

4.3.1.1 Frontend Languages ... 25

4.3.1.2 Backend Languages .. 26

VI

4.3.2 Frameworks and Libraries ... 27

4.4 Application Programming Interface (APIs) .. 28

4.5 Evidence of Implementation .. 28

4.5.1 Ecommerce Platform .. 28

4.5.2. Product Recommendation ... 33

4.5.2.1 Collaborative Filtering ... 33

4.5.2.2 Collaborative Filtering Using K-Nearest Neighbors 34

4.5.2.3 Neural Network-Based Collaborative Filtering (NCF) 35

4.5.3 Application Programming Interfaces for E-commerce platform 37

4.5.3.1 Seller API ... 37

4.5.3.2 Category API ... 38

4.5.3.3 Products ... 39

4.5.3.4 Orders .. 40

4.5.3.5 Connecting To Woo-commerce ... 41

4.5.4 Social Media Posts... 44

4.5.1 Evidence of Implementation ... 45

Chapter 5: Testing and Results .. 49

5.1 Introduction .. 49

5.2 User Acceptance testing ... 49

5.3 Unit testing .. 51

5.4 Component Testing .. 53

VII

5.5 System Testing .. 59

Chapter 6: Conclusion and Recommendation .. 61

6.1 Conclusion ... 61

6.2 Limitations .. 61

6.3 Recommendations .. 62

References ... 64

Appendices .. 67

Appendix A: Npontu Mall API Documentation .. 67

Appendix B: Connecting Kedebah ERP to Woo-commerce .. 77

Connecting Kedebah to Twitter .. 80

VIII

Table Of Figures

Figure 3.2 MVC Architecture .. 17

Figure 3.3 Buyer Sequence Diagram ... 19

Figure 3.4 Seller Sequence Diagram ... 20

Figure 3.5 Use Case Diagram .. 21

Figure 3.6 ER Diagram .. 22

Figure 3.7 RESTful Architecture ... 24

Figure 4.1: Shop page .. 29

Figure 4.2: Single Product ... 29

Figure 4.3 Wishlist Page .. 30

Figure 4.4 Cart Page .. 30

Figure 4.5 Checkout Page .. 31

Figure 4.6: Order Completed Page .. 31

Figure 4.7: Related Products .. 32

Figure 4.8: PHP Functions for related products... 32

Figure 4.9: Product Recommendation Based On Users Reviews .. 33

Figure 4.10: Python Function for recommending products ... 34

Figure 4.11: KNN Recommending Products based on Rating Similarity 35

Figure 4.12: Implementation of KNN Algorithm .. 35

Figure 4.13: NCF Model Implementation ... 36

Figure 4.14: NCF Model in Action .. 37

Figure 4.15: Seller API .. 38

Figure 4.16: Category API ... 39

Figure 4.17: Product API ... 40

Figure 4.20: Order API request .. 41

IX

Figure 4.19: Connecting to Woo-commerce Store Front View ... 42

-commerce Store 43

Figure 4.21: Snippet of Code for connecting to Woo-commerce store 44

Figure 4.22: Logging in to the Twitter Account .. 45

Figure 4.23: Tweeting about a product .. 45

Figure 4.24: Post made successfully. ... 46

Figure 4.25: Twitter OAuth Login ... 47

Figure 4.26: Twitter Callback .. 48

Figure 4.27: Posting a Tweet with an Image ... 48

Figure 5.1: Beta testing responses ... 50

Figure 5.2: Route Test.. 51

Figure 5.3: Product API Test ... 52

Figure 5.4: Seller API Test .. 52

Figure 5.5: Unit Testing Results .. 53

Figure 5.6: Method to store a new seller.. 54

Figure 5.7 Method to store new category. ... 55

Figure 5.8: Code to test if parameters have been met .. 56

Figure 5.9 Code for storing product if parameters are met .. 56

Figure 5.10 Code for add product to wish list ... 57

Figure 5.11 Code for moving product from wish list to cart ... 57

Figure 5.12 Code for removing product from wish list ... 58

Figure 5.13: Code to Add to cart ... 58

Figure 5.14: Code to update cart .. 59

Figure 5.15: Code to remove item from cart .. 59

Figure 1 .. 81

X

Figure 2 .. 81

1

Chapter 1: Introduction

1.1 Background

 Enterprise Resource Planning (ERP) is defined as an integrated suite of business

processes. Organisations use it to manage their business functions in a centralised system.

Some features of an ERP include product life cycle management, inventory management,

supply chain management, warehouse management, human resource management

accounting, financial management, customer relationship management and sales order

management. ERP software has gained a lot of traction amongst many enterprises mainly

because it allows for increased effective and efficient management [1].

The internet and its myriad of benefits also provide entrepreneurs with a new

platform to market and sell their goods and services. Thus, the rise of e-commerce solutions

on the web. These solutions offer entrepreneurs the avenue to move away from brick-and-

mortar operations and concentrate on selling to a broader market conveniently.

Despite the growing mobile phone penetration and internet access in Ghana,

business owners (ERP users) do not use the internet and the e-commerce opportunities it

brings [9]. This a huge problem because there is a booming online market that is not fully

being utilised. So, there is a need to integrate e-commerce platforms into ERPs to allow its

users to sell on the online market.

Some business owners already sell on existing e-commerce platforms. However,

these e-commerce platforms are not integrated into their ERPs [1]. When organisations use

the two disjointly, synchronising their data into one for executive use (planning, budgeting,

etc.) is often tremendously tedious. These businesses hire labour to manually feed data at

both end-points to ensure that all data is up-to-date [1]. This is counter-productive to these

businesses as manual labour is error-prone.

2

Moreover, this practice is inefficient as it is time-wasting. A few mistakes could

arise when businesses decide to manually enter data, including: incorrect product

information, outdated product prices, confusion about stock levels, missing orders, and

invalid shipping addresses. Accuracy is vital for retaining customers; thus, any of these

errors could adversely impact customer experience with the business, thereby jeopardising

, in the long run, success.

1.2 Problem Statement

A summary of the problem space is businesses use ERPs to manage their inventory

of items. Though the internet is at their disposal, they do not make use of its channels, that

is, e-commerce and social media platforms, to take absolute advantage and sell to the

growing online market in Ghana [9]. Furthermore, after successfully implementing e-

commerce platforms to sell their items, the need arises to seamlessly integrate the two

systems (ERP and e-commerce platforms) to share data for executive use.

1.3 Motivation

 Online trading is booming in Africa because of the increasing accessibility of the

internet. For instance, Jumia alone has served over 1.2 billion consumers and 17 million

small and medium scale enterprises in the continent [2]. Web store owners are experiencing

a boom in their online sales, meaning; they are completing more transactions online. It is

paramount that Ghanaian business owners capture this value. Unfortunately, according to

the Ministry of Trade, Ghanaian businesses hardly expose their inventory to e-commerce

channels. Considering that the end goal is to enable ERP users to sell their inventory on the

online market, it is pertinent that business owners are able to maintain their online sales

systems and their internal ERP systems simultaneously to ensure a level of cohesion. These

two systems, ERP and e-commerce, need to work uniformly to achieve this goal.

3

1.4 Significance

 The benefits of e-commerce to Ghanaian business owners cannot be

underemphasised. With e-commerce, business owners do not need a physical storefront,

thus lowering the fixed operating costs. More so, selling online is an exquisite

source of customer data for business owners, which can be used for targeted email

marketing. Also, because e-commerce systems are available on the internet, they are

exposed to the global online market. Finally, e-commerce systems are ubiquitous so they

will always be available for customers to place orders [10].

 These are just a few of the benefits of having an e-commerce store. However, when

the e-commerce platform is directly integrated into an ERP, businesses stand to benefit a lot

more. For instance, when an e-commerce store is integrated with an ERP, it increases trust

and credibility because, at all times, the stock amount on the e-commerce website is the

same as that in the ERP. The customer thus cannot be disappointed by any misrepresentation

on the website. Similarly, an integrated system eliminates human errors like duplication that

may arise when the business relies on manually entering data on both systems. Also, it leads

to a more cost-effective way of managing inventory. Since inventory levels are always up

to date, it helps to understand which products sell well, and the business can predict when

to stock up on inventory to ensure that there is no downtime [3].

1.5 Related Works

Systems that integrate ERP with e-commerce

Some solutions have already been developed to allow ERP users to connect to e-

commerce platforms to sell. Some of the e-commerce platforms supported by these solutions

are Magento, Etsy, and eBay. This section looks at some of these solutions and which could

be of relevance to this project.

4

Bridging the Gap between ERP Applications and eCommerce Solutions

 Based on the problems posed by having independent systems, the authors of this

paper [1] proved how current practices at the time were inefficient. Their solution was to

build a middleware between the two platforms that would be cost-effective, efficient and

easy to implement. The middleware would map ERP processes with the e-commerce

solutions used by organisations and utilise APIs services for synchronisation and data

accessibility between the two platforms.

nChannel

Another e-commerce ERP connector on the market is nChannel. It is a cloud-based

SaaS middleware that connects two end-point systems via Application Program Interfaces

(APIs) which helps to sync and automate business processes. It provides integration to many

platforms, including Shopify, Magento, Amazon, eBay and Etsy [4].

SYNC Connection by Harris WebWorks

SYNC Connection by Harris Web Works is a diligently engineered integration tool

designed to connect existing ERP systems to Magento e-commerce websites. With the

sing online orders, customer data, and inventory information with

ERP systems like SAP, Dynamics, and NetSuite [5].

eBridge Connections

eBridge Connections is an iPaaS (integration Platform as a Service) built for the

seamless data flow between ERP systems, e-commerce shops and Customer Relationship

Managers (CRM). The platform as nChannel integrates a growing number of end-points [6].

5

1.6 The Kedebah ERP case study

 The Kedebah ERP by Npontu technologies was used as a case study for this project.

The solutions explored in the previous section are not built for the Ghanaian market and the

ERPs developed in the country. Thus, this project focuses on the Kedebah ERP and how to

integrate it into e-commerce and social media channels.

1.7 Proposed Solution

 For this project, working closely with the engineering team at Npontu Technologies,

the proposed solution is granting the Kedebah ERP system e-commerce and social media

advertising capabilities. This will involve building an e-commerce platform dubbed Npontu

Mall that will enable businesses on the Kedebah platform to publish their products on the

platform where customers can place orders, easily. The platform will house an AI-powered

recommendation engine that will learn from customer behaviour and recommend potential

products to them. The solution will also allow users of the ERP to connect to their

independent online stores, including Woo-commerce and post products there. When

customers complete a purchase on this platform, the order details will be sent to the Kedebah

ERP, storing them, updating the inventory, and the books of accounts (sales ledgers) of the

seller. It will also involve building a social media integration that will allow the ERP user

to advertise their products on social media (Twitter will be explored in this project). The

appendix section of this paper documents the APIs in the Npontu Mall that will enable

integration with the Kedebah ERP. It also supports the modules that will have to be included

in the Kedebah ERP which will allow it to connect to Woo-commerce as well as to Twitter.

1.7 Features of the proposed solution

1. An e-commerce platform to allow users of the inventory system to sell their products

online. The platform will have the ability to:

6

a. Display all products of the seller.

b. Support a purchase flow including:

i. Adding to wish lists.

ii. Cart management.

iii. Checkout and

iv. Payment with cash, Mobile Money or Debit card

2. Application Programing Interfaces to connect the ERP to the e-commerce platforms

to synchronise data between the two and connect the ERP to social media to allow

the user to advertise their products.

3. An AI-powered recommendation engine on the Npontu Mall to recommend products

to buyers. This will be built using:

a. Item-item collaborative filtering

b. Collaborative Filtering using K-nearest neighbour algorithm.

c. Neural Collaborative Filtering implemented using deep learning methods.

7

Chapter 2: Requirement Analysis

2.1 Introduction

 The proposed system will be divided into two main components: Npontu mall which

will allow the user sell their items, and the integration of the ERP with e-commerce

platforms (Npontu Mall and woo-commerce) and social media platforms.

2.2 Overall Description

 The proposed solution will essentially enable the user to connect to any e-commerce

shop they own, including the Npontu Mall and any social media platform. It will provide

access to the ERP to push product data to the platforms and receive customer order data.

 Once the users upload a new product to the ERP, they will be provided with the

option of publishing to the e-commerce platforms. If they choose to, the system will make

an API call to the e-commerce platforms, sending product data such as name, price, the

available stock and pictures. The e-commerce platform will in turn receive the uploaded

data and store it into a database, which will then be displayed to buyers. The users will also

have the option of posting products to social media. Once again, if they choose to, an API

call will be made to the social media platform allowing the product data to be sent there for

advertising.

 At the other end-point, when a purchase is made on the online shop, an API call will

be made to the ERP with the necessary order data such as the product, quantity, price and

phone number of the Buyer and the payment method used. The ERP will receive this data

and store it, alerting the seller of a new purchase.

Finally, on the Npontu Mall, the AI-powered recommendation engine will

recommend to the Buyer what to buy based on their purchase history.

8

2.3 Requirements

 To get the grand picture of the requirements needed for a holistic solution, the

procedure followed for analysis requirements is outlined below:

2.3.1 Requirement gathering:

Requirement gathering for the solution was done by interviewing stakeholders from

Npontu Technologies and having focus group discussions with teams in the company. The

researcher benchmarked other similar systems, namely Jumia and Jiji for the Npontu Mall,

and nChannel [4] and SYNC Connection [5] for ERP e-commerce integration, to acquire

the requirements that will solve the problem while other requirements were gathered from

the Functional Requirement Document (FRD) of the Kedebah ERP.

 In the benchmarking research of other similar solutions, it was evident that the use

of APIs cannot be ignored. It was essential to use REST APIs to send data between the

systems. Also, there was the need to consider the data formats both systems use. The

Kedebah ERP uses JSON format, so it was necessary to pass JSON data to it.

 As part of the interviews, the researcher took into consideration the end-users of the

solution and the critical features they need in the solution. Finally, the platforms the end-

users would connect to the ERP were also factored in the analysis.

 From the interviews, researching the FRD and benchmarking, the researcher

ascertained the following requirements of the solution.

1. Building a test inventory system to mimic the Kedebah ERP:

a. Connecting the inventory system to e-commerce platforms

b. Connecting the inventory system to social media platforms

c. Documenting how the Kedebeah ERP can be customised to the e-commerce

and social media platform

9

2. Building an e-commerce platform to sell the inventory (Npontu Mall)

a. Adding, displaying and updating products.

b. Cart management.

c. Payment Processing: Cash or Mobile Money (MTN, Vodafone, AirtelTigo),

Debit Card

d. Requiring buyers to provide their billing and contact details on each

purchase.

3. AI-powered product recommendation system to recommend products to buyers.

4. The e-commerce platform should be secure.

5. It should always be available.

6. It should be easy to use.

7. The Kedebah ERP should be integrated with the following e-commerce platforms:

a. Npontu Mall

b. Amazon

c. Alibaba

d. Woo-commerce

e. Tonaton

f. Jiji

8. It should connect to the following social media platforms:

a. Facebook

b. Twitter

c. Instagram

d. Google My Business

10

2.3.2 Requirement Analysis

Analysing the requirements gathered, it proved impossible to connect to Amazon

and Alibaba since they do not support selling in Ghana. Discovering that these requirements

cannot be completed, some agile iterations were made with the Npontu team to understand

the current restrictions so Amazon and Alibaba would be taken out of the platforms to

connect the ERP to. Likewise for Tonaton and Jiji who did not provide any APIs for third

parties to connect to their platform. For the social media platforms, Facebook only permits

registered business account to post on other business accounts pages. Likewise, for

Instagram. Hence, this project will focus on only connecting to Twitter since the researcher

does not have access to a business account. Google My Business also required the researcher

to be verified as a business by the team at Google which proved impossible.

2.3.3 Requirement Modelling

 The accepted requirements including the users, use case scenarios, functional and

non-functional requirements are documented as follows.

2.3.3.1 Users

 The solution will have two sets of users being the buyers and the sellers. The sellers

will be the users of the ERP who want to advertise their products on social media and have

an e-commerce website to sell their products. These users will add and update their products

on the ERP, choose to publish their products on e-commerce websites and social media.

 The buyers will be anyone interested in purchasing products from the seller. When

they interact with the social media post, there will be a link attached to buy the product they

are interested in. When clicked, they will be redirected to the e-commerce shop where they

can add to cart, checkout and pay.

11

2.3.3.2 Use Case

Buyer: A scenario of how a user will use the solution will be:

1. View all products being sold.

2. Add the product of choice to their cart.

3. Checkout the order

4. Pay with Mobile Money, Debit Card or cash

Seller: A scenario of how a seller will use the solution will be:

1. Log in to the ERP.

2. Add a product.

3. Update the product when a purchase has been completed.

4. Advertise the product on social media.

2.3.3.3 Functional Requirements

2.3.3.3.1 ERP:

Publishing products to the Ecommerce platforms

Sequence:

1. The user clicks on the product they want to publish to the e-commerce platform.

2. The user chooses which e-commerce platform to publish (Npontu Mall or Woo-

commerce)

3. An API call is made to send the product data to the e-commerce platform.

User Requirements

1. The user must provide click on which product to add.

2. The user must choose which platform to publish the product to

System requirements

12

API request to the e-commerce platform

Update Product

Sequence

1. The user selects the product to be updated.

2. The user inserts the new data to be updated.

3. The system validates the data and stores it.

4. Sends an update API request to the e-commerce website to update the product

User requirements

1. The user must provide information to be updated

System requirements

1. Accept this data and update the database.

2. Make update request to the e-commerce website.

Post to Social media

Sequence

1. The user clicks on the products to list all the products in the inventory.

2. The user picks the particular product to promote

3. The user picks the particular platform to promote on

4. The user provides a caption and an image of the product and clicks the promote

button to promote

5. The system makes an API call to the platform chosen to make the post

User requirements

1. The user must provide an image and a caption

13

System requirements

1. Accepts user inputs: images and captions and posts them to the specified platform

2.3.3.3.2 Ecommerce:

Product display

Sequence:

1. The website displays the products from the database.

2. If the user is a regular user, the system learns from his or her purchasing actions and

suggests the product he or she is likely to buy.

Purchase flow:

This details how the user places a purchase order.

Sequence:

1. The user chooses the product to buy.

2. The user adds it to their cart.

3. The user goes into the cart and checks out.

4. The user chooses his preferred mode of payment and pays if it is non-cash.

5. The system records the data and sends the purchase order alongside the customer

details to the ERP for quick order fulfilment.

2.3.3.4 Non-Functional Requirements

 Performance: The solution should be able to handle multiple requests from several

users without failure

14

 Availability: This solution should always function. Because of the ubiquity of e-

commerce, it is necessary to ensure that the system is available all the time to maximise

buyer satisfaction.

 Security: The system should be secure at all times. The system architecture should

ensure that during data transfer, the payloads are always secure to prevent alteration by third

parties. The API should be secured with a password to ensure that only authorised parties

can consume or make API calls. The e-commerce should also have SSL installed since it

will be processing payment.

2.3.4 Summary of Requirements to be worked on

Table 2.1: Summary of Requirements

Requirement

Number

Requirement Sub requirements

R001

Test Inventory system

1. Connecting it to

ecommerce stores: Npontu

Mall and Woocommerce

2. Connecting it to social

media: Twittter

R002

Npontu Mall

1. Displaying products from

inventory

2. Cart management

3. Checkout

4. Payment processing

5. Accepting customer

reviews

15

R003

AI Recommendation systems

based on user reviews on

products

1. Deep Neural Networks

(Neural Collaborative

filtering)

2. Collaborative Filtering

3. Collaborative Filtering

using K-Nearest Neighbor

16

Chapter 3: System Architecture

3.1 Introduction

 This chapter details high-level models of the architecture of the entire solution. It

includes sequence diagrams to describe the flow of activities of the two users in their

respective use case scenarios. It also depicts the Entity Relationship Diagram of the

databases used in the application.

3.2 System Architecture

 The entire solution on both ends (e-commerce and ERP) will make use of the three-

tier client-server architecture where buyers and sellers (client) will make requests via a

browser to the respective systems e-commerce platform and ERP (servers). The servers will

process the requests and query a database server to return results to the user.

Figure 3.1 Client-Server Architecture

3.3 Software Architecture

 Both systems will be built using the Model View Controller architectural pattern.

1. The Model, which is the business logic of the application, is responsible for

retrieving, inserting, updating and deleting data from the database.

2. The View is responsible for displaying data to the user. For the e-commerce side this

will involve showing registration and login forms displaying the products, wish list,

cart and checkout pages. While on the ERP side, this will involve showing login and

17

registration forms, the add product form, the products the user has, the update

product form, buttons for publishing products to the e-commerce platform as well.

3. The Controller serves as a middle-man between the two. It accepts user data from

the View and processes it before sending it to the Model to be stored into the

database.

Figure 3.2 MVC Architecture

18

3.4 High level System Overview

 When users first visit the Npontu Mall, they are allowed to browse through the

catalogue and choose their preferred product. They can add the product to their cart, where

they can view, update, and delete them. Once satisfied with the cart they can

proceed to checkout where they will be asked for their preferred mode of payment (cash,

Mobile Money, Debit card). When the Mobile Money or debit card option is selected, the

order is marked as paid while the cash marked as unpaid.

 Figure 3.3 below depicts the flow of events for the Buyer. When the Buyer visits the

page, they can browse through the product catalogue and select whichever product they

want to buy. They do this by adding to their wish list or cart. When the item is in their wish

list, they have the option of later adding it to their cart. When the item is added to their cart,

they are given the opportunity to manage the quantity of the item. At the checkout, they will

be asked for their shipping details and the mode of payment. Thereafter, the backend of the

application makes an API call sending the order details to the ERP for fulfillment by the

seller. Buyers also have the option of reviewing products. By doing this, the application

collects data about the user to make tailored product recommendations.

19

Figure 3.3 Buyer Sequence Diagram

On the ERP side, the seller has to register and login before using the application.

After authentication, they have to add a category of product before they can add the product.

The ERP backend makes an API call to the e-commerce backend sending the product details

to be published there. The seller also has the option of posting ads on their social media

platform via the ERP. They enter a caption and upload an image, and then the ad is published

to the platform.

20

Figure 3.4 Seller Sequence Diagram

3.5 Use Case

Figure 3.5 is a Use Case view of the solution. Buyers and Sellers have different

functions. The Sellers use the ERP to interact with the e-commerce platform via APIs

including registering as a seller, adding and updating products, and publishing these

products on e-commerce and social media platforms. The Buyer can use the e-commerce

platform to view products, manage their cart and place orders.

21

Figure 3.5 Use Case Diagram

3.6 Database

Figure 3.6 below details the database for the e-commerce platform. It will have a

category table populated by an API call from the ERP with the category details, a seller

table that will contain details about the seller (user of the ERP) which will also be populated

by an API call from the ERP. Finally, a products table containing each sellers products from

the ERP.

To enable a complete purchase flow, there is a wish list table to store each B

wish list, a cart table to enable users to manage the items in their cart, an order table to store

the Buye s and an order details table to store the details of each order.

22

Figure 3.6 ER Diagram

3.7 REST APIs for Bi-Directional Communication

3.7.1 High level overview:

The APIs on both ends will allow the two systems to communicate with each other.

They will perform the following functions:

1. Send seller details to the Npontu Mall when a seller registers on the ERP.

2. Send category details to the Npontu Mall platform when a seller enters a new

category.

3. Allow ERP users to publish their products on the Npontu Mall platform.

4. Allow ERP users to update products on the Npontu Mall platform.

23

5. Send order data to the ERP when a buyer places an order

The solution will use APIs on both e-commerce and ERP ends to communicate with

each other that is transmitting product, customer and order data following. The APIs will be

built with the Representational State Transfer (REST) architectural pattern. The key

modules in this architecture are:

1. RESTful service layer: the module or layer will be responsible for the business logic

of the API. For instance, when the seller wants to publish a new product to the e-

commerce platform, it is the ProductService that will be responsible for running

methods such as creating, updating and deleting products in the database of the

Npontu Mall platform. The services on the Npontu Mall side are ProductService,

SellerService, CategoryService, while the service on the ERP side is OrderService

for storing order data.

2. Transport layer: this module will house the REST handler, which will accept HTTP

requests (GET, POST, PUT/PATCH, DELETE) and map it to the appropriate

method in the service layer for processing. For instance, if the ERP makes a POST

request to the ProductService the REST handler will identify that it is a POST

request and will direct it to the create method in the service for the product to be

stored.

3. Middleware: this module will be responsible for auxiliary functions like

authenticating an API request. This is to prevent everyone but the ERP or Npontu

Mall platform from making requests to the other and

security

The figure 3.7 below summarises the REST architecture for the solution

24

Figure 3.7 RESTful Architecture

This architecture supports the functional requirements by allowing the ERP to

transmit and receive data from the e-commerce platform and vice versa. This lays the

foundation for the data on both ends to be synchronised, thus ensuring the data is robust and

the same at both ends at all times. The middleware also fulfils the security non-functional

requirement by ensuring that only the authenticated request with an API key can be fulfilled.

25

Chapter 4: Implementation

4.1 Introduction

This chapter gives an overview of the implementation process of the solution. It

involves all the tools, APIs, frameworks, components and modules and how they come

together to build a functional prototype for solving the problem.

 The solution to the problem comes in three components: a social media module for

the ERP that will allow the business owner to advertise their inventory, an e-commerce

platform where interested customers can place orders for products from sellers on the

Kedebah ERP and finally, a module to allow Kedebah users to connect to their Woo-

commerce store if they have one.

4.2. Software Development Technique

 The solution was built using the AGILE methodology for software development.

This is a methodology that promotes continuous development and testing throughout the

software development lifecycle of the project. Throughout the implementation phase, each

component was built incrementally and tested concurrently to ensure it worked and did not

result in any errors and wrong response codes.

4.3 Key Technologies

4.3.1 Languages

 The following languages were used in the implementation of the solution. They have

been broken down into two: frontend and backend programming languages.

4.3.1.1 Frontend Languages

 The front end of an application is the user-facing end. It is where the user interacts

mainly with the application and is responsible for getting user input and displaying output

from the backend. The front end was built with HTML, CSS and JavaScript.

26

HTML: short for Hypertext Markup Language, is a scripting language used for

structuring information on a web page. This information includes texts and images that are

seen on the web page.

CSS: short for Cascading Style Sheets is another frontend language used for

designing and beautifying the HTML elements of a page to make it readable and pleasing

for the user.

JavaScript: this is the frontend language used for making the system interactive.

Asynchronous JavaScript (AJAX) was used for interacting with backend functions such as

adding to wish lists and cart management.

Despite these languages used in the development of the front end, the team at Npontu

provided a responsive Bootstrap template called Shopwise [16], which was used to serve as

the front end of Npontu Mall. Likewise, the front end for the test inventory system was also

a responsive Bootstrap template [17]

4.3.1.2 Backend Languages

 The backend of an application serves as the business logic. It is the module that

handles and processes all the user requests. It is what makes the system functional. The

backend of the application was written in PHP and Python.

PHP: short for Hypertext Preprocessor, is a server-side programming language. It is

the primary language that the backend of the application was written in. It is mainly

responsible for manipulating the data in the database. This includes inserting, fetching,

updating and deleting data from the database.

Python: This language can also serve as the backend of any application, but it is

more notable for its data analysis capabilities. The application makes use of Python for

27

analysing user reviews and making recommendations to the user of products they might like

based on their reviews.

4.3.2 Frameworks and Libraries

 Laravel: A programming language framework is a prebuilt platform for developing

software applications. It includes predefined classes and functions that make developing

applications easier since developers would not have to write them from scratch each time

they build a new application. The framework used for this project is Laravel an open-source

framework for PHP. Laravel comes with some packages that enabled the implementation of

some features.

 Twitter For PHP: With this library, the implementation of posting to social media

was carried out successfully [14]. This enables users of the ERP to post and share their

products on Twitter easily. Before the users can use this feature, they will be required to

login to their Twitter account and grant the ERP permissions to use their account to make a

post. This Auth authorisation to authenticate the user.

 Scikit-Learn: Scikit-learn is a machine learning library for Python. The Npontu Mall

mainly uses Scikit-Learn to learn from user reviews on products and make

recommendations for other products. The machine learning algorithm used here in the

project was the K-nearest neighbour for recommending similar products for a target product.

 PyTorch: PyTorch is an open-source machine learning library developed by

Facebook for Python. It provides deep learning algorithms for creating neural networks in

order to learn and make useful predictions from data. PyTorch was used in this project to

create a deep learning model to learn from user interactions with products to make

predictions on which products users would likely want to interact with.

28

4.4 Application Programming Interface (APIs)

 Application Programming Interfaces are software intermediaries that allow different

applications to communicate with each other and share data over the internet. This project

makes use of the following APIs:

 Twitter API: In order to allow ERP users to make posts to Twitter, an application

needed to be created linked to a Twitter account which will grant the system access to the

Twitter API. With the following credentials: Twitter Consumer Key, Consumer Secret,

Access Token and Access Token Secret. By enabling OAuth authentication on the Twitter

application, the feature was implemented allowing all ERP users to post products to their

respective Twitter accounts.

 Payment Data Exchange API by Npontu: This API by the Npontu team, affords the

Npontu Mall platform the feature to allow buyers the option of paying for their purchases

with their Mobile Money wallets, be it MTN Mobile Money, Vodafone Cash or AirtelTigo

Cash.

 Mailgun: The API provided by Mailgun allowed the implementation of sending

transactional email to buyers to confirm that their order has been recorded.

 Flutterwave Payment API: This API provided by Flutterwave allows the Npontu

Mall platform the feature to enable buyers to pay with their Debit cards.

4.5 Evidence of Implementation

4.5.1 Ecommerce Platform

 This section shows the Npontu Mall platform and walks through the purchase

process from when a user visits the page up to when they complete a purchase.

29

Figure 4.1: Shop page

Figure 4.2: Single Product

30

Figure 4.3 Wishlist Page

Figure 4.4 Cart Page

31

Figure 4.5 Checkout Page

Figure 4.6: Order Completed Page

32

Figure 4.7: Related Products

Figure 4.8: PHP Functions for related products

 The figure above is a snippet of the PHP classes that go into getting the related

products of a particular product on the platform. Just like the product recommendation, these

functions and classes also use item-item based collaborative filtering to determine how

33

similar products are to each other based on the algorithms: Euclidean interval (for

determining how close the prices are) and Jaccard similarity index (used to determine the

similarity between sample sets in this case, product features: category and the seller). This

code was based on the tutorial by Oliver Lundquist [8].

4.5.2. Product Recommendation

 This section describes how the e-commerce platform makes product

recommendations to buyers.

4.5.2.1 Collaborative Filtering

 Collaborative Filtering is an approach to recommendation systems that collects

feedback from users in the form of rating and makes recommendations based on them. It

identifies customers with common ratings and offers suggestions based on the ratings. It

assumes that people who like a product now will want the same items in the future [11].

Figure 4.9: Product Recommendation Based On Users Reviews

34

Figure 4.10: Python Function for recommending products

The figure above is a snippet of the various functions that recommend products to

users based on their reviews. Product recommendations are obtained by item-item

collaborative filtering using the product feature: product reviews. The functions use

 Sci-kit learn machine learning library to gain insight from reviews and recommend

products to a buyer based on the reviews they have made. This code is based on the work

by Uma Raju [7] and adapted to this project.

4.5.2.2 Collaborative Filtering Using K-Nearest Neighbors

 The K-nearest neighbours (KNN) algorithm approach to collaborative filtering relies

on product feature similarity (ratings in this case). To recommend a similar product, the

algorithm will calculate the distance or similarity between the target product and all the

other products in the database based on the distance metrics: Euclidean, Manhattan, and

Minkowski [11].

35

Figure 4.11: KNN Recommending Products based on Rating Similarity

Figure 4.12: Implementation of KNN Algorithm

 The figure above is a snippet of the implementation of the KNN algorithm for

collaborative filtering. Given a target product, this piece of code will recommend similar

products to a user when they view it. This code was based on the tutorial by Nikita Sharma

[11].

4.5.2.3 Neural Network-Based Collaborative Filtering (NCF)

 Neural network-based collaborative filtering is a general framework for neural

architecture that can learn an arbitrary function from data. The aim of NCF is to learn from

user interaction with products (implicit feedback) and make recommendations based on that.

36

It learns from the dataset with a deep learning neural network. This framework was proposed

by He et al in their research paper [12].

Figure 4.13: NCF Model Implementation

The figure above shows the implementation of the NCF model based on the tutorial

by James Loy [13]. It trains a deep learning model based on the dataset of user interactions

and then makes recommendations on the products a user will likely want to interact with.

The figure below shows the model recommending products to a given user based on

previous interactions with other products.

37

Figure 4.14: NCF Model in Action

4.5.3 Application Programming Interfaces for E-commerce platform

This section details how the ERP communicates with the ecommerce platform with

the necessary data like seller, category, products, and orders.

4.5.3.1 Seller API

 When a new user on the ERP is registered, they are also registered on the e-

commerce platform as well. The ERP will make an API call to the e-commerce platform for

the user to be registered there as a seller.

38

Figure 4.15: Seller API

The figure above shows the store method in the seller API controller. This method

is responsible for storing a new seller.

4.5.3.2 Category API

 The Npontu Mall platform also has an API to receive categories from the ERP when

a new category is created. The figure below shows the store method in the category API

which stores new categories.

39

Figure 4.16: Category API

4.5.3.3 Products

 Products on the platform are provided by the ERP as well. When the ERP user

creates a new product, he or she has the option of publishing it to the e-commerce platform.

When they do, they make an API call sending product parameters: id, name, stock, category,

seller, pictures, price, currency and item description. This is received by the e-commerce

platform and stored in a database. The product API also has functions for updating (mainly

for stock) and deleting products. The figure below is a snippet of the store function in the

product API controller.

40

Figure 4.17: Product API

4.5.3.4 Orders

 When an order is completed, the Npontu Mall platform stores it in its database and

makes an API call to the ERP sending the order details. These details include: an apikey,

the customer name, customer number, customer email address, the amount paid, whether

the purchase has been paid for or not, the billing address details, and a list of all the products

being purchased. The figure below shows the API call for sending order data to the ERP.

When the ERP successfully processes the request, it sends a response of new stock of the

products bought which is then updated in the database of the Npontu Mall platform.

41

Figure 4.20: Order API request

4.5.3.5 Connecting To Woo-commerce

 This section details how connecting the ERP to Woo-commerce requirement was

implemented. For ERP users to connect their Woo-commerce store to their ERP account,

they will have to provide some parameters from the Woo-commerce installation. These

parameters include: the website URL, consumer key and consumer secret. When the user

provides these details, they will be encrypted and stored in the database of the ERP. These

parameters will be used to connect to the Woo-commerce store.

42

Figure 4.19: Connecting to Woo-commerce Store Front View

43

-commerce Store

44

Figure 4.21: Snippet of Code for connecting to Woo-commerce store

 Woo-

commerce store whenever a request (posting or updating a product) is to be made.

4.5.4 Social Media Posts

 This subsection details how users can make posts on Twitter to advertise their

products from the ERP. This section shows how the Twitter module for the solution was

implemented. As stated earlier this was made possible by the Twitter API and the Twitter

for PHP library [14] for Laravel. F

user has to login into their Twitter account and grant access to the Twitter application to

make posts on their behalf. Twitter then makes a callback with Access Tokens which can

be used to make posts on the n the

application access to their account, they can now make posts about their products.

45

4.5.1 Evidence of Implementation

Figure 4.22: Logging in to the Twitter Account

Figure 4.23: Tweeting about a product

46

Figure 4.24: Post made successfully.

47

Backend implementation

Figure 4.25: Twitter OAuth Login

48

Figure 4.26: Twitter Callback

Figure 4.27: Posting a Tweet with an Image

49

Chapter 5: Testing and Results

5.1 Introduction

 This chapter details the testing tools and techniques used to appraise the system.

Testing is a major part of the software development life cycle that involves ensuring that the

built system meets the requirements set, solves adequately the problem for which it was

created, and if the users are happy with it in general. The testing was carried out to ensure

that the solution adequately meets the requirements stated in Chapter 2. Among several

kinds of testing that can be done on a system, including unit testing, regression testing, user

acceptance testing, component testing, and system testing, only four testing forms were

carried out: unit testing, user acceptance testing, component testing, and system testing. Unit

testing is carried out to ensure that the various units of the system work well and cater for

several cases. Component testing is done to ensure that the various components which are

amalgamations of units also work well. System testing is carried out to ensure that the

system as a whole meets all the requirements. User acceptance testing is done to check the

usability of the system and how well it will be received by the average user.

5.2 User Acceptance testing

 Acceptance testing is the phase in software testing used to assess whether or not the

software is market-ready, complies with all requirements and meets the end-user needs.

The system was tested using both Alpha (internally with the Npontu engineering team) and

Beta (external) tests.

With the Alpha tests, it was recommended that to make the Npontu Mall work better;

categories should not be hardcoded into the frontend but otherwise should read from the

database. Through the Alpha test, it was also decided that the customer should not login

before buying so as to make the purchase flow less cumbersome.

50

Beta Testing: Twenty (20) users were picked at random to test the application

ascertain its usability and for any features they would want in the Npontu Mall have and fill

a Google form to record their responses.

Figure 5.1: Beta testing responses

 From the testing, all the beta testers found the user experience acceptable with 95%

finding it very good, and the remainder found it average. The users were also asked what

kind of features they would like to see on the application. Notable amongst the responses

are:

1. A delivery page to keep track of the orders during delivery.

2. Live chat with the various sellers on the platform.

3. Sorting products by price and newness.

4. Login features.

Of these recommendations, only product sorting has been implemented post the testing

phase.

51

5.3 Unit testing

To ensure the solution meets quality standards before deployment unit testing was

carried out. This was done mainly to understand where the code breaks when there has been

a change and to ensure that the system executes as per expectation. The following unit tests

were carried out with PHPUnit testing: Route testing to ensure all the views work without

fault, testing the product and seller API end-points.

Figure 5.2: Route Test

52

Figure 5.3: Product API Test

Figure 5.4: Seller API Test

53

Figure 5.5: Unit Testing Results

 The unit testing results show that all the test cases for routing work and return the

appropriate HTTP response codes.

5.4 Component Testing

The testing will be carried out based on the key features to test the system's

functional requirement satisfaction. Thus, the system was tested in parts according to the

functional requirements.

1. Storing sellers from the ERP testing

The ERP is required to make an API call to the Npontu Mall system whenever a new

user is registered and also to be stored in the platform database. This testing is done to ensure

the ERP supplies the right API key as well as parameters.

Table 5.1 Stroring sellers from ERP Testing

Valid Input Response

Seller Name, API key, and ID in the ERP Notification on storing success.

Invalid Input Response

No inputs, eg API key, seller name, seller

id

Notification on required input

54

Figure 5.6: Method to store a new seller

2. Storing categories from ERP test

The ERP is required to make an API call to the Npontu Mall system whenever a new

category is also stored in the e-commerce platform database. This testing is done to ensure

the ERP supplies the correct API key as well as parameters (id and category name)

Table 5.2: Storing categories from ERP testing

Valid Input Response

API key, category id, category name Category is successfully stored

Invalid Input Response

If any of the parameters are missing Notification on required input

55

Figure 5.7 Method to store new category.

3. Managing products testing

The ERP is required to make an API call to the e-commerce system whenever a

user manages (creates, updates and deletes) his or her products. This testing is done to

ensure the user passes the correct parameters to the e-commerce page.

Table 5.3: Managing products testing

Valid Input Response

API key, product name, product id, price,

category, seller name, description, pictures

Product is successfully recorded

Invalid Input Response

Any of the parameters are missing Notification on required parameter

56

Figure 5.8: Code to test if parameters have been met

Figure 5.9 Code for storing product if parameters are met

57

4. Wish list testing

The valid input needed to add a product to the wish list is a button click. If the Buyer

does not click on the button, the function will not run. On a successful button, click the

product is added to the buyers wish list. Thereafter, the user can also remove the product

from the wish list or move the product to their cart.

Figure 5.10 Code for add product to wish list

Figure 5.11 Code for moving product from wish list to cart

58

Figure 5.12 Code for removing product from wish list

5. Cart management testing

The valid input needed to add a product to the cart is a button click. If the Buyer

does not click on the button, the function will not run. On a successful button click the

product is added to the Buyer s cart. On the cart page, the user can also remove the product

from his cart or update it. Removing it requires just a button click and for when the user

wants to update the cart quantity, all is needed is for the user to enter the quantity and click

on the update button.

Figure 5.13: Code to Add to cart

59

Figure 5.14: Code to update cart

Figure 5.15: Code to remove item from cart

6. Checkout test

The valid inputs needed to checkout on the Npontu Mall platform are:

1. The Buyer must have at least one product in their cart.

2. The Buyer must click on the checkout button.

3. The Buyer must choose the preferred mode of payment.

4. The Buyer must provide their shipping details.

5.5 System Testing

This test is carried out to ensure that the several components of the system come together

to work as an efficient system. Four techniques were used for this namely: usability testing,

functional testing, security testing, and maintainability testing.

1. Usability testing: This test is carried out to identify how user-friendly the system

is. If not, how it can be made easier to fulfill the non-functional requirement of

usability. It is pertinent to do this because since buyers and sellers will use the system

60

mostly, it must be ensured they can use the application easily. There are navigation

headers in the application to allow the users navigate their way around the

application easily. In addition, the system stores the IP address of the current user to

identify them, such that when when they add to their cart or the wish list, the system

can still retain and identify that it belongs to the particular user.

2. Functional testing: This test is carried out to ensure that the functionalities of the

system are working and if they meet the requirements detailed in Chapter 2.

3. Security testing: The solution was deployed on a server with SSL installed. This

encrypts the user s communication with the system and prevents malicious third

parties from spying on the Npontu Mall especially when the

user is attempting to make payments.

4. Maintainability testing: The solution was built based on the Model View

Controller architectural pattern. This was done mainly because the architecture

separates the key modules into different parts allowing easy maintenance by the

main developer and the team at Npontu responsible for maintaining the application.

The Laravel framework was also chosen because of maintainability because it is the

primary framework utilised by the Npontu team; hence, it will be easy for them to

maintain it.

61

Chapter 6: Conclusion and Recommendation

6.1 Conclusion

 This project sought to develop a holistic solution as a means of helping ERP users

expose their inventory to the online market through social media and on e-commerce

platforms. Using the Kedebah ERP provided by Npontu Technologies as a case study, some

requirements gathering was done with the Npontu team to ascertain the requirements

specifications that will comprise the solution. The solution implemented comprises of the

Npontu Mall which is integrated into the Kedebah ERP that will allow sellers to publish

their products for buyers to purchase, integrating the ERP into social media (Twitter) to

allow sellers to advertise their products, and an integration into Woo-commerce that will

allow sellers to publish to their independent Woo-commerce stores.

 The relevance of this project can be ascertained by how many orders ERP users

receive through connecting their ERP accounts to the e-commerce platform. This will show

how vital and relevant e-commerce is and how successful it can be implemented in the

Ghanaian context.

6.2 Limitations

Through the requirement elicitation process, the Npontu team wanted to connect the

Kedebah ERP to several e-commerce platforms namely: Amazon, Alibaba, Tonaton, Jiji

and the e-commerce store the researcher built. Unfortunately, though Amazon and Alibaba

have APIs that support connecting ERPs to them, those APIs are not available to Ghana. As

a result, the researcher could not build a module to connect Kedebah. This limits the capacity

to expose the inventory goods to a wider market because Amazon and Alibaba operate on a

global scale. Tonaton and Jiji do not provide APIs for using their platforms externally; the

only way to sell on their platforms is through their website.

62

 Another requirement was to enable the ERP users connect to their social media

accounts and advertise their products there via the ERP. The social media applications

specified were: Twitter, Facebook and Google My Business. For Facebook, though the API

is available to use, it is highly restricted by permissions. Some crucial aspects of the

Facebook Graph API were not available for the researcher to use, notably the API end-point

for making Facebook posts. Facebook states that to use that end-point, your account needs

to be verified by them as a business account. A similar issue was encountered with Google

My Business. To gain access to the API, the researcher needed to be verified as a legitimate

business first. This also limits the capacity to expose the inventory to a wider market because

of the number of users Facebook and Google has. However, this can be easily remedied

when the ERP users manually post and advertise their products on their accounts.

 Another limitation was the use of Mailgun to send emails. The Mailgun service

requires users to have active domains for sending emails. Since this project does not have a

domain it was a challenge sending emails with the service. In future works when the project

is deployed on a web server with an active domain Mailgun can be effectively implemented.

6.3 Recommendations

 This section describes some additional improvements and features that can be added

to the system to make it better.

1. User Authentication: The system currently uses IPs of customers to identify them.

Though IPs are unique and can serve as an identifier for distinct customers, user

authentication features, namely: registration and login can be implemented to

identify customers uniquely. Using IPs has a pitfall in that when users on the same

local network use the system they will be identified as one since their public IP will

be the same. When different users are identified as one, it can lead to different issues

63

 or the recommendation system

recommending products meant for one user to another. Though the decision for

using IPs to identify customers was meant to smoothen the purchase process, Laravel

provides the Socialite package which enables a Laravel application to authenticate

users through Single Sign-On (SSO) with their Google, Twitter or Facebook

accounts. This form of authentication is less cumbersome and will allow users to

easily login to the system.

2. Live chat with sellers: On the application, when users have questions about a product

there is no option for them to ask the seller. This can be a huge deal breaker and

drive customers from making purchases if they cannot have their questions

answered. Implementing a live chat feature will permit users to contact with the

sellers and have any questions they might have answered.

3. Live delivery: A live delivery feature can be implemented on the application

allowing users to monitor and track their products being delivered. This is to reaffirm

the customers belief that their order is being fulfilled.

4. Data for Neural Networks for product recommendation: The system recommends

products to users using Neural Collaborative Filtering. This approach to product

recommendation utilises implicit feedback, which indirectly reflects user preference

through behaviours such as purchases and viewing a product [15]. The Model

implemented in this system uses user reviews as an indicator for user interaction

with the product. The system keeps track of which product pages the user visits as

well as their purchases. Further work on improving the Model will involve feeding

this data to the NCF model so it can make accurate recommendations.

64

References

[1] Eram Abbasi, Abdul Wasay Farooqui, Muhammad Faizan Batra, Muhammad Amin

Rehmania and Syed Muhammad Anas. 2017. Bridging the Gap between ERP Applications

and eCommerce Solutions. In International Journal of E-Education, e-Business, e-

Management and e-Learning, 111-122.

 https://doi.org/10.17706/ijeeee.2017.7.2.111-122

 [2] Jumia Group | Jumia Expand Your Horizons. Retrieved November 18, 2020 from

https://group.jumia.com/

 [3] 7 Benefits of Ecommerce ERP Integration. Retrieved March 10, 2021, from

https://www.comalytics.com/7-benefits-e-commerce-erp-integration/

[4] nChannel. Retrieved March 10, 2021, from https://www.nchannel.com/overview/

[5] Harris Webworks. Retrieved March 10, 2021,

https://www.harriswebworks.com/netsuite-magento-connector/

[6] Ebridge Connections. Retrieved March 10, 2021,

https://www.ebridgeconnections.com/home.aspx

[7] Uma Maheswari Raju. 2020. Sentiment Analysis and Product Recommendation on

- Part 2. Retrieved March 30, 2021 from

https://towardsdatascience.com/sentiment-analysis-and-product-recommendation-on-

amazons-electronics-dataset-reviews-part-2-de71649de42b

[8] Oliver Lundquist. 2019. Building a Product Recommender System with Machine

Learning in Laravel. Retrieved March 30, 2021 from

https://oliverlundquist.com/2019/03/11/recommender-system-with-ml-in-laravel.html

65

[9] Ministry of Trade and Industry. 2019. National Micro, Small and Medium Enterprises

(MSME) Policy. Retrieved March 30, 2021 from

https://www.bcp.gov.gh/acc/consultation/docs/DRAFT%20MSME%20-

%20FINAL%2026.02.2019%20(1).pdf

[10] Nici Pillemer. 2020. 10 Advantages of E-Commerce for Consumers & Businesses.

Retrieved April 1, 2021 from https://www.become.co/blog/ecommerce-advantages-

consumers-businesses/

[11] Nikita Sharma. 2019. Recommender Systems with Python Part II: Collaborative

Filtering (K-Nearest Neighbors Algorithm). Retrieved April 21, 2021 from

https://heartbeat.fritz.ai/recommender-systems-with-python-part-ii-collaborative-filtering-

k-nearest-neighbors-algorithm-c8dcd5fd89b2

[12] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng Chua.

2017. Neural Collaborative Filtering. Retrieved April 21, 2021 from

https://arxiv.org/abs/1708.05031

[13] James Loy. 2020. Deep Learning Based Recommender System. Retrieved April 21,

2021 from https://towardsdatascience.com/deep-learning-based-recommender-systems-

3d120201db7e

[14] Atymic. 2013. Twitter For PHP. Retrieved 21, 2021 from

https://github.com/atymic/twitter

[15] James Le. 2020. Recommendation System Series Part 5: The 5 Variants of Multi-

Layer Perceptron for Collaborative Filtering. Retrieved 22, 2021 from

https://towardsdatascience.com/recsys-series-part-5-neural-matrix-factorization-for-

collaborative-filtering-a0aebfe15883

66

[16] Shopwise - eCommerce Bootstrap 4 Multipurpose HTML Template. Retrieved from

https://themeforest.net/item/shopwise-ecommerce-bootstrap-4-html-template/26080468

[17] Startbootsrap. 2013. Retrieved from https://startbootstrap.com/template/sb-admin

67

Appendices

Appendix A: Npontu Mall API Documentation

 This section defines the API for the Npontu Mall application. It outlines all the

required specifications needed for the successful integration of the Npontu Mall developed

in this paper to the Npontu Technologies Kedebah ERP. The parameters for each API end-

point are given with a detailed description on how to consume the API.

Document Details

Document Name Npontu Mall API Reference Document

Document Date Friday 23rd April 2021

Prepared By Allotei Pappoe

Purpose Integration of Npontu Mall to Npontu Kedebah ERP

Seller Communication Request

 This section defines the parameters of the request body about a user on the Kedebah

platform who wishes to sell on the mall.

Api: https://ecommerce.npontu.com/api/seller/

Owner: Npontu Mall

Consumer: Kedebah ERP

Method: POST

Parameters:

1. ked_sell_id

a. Definition: the id of the ERP user who wants to sell in the mall.

68

b. Datatype: integer

c. Example: 123

2. business_name

a. Definition: the name of the business of the ERP user who wishes to sell in

the mall.

b. Datatype: varchar

3. Apikey:

a. Definition: a secret key that will authenticate the request

Response:

1. message:

a. Definition: status of the request

b. Datatype: varchar

c. Default value: created

2. Response code: 201

Sample Request Code:

$response = Http::post('https://ecommerce.npontu.com/api/seller',
[

 'apikey' => 'd5f85e4af0a7e7b4dc0d75fae74c22c7',

 'ked_sell_id' => 1,

 'business_name' => 'Essentials',

]);

Category Communication Request

 This section defines the parameters of the request body about a category to be

published to the Mall.

Api: https://ecommerce.npontu.com/api/category/

69

Owner: Npontu Mall

Consumer: Kedebah ERP

Method: POST

Parameters:

1. ked_id

a. Definition: the id of the category to be published.

b. Datatype: integer

c. Example: 123

2. cat_name

a. Definition: the name of the category

b. Datatype: varchar

3. Apikey:

a. Definition: a secret key that will authenticate the request

Response:

1. message:

a. Definition: status of the request

b. Datatype: varchar

c. Default value: created

2. Response code: 201

Sample Request Code:

$response = Http::post('https://ecommerce.npontu.com/api/category,
[

 'apikey' => 'd5f85e4af0a7e7b4dc0d75fae74c22c7',

 'ked_id' => 1,

70

 'cat_name' => 'Electronics',

]);

Product Communication Request

 This section details the parameters of the request body for when a product will be

published to the Mall.

API: https://ecommerce.npontu.com/api/products/

Owner: Npontu Mall

Consumer: Kedebah ERP

Method: POST

Parameters:

1. item_id

a. Definition: the ID of the item to published to the ecommerce store

b. Datatype: integer

c. Example: 123

2. item_name

a. Definition: the name of the item to be published to the ecommerce store

b. Datatype: varchar

c. -

3. amount_available

a. Definition: the amount in stock

b. Datatype: varchar

c. Example: 500

4. sellers_id

a. Definition: the ID of the seller publishing to the ecommerce store

71

b. Datatype: integer

c. Example: 123

5. picture_1

a. Definition: picture 1 of the product

b. Datatype: base64 encoding

6. picture_2

a. Definition: picture 2 of the product

b. Datatype: base64 encoding

7. picture_3

a. Definition: picture 3 of the product

b. Datatype: base64 encoding

8. picture_4

a. Definition: picture 4 of the product

b. Datatype: base64 encoding

9. Price

a. Definition: the price of the product

b. Datatype: integer

c. Example: 500

10. Currency

a. Definition: the currency of the product

b. Datatype: varchar

c.

11. categories_id

a. Definition: the category of the product

b. Datatype: integer

72

c. Example: 123

12. item_description

a. Definition: description of the product

b. Datatype: Varchar

Response:

1. message:

a. Definition: status of the request

b. Datatype: varchar

c.

2. Response code: 201

Sample request code:

$response =
Http::post('https://ecommerce.npontu.com/api/products', [

 'apikey' => 'd5f85e4af0a7e7b4dc0d75fae74c22c7',

 'item_id' => 1,

 ,

 'amount_available' =>500,

 'sellers_id' => 3,

 'picture_1' => base64 encoding,

 'picture_2' => base64 encoding,

 'picture_3' => base64 encoding,

 'picture_4' => base64 encoding,

 'price' => 100,

 'currency' => 'GHC',

 'categories_id' => 1234,

 'item_description' => ,

]);

METHOD: PUT or PATCH

73

API: https://ecommerce.npontu.com/api/products/{product-id}

Parameters: any of the product fields below the user wishes to update

1. item_id

a. Definition: the ID of the item to published to the ecommerce store

b. Datatype: integer

c. Example: 123

2. item_name

a. Definition: the name of the item to be published to the ecommerce store

b. Datatype: varchar

c. -

3. amount_available

a. Definition: the amount in stock

b. Datatype: varchar

c. Example: 500

4. sellers_id

a. Definition: the ID of the seller publishing to the ecommerce store

b. Datatype: integer

c. Example: 123

5. picture_1

a. Definition: picture 1 of the product

b. Datatype: base64 encoding

6. picture_2

a. Definition: picture 2 of the product

b. Datatype: base64 encoding

7. picture_3

74

a. Definition: picture 3 of the product

b. Datatype: base64 encoding

8. picture_4

a. Definition: picture 4 of the product

b. Datatype: base64 encoding

9. Price

a. Definition: the price of the product

b. Datatype: integer

c. Example: 500

10. Currency

a. Definition: the currency of the product

b. Datatype: varchar

c.

11. categories_id

a. Definition: the category of the product

b. Datatype: integer

c. Example: 123

12. item_description

a. Definition: description of the product

b. Datatype: Varchar

13. apikey

a. Definition: unique secret key for authentication

b. Datatype: Varchar

Response:

1. message:

75

a. Definition: status of the request

b. Datatype: varchar

c.

2. Response code: 200

Sample request code:

$response =
Http::put('https://npontu.ecommerce.com/api/products/'{product-
id}, [

 'apikey' => 'd5f85e4af0a7e7b4dc0d75fae74c22c7',

 'item_name' => $product_name,

 'amount_available' => $quantity,

 'price' => $ price,

 'currency' => 'GHC',

 'categories_id' => $ category_id,

 'item_description' => $ description,

 'quantity' => $request->quantity,

]);

METHOD: DELETE

API: https://ecommerce.npontu.com/api/products/{product-id}

Parameters:

1. apikey

a. Definition: unique secret key for authentication

b. Datatype: Varchar

Response:

1. message:

76

a. Definition: status of the request

b. Datatype: varchar

c.

2. Response code: 200

Sample Request Code:

$response =
Http::delete('http://127.0.0.1:8001/api/products/'.$id, [

 'apikey' => 'd5f85e4af0a7e7b4dc0d75fae74c22c7'

]);

77

Appendix B: Connecting Kedebah ERP to Woo-commerce

Installation:

To install the Woo-commerce API PHP Client run the following line in the terminal:

composer require automattic/woocommerce

Procedure:

1. Setup a form with the fields:

a. Website URL

b. Consumer Secret

c. Consumer Key

2. Create a table in the database which will store the woo-commerce credentials of the

currently authenticated user. Columns will thus include: user_id, website_url,

consumer_secret, consumer_key.

3. Create a WoocommerceConnectController which will accept the form input and

validate the parameters by connecting to the store and creating an order webhook

which will send orders to Kedebah as and when they are placed with the following

code.

use Automattic\WooCommerce\Client;
use Automattic\WooCommerce\HttpClient\HttpClientException;

$woocommerce = new Client(
 $request->website_url,
 $request->consumer_key,
 $request->consumer_secret,
 [
 'version' => 'wc/v3',
]
);
try{

 $data = [
 'name' => 'Order Created',
 'topic' => 'order.created',
 'delivery_url' =>
'https://ecommerce.npontu.com/woocommerce-order'

78

];

 $validate_connection = $woocommerce-
>post('webhooks', $data);

 }catch(HttpClientException $e){

 $err_message = $e->getMessage();

 return back()->with('err_status', $err_message);
 }

4. Encrypt the data and store it into the newly created table.

5. Create a new controller called WoocommerceController. In the class create a new

method called constructor that will fetch the woo-commerce details of the user and

connect to the store

public function constructor()
 {

 $woo_credentials = Woocommerce::where('user_id',
'=', auth()->user()->id)->get();
 $consumer_key =
Crypt::decryptString($woo_credentials[0]->consumer_key);
 $consumer_secret =
Crypt::decryptString($woo_credentials[0]->consumer_secret);
 $woocommerce = new Client(
 $woo_credentials[0]->website_url,
 $consumer_key,
 $consumer_secret,
 [
 'version' => 'wc/v3',
]
);

 return $woocommerce;

 }

6. Create a new table that will keep track of the products users publish to their woo-

commerce store. Columns will include: product_id, woo_product_id

7. In the WoocommerceController, create a new function called store which will

publish products to the woo-commerce store and record the product ID and the

product ID on the woo-commerce store with the following code.

79

public function store(Request $request)
 {
 $woo = $this->constructor();
 $product = Product::find($request->product_id);
 $data = [
 'name' => $product->product_name,
 'type' => 'simple',
 'regular_price' => strval($product->price),
 'description' => $product->description,
 'categories' => [
 [
 'id' => $request->category_id,
],
],
 'manage_stock' => true,
 'stock_quantity' => $product->quantity,

 'images' => [
 [

],
]
];

 $response = $woo->post('products', $data);

 WoocommerceProduct::create([
 'product_id' => $request->product_id,
 'woocommerce_id' => $response->id,
]);
 return back();
 }

8. The following functions will be used to get the categories on the woocommerce

store, update and delete products in the WoocommerceController

public function categories()
 {
 $woo = $this->constructor();
 return $woo->get('products/categories');
 }

 public function edit($id, $data)
 {
 $woo = $this->constructor();
 $response = $woo->put('products/'.$id, $data);
 return $response;
 }

 public function destroy($id)
 {
 $woo = $this->constructor();
 $response = $woo->delete('products/'.$id);
 return $response; }

80

Connecting Kedebah to Twitter

 This subsection comments on how the Kedebah ERP can be connected to Twitter to

allow its users advertise their products on the platform. To begin an application on Twitter

must be created with a developer account that will grant access to the Twitter API.

Installation:

Run the following in the terminal:

composer require atymic/twitter

In the .env file set the following environment variables

TWITTER_CONSUMER_KEY=

TWITTER_CONSUMER_SECRET=

TWITTER_ACCESS_TOKEN=

TWITTER_ACCESS_TOKEN_SECRET=

TWITTER_API_VERSION=

Run:

php artisan vendor:publish

provider="Atymic\Twitter\ServiceProvider\LaravelServiceProvider"

Create the following in the web routes that will enable the user to login to their twitter

account, and grant the ERP access to make posts on their behalf.

81

Figure 1

Figure 2

Create a TwitterController that will handle making posts to the users account with the

following code:

82

Figure 3

Create a form that will take text and image inputs from the user and pass them to the above

function.

