

ASHESI UNIVERSITY COLLEGE

A WEB-BASED CUSTOMER DATABASE MANAGEMENT SYSTEM

FOR CADMUS ELECTRONICS LTD. WITH BULK SMS

NOTIFICATION FEATURE

UNDERGRADUATE APPLIED PROJECT

B.Sc. Computer Science

Derryck Noi Dowuona

2018

ASHESI UNIVERSITY COLLEGE

A Web-based Customer Database Management System for Cadmus

Electronics Ltd. with Bulk SMS Notification Feature

APPLIED PROJECT

Applied Project submitted to the Department of Computer Science, Ashesi

University College, in partial fulfilment of the requirements for the award of

Bachelor of Science degree in Computer Science.

Derryck Nii Noi Dowuona

April 2018

 i

DECLARATION

I hereby declare that this applied project is the result of my own original work and that no

part of it has been presented for another degree in this university or elsewhere.

Candidate’s Signature: ...

Candidate’s Name: ...

Date: ...

I hereby declare that preparation and presentation of this applied project were supervised in

accordance with the guidelines on supervision of applied project laid down by Ashesi

University College.

Supervisor’s Signature:

……………………………………………………………………………………………

Supervisor’s Name:

……………………………………………………………………………………………

Date:

……………………………………………………………………………………………

 ii

Acknowledgements

I would like to thank God first of all, for keeping me alive. And a mighty, grateful,

special thank you to my father for being able to pay my school fees for the past four years

of my life in Ashesi.

Thank you to Mr. David Sampah my supervisor, for your guidance and support. You have

really helped me to bring this idea into reality and I appreciate all your insights and advice.

A special thank you to Hubtel’s support services for responding to my emails requesting

guidance and technical support. It means a lot.

To Mr. Evans Attafuah of PsypherTxt, who helped me to learn the tools and frameworks I

used in building this project, thank you very much.

My gratitude goes to Mrs. Satina Brown, the Managing Director of Cadmus Electronics for

allowing me to interview and interact with you and other Cadmus employees to ensure that

the proposed solution meets all requirements.

 iii

Abstract

DSTV is a satellite television service provider established by Multichoice that

provides entertainment services via satellite TV to residents in African countries on a

monthly basis. To continue enjoying DSTV’s services, subscribers pay monthly fees via

options such as Mobile Money, PayPal, and DSTV Dealers or agents. There are many DSTV

Dealers in Ghana, and among the popular ones is Cadmus Electronics Ltd., which functions

as both an electronics company and a Dealer for both DSTV and Canal+ (a similar satellite

television service for francophone subscribers). With the existence of several DSTV Dealers

in the country, Cadmus faces a tough competition of attracting customers to pay their DSTV

bills through their branches in order to obtain higher revenue. Without a database of new

and regular customers, Cadmus is unable to keep track of its growth rate and also promote

its brand as the best DSTV dealer in the country. Cadmus desires to be the primary point of

contact for all DSTV-related issues, enquiries and payments which will increase its revenue

and popularity in Ghana. This project seeks to build a web-based customer database

management system for Cadmus Electronics, called OrionMonitor, which will also have a

bulk SMS feature which will notify its customers of monthly payments to be made and

provide detailed options for payment (e.g. Mobile Money or Cadmus branches).

 iv

Table of Contents

Chapter 1: Introduction, Background and Motivation ... 1

1.1 Introduction .. 1

1.2 Background .. 1

1.3 Motivation ... 2

1.4 Related Works .. 3

1.5 Project Scope .. 5

1.6 Project Objectives .. 5

1.7 Project Significance .. 5

Chapter 2: Requirement Analysis ... 6

2.1 Project Scope .. 6

2.2 Feasibility ... 6

2.3 Requirements Gathering Technique ... 7

2.4 Requirements Gathering Procedures.. 7

2.5 System Requirements... 7

2.6. Functional Requirements .. 8

2.7 Users .. 8

2.8 Use Case Diagram ... 9

Chapter 3: Architecture.. 10

3.1 System Architecture ... 10
3.1.1 Client Side.. 10
3.1.2. Application Server ... 10
3.1.3 Database Server ... 11

3.2 Tools and Frameworks ... 12
3.2.1 HTML ... 12
3.2.2 CSS .. 12
3.2.3 JavaScript .. 13
3.2.4 Heroku .. 13
3.2.5 Gentellela Bootstrap Template... 14
3.2.6 Parse Server... 14
3.2.7 Node.js .. 14
3.2.8 Hubtel ... 15

3.3 Sequence Diagram and Database Schema .. 15

Chapter 4: Implementation.. 17

4.1 Configuring Heroku and Node.js on local machine ... 17

4.2: Activating Web Application with Parse ... 18

4.3 Installing Parse Dashboard ... 19

 v

4.4 Installing Heroku addons .. 21
4.4.1 mLab ... 21
4.4.2 PaperTrail .. 21
4.4.3 Mailgun ... 22
4.4.4 Scheduler .. 22

4.4 Integrating Hubtel’s SMS API .. 23

4.5 Web Interface ... 24

4.6 Adding New DSTV Customer .. 28

4.7 SMS Targets .. 29

Chapter 5: Testing and Results .. 31

5.1 Unit Test ... 31
5.1.1 Creating and Logging in a Parse User .. 31
5.1.2 Send SMS Notification to Customer .. 32

5.2 Integrated Testing .. 33
5.2.1 Creating Parse Object (DSTV Customer) ... 33

5.3 Automating SMS notifications .. 35

5.4 Challenges .. 37

5.5 Analysis of Results .. 38

Chapter 6: Conclusion and Recommendations ... 39

6.1 Current Limitations... 39

6.2 Future Works .. 39

6.3 Summary .. 39

References ... 41

 vi

Table of Figures

Figure 2.1: Use Case Diagram for IT administrator and employee. 9
Figure 3.1: System architecture .. 11
Figure 3.2: Sequence diagram .. 15
Figure 3.3: Database schema .. 16
Figure 4.1: Heroku CLI login via terminal. ... 17
Figure 4.2: Code to initialize Heroku application running on Parse Server 18
Figure 4.3: Configuration on Heroku’s website .. 18
Figure 4.4: Configuration of application from Heroku .. 19
Figure 4.5: Parse Dashboard running locally... 20
Figure 4.6: Snippet logs showing application being pushed to server for deployment. 20
Figure 4.7: View from Heroku logs confirming that application is running. 21
Figure 4.8: List of Heroku addons used by OrionMonitor. .. 22
Figure 4.9: Details of Hubtel’s SMS messaging bundle for the month of March, 2018. ... 23
Figure 4.10: SMSGH source code from GitHub. .. 24
Figure 4.11: Login page ... 25
Figure 4.12: Sign up page ... 25
Figure 4.13: Code demonstrating creation of a Parse User from sign up form 26
Figure 4.14: Dashboard view after successful login .. 27
Figure 4.15: List of DSTV customers with their details .. 28
Figure 4.16: Form for adding new DSTV customer. ... 29
Figure 4.17: Parse Query of DSTV customers whose accounts are due in less than 3 days.
 ... 29
Figure 4.18: List of customers whose accounts expire in less than 3 days in SMS Targets
page ... 30
Figure 4.19: Code snippet of function that sends an SMS notification to one customer ... 30
Figure 5.1: Server code to create new Parse User. ... 31
Figure 5.2: Logs from Heroku’s server confirming new Parse User created. 32
5.3: Function to send quick SMS message to selected user. .. 32
Figure 5.4: Form to add new DSTV_Customer ... 33
Figure 5.5: Parse code to create new DSTV_Customer instance 34
Figure 5.6: Parse Dashboard showing new DSTV_Customer created.............................. 34
Figure 5.7: New DSTV customer added to list on webpage. ... 34
Figure 5.8: Creating new task with Heroku Scheduler addon. ... 35
Figure 5.9: sendsms file with Parse Query and Hubtel SMS code. 36
Figure 5.10: Scheduled task sendsms running in background. ... 36
Figure 5.11: Screenshot of SMS notifications received on customers’ phones................. 37

1

Chapter 1: Introduction, Background and Motivation

1.1 Introduction

Technology has become a major driving force of many business operations in the

present age (Chan, 2000). The gradual acceptance of the emerging computing technologies

such as advanced database management, satellite communication and data analysis has

improved productivity and enhanced efficiency and rapid delivery of solutions to current

and possible future problems in the world. Cloud Computing for instance, is widely used by

many companies ranging small businesses to large scale enterprises. It is without a doubt

that business organizations that make use of advanced technologies in their operations have

greater competitive advantage than others in the corporate world (Chan, 2000).

1.2 Background

There are some companies in Ghana which without competitive advantage, find it

difficult to stay ahead and earn more revenue. Cadmus Electronics, an electronics company

and an accredited Dealer for Multichoice, is one such example. Multichoice is an

entertainment company established in Sub Saharan Africa which mainly provides satellite

television services through its products such as DSTV and GOtv (Mano, 2005). Dealers are

entities that are licensed to sell products on behalf of Multichoice and other satellite

television services such as Canal+ and serve as middle men for payment of subscription

fees for services provided. Other services Cadmus Electronics provides aside from selling

DSTV products include sales and installation of electronic equipment, electronic repairs and

service calls. Cadmus however is not the only accredited DSTV dealer in Ghana, and

although it has several branches in a few major parts of the country including its capital,

2

Accra, it faces tough competition in maintaining its numerous regular customers and

attracting new customers due to competition. The challenge that comes with the presence

of other dealers in the country is that customers are unable to tell the difference between the

various accredited dealers; their main concern is to purchase a product or renew subscription

for a service, and this poses a varying competition among the dealers.

What Cadmus Electronics Ltd desires is to have a reliable and cloud-based database

of all its regular and new customers and establish a system wherein they can communicate

with customers, build trust and maintain a solid relationship.

1.3 Motivation

The major problem that Cadmus faces is keeping track of all its customers without

using a reliable, electronic database system. Customer data is often recorded using large

notebooks which although may be suitable for small-scale businesses, cannot satisfy the

large scale of Cadmus given that it has branches in many parts of Accra and beyond. It

therefore requires a larger, reliable, and easily accessible database management system to

keep track of its customers and maintain contact with them. With the existence of competing

DSTV Dealers, losing a number of customers to them would pose a problem for the

company’s income revenue. Subscribers to satellite television services such as DSTV,

GOTV, and Canal+ have to pay a monthly fee to continue enjoying the services, and as

such, they need to be reminded to pay their subscription fees at least a few days before their

subscription ends. DSTV currently has a system in place to automatically send SMS

messages to customers to remind them to pay their fees via options like Mobile Money or

banks, which is convenient. What Cadmus needs is to have as many customers as possible

to pay their subscription fees via their branches or with Mobile Money, and market their

3

electronic products. This will generate more revenue and propagate its popularity across the

country.

1.4 Related Works

Southbank Institute of Technology, a university in Australia, conducted a study on

the viability of using SMS messaging to provide services to students who use the

institution’s library (Herman, 2007) . In addition to their Ask a Librarian service, which

included the use of email, chats and phone service to provide students with information,

they decided to incorporate SMS service, which was found to be extremely useful in helping

provide rapid response to enquiries and updates on published books. Also, due to the fact

that most of the students used mobile phones on campus, preferred SMS messaging as their

mode of communication which proved most convenient (Herman, 2007). This project was

limited only to students of the institution, and hence was not expanded to reach out to the

public.

A projected was undertaken in Bundelkhand University, India to assess the

advantage of using an SMS-based alert system for its Central Library to inform students of

new articles and journals by publishers (Jetty & K, 2013). The project was a follow-up on

pilot project initiated by University of Swaziland and Emerald Group Publishing. The

project involved gathering target recipients, creating profiles for each recipient with their

preferences captured, and an attempt to automate the sending of alerts from publishers to

interested recipients. The main objective of the project was to repackage email alerts from

publishers into SMS messages and forward them to persons whose preferences matched that

of the publishers. The problem encountered during the project’s execution was that the

process of converting email messages to SMS messages and sending them to target

4

recipients could not be automated because the bulk SMS server provided no option for email

gateway processing (Jetty & K, 2013).

In order to identify the main drivers of acceptance of SMS advertising and positive

responses to them, a study was conducted in various locations in Seoul, South Korea, which

were mostly universities (Dix, Jamieson, & Shimul, 2016). A total of two hundred and six

responses were obtained and it was observed that the context of SMS advertising (in relation

to the time and location) as well as trust toward the advertising companies were the main

drivers of acceptance of SMS-based advertising. Advertising companies who abuse their

customers’ personal information and incessantly send them messages cause them to despise

SMS messages, which is a relevant point to consider for customers of Cadmus Electronics

Ltd.

Cadmus Electronics also requires an expedient way of making and recording sales.

Sales in Cadmus branches are recorded in the traditional and outdated notebook form. These

records would later have to be compiled into comprehensive reports to be sent to the

Managing Director to make decisions weekly, which place a heavy burden on employees

within the company.

Database systems, are one of the most sought-out technologies by companies and

organizations throughout the world due to the enhanced ability to provide quick and efficient

access, manipulation and distribution of information for organizations and companies (Li,

2004). The purpose of such systems is to have easy and convenient access to data files that

have been organized in a comprehensive way and allow for update, deletion and insertion

of new data (Yusuf & Nnadi, 1988). Many small-scale enterprises rely heavily on advanced

database management systems to keep accurate records of transactions and inventory which

5

expedites processes, enhances productivity and enables businesses to operate at a faster pace

compared to traditional records in notebooks.

1.5 Project Scope

This project is aimed at creating a web-based customer database system for Cadmus

Electronics to keep track of all customers to maintain a consistent relationship, and also

building an inventory management system to better handle record keeping and report

compilation.

1.6 Project Objectives

This project aims to primarily develop a web-based customer database system for

Cadmus Electronics, named OrionMonitor, to keep track of all its customers and to

communicate deadline payments for subscriptions and advertisement. The aim of the

inventory management system is to monitor and manage records of stocks and sales to

provide comprehensive reports to management for effective decision-making.

1.7 Project Significance

This applied project will be of great benefit to Cadmus Electronics Ltd. because it

will give them a higher competitive advantage over other DSTV Dealers in Ghana by

maintaining consistent, non-intrusive communication with customers which builds a form

of trust and propagates their brand. By having more customers pay at Cadmus branches,

employees receive more commission on subscription fees paid and this also increases the

revenue of the company.

6

Chapter 2: Requirement Analysis

This chapter discusses the processes involved in gathering requirements for

OrionMonitor, design decisions, detailed functional and non-functional requirements, and

how users will interact with the system.

2.1 Project Scope

 This project is designed mainly for use in the head office of Cadmus Electronics Ltd.

in Osu, by a designated administrator and the managing director, and also in its various

branches across the country. The system will be hosted on Heroku, a cloud platform service

for web and mobile applications. The server-side programming of the system will be

implemented using Parse; an open-source Backend-as-a-Service platform.

2.2 Feasibility

 Most of the required resources are free and open source, and hence require no cost.

The only aspect of the system which will incur cost will be the SMS functionality. Sending

SMS messages to many users of various mobile networks incurs some charges, which need

to be addressed in the development of the application. The application will be developed in

such a way that SMS message configuration and notification will be done automatically

with minimal input from the administrator. The cloud platform Heroku, provides a remote

server with a free database package which provides a space of 0.5 Gigabytes (GB). In the

event of expansion requirements of the application, upgrade packages will incur monthly

fee (e.g. $15 per 1GB monthly) (“Pricing | mLab Cloud MongoDB Hosting,” n.d.).

7

2.3 Requirements Gathering Technique

 The technique used in requirements gathering was interviews (both structured and

unstructured). Unstructured interview was used initially in order to understand the issues

and concerns that the company is facing, and structured was then used to get a better

understanding of the requirements of the desired system.

2.4 Requirements Gathering Procedures

 These were the processes involved in gathering requirements for the intended

system:

a. Interview with Managing Director: unstructured and structured in order to obtain

fundamental insight into the problems being faced in the company and what is

expected of the proposed system.

b. Interview with Inventory Manager: To understand how inventory records were being

kept and identify flaws that could be addressed by the proposed system.

c. Observing Multichoice database system: For more insight on what kind of customer

data would be relevant for the proposed application.

2.5 System Requirements

These are the features and functionalities that the system is expected to implement.

Because the system is database-centered, the basic requirements involve the core database

operations i.e. Create, Read, Update and Delete (CRUD).

8

Customer Database System: this application is purposed to manage records of all

customers of Cadmus Electronics to inform them of subscription payments and conduct

analysis for management of the company.

1. The system should be able to display all customer records in a tabular form.

2. The system should be able to authorize users before modifying the database.

3. The system should be able to automatically send SMS messages to customers whose

subscriptions are due at three days before termination.

2.6. Functional Requirements

Customer Database System:

1. User should be able to login with authorized credentials before using the system.

2. User should be able to view all required details of a customer.

3. User should be able to add, update and delete customer records.

4. User should be able to create SMS messages to be sent to selected customers

automatically.

5. User should be able to view a comprehensive report from system for review.

2.7 Users

The main users of this database system will be the IT administrators within the

company and the employees in Cadmus’ branches. Both classes of users will have access

to the database system and major features, with the exception of the SMS configuration

and manipulating the database (adding, deleting, editing) which will be handled mainly by

the IT administrators and only authorized employees.

9

2.8 Use Case Diagram

Figure 2.1: Use Case Diagram for IT administrator and employee.

Configure SMS
features

Monitor Automated
SMS notifications

View Customer
data

Add/Edit/Delete
Customers

Set access for
other user(s)

IT Administrator

Employee

Customer Database System

10

Chapter 3: Architecture

3.1 System Architecture

The Customer Database Management System is intended to keep track of all

customers of Cadmus Electronics and send SMS notifications to customers whose DSTV

or Canal+ subscriptions are due (at least 3 days before) to remind them to pay at the nearest

Cadmus branch. The architecture of the system consists of the database of all customers, the

feature to extract and compile the phone numbers of selected customers, and the SMS API

(Application Programming Interface) that will send an SMS notification to all selected

customers. The system is built on a three-tier architecture client-server model, which

consists of the client, the application server and the database server.

3.1.1 Client Side

 The web application would be accessed using web browsers. The user would interact

with the application via the web browser to communicate with the application server and

database server.

3.1.2. Application Server

 The application server is the software on which the web application runs. It is the

part of the system that processes the application’s content to be deployed to the client

requesting it (“App Server,” n.d.). It also serves as a connector to the database server,

wherein it provides access to data stored in the database for retrieving and/or modification.

For this project, the SMS feature will be implemented in the application server as well.

11

Extracting data from the database and automatically preparing a list of customers to send

SMS notifications to will be done in this layer.

3.1.3 Database Server

The database server contains data needed by the application server to process and

deliver to the client. It contains mechanisms for persisting data and ensuring that only

authenticated users have root privileges to access and modify the data within it.

Figure 3.1: System architecture

The web application will be mainly used by the IT administrator regularly, to

configure updates and monitor the automated SMS feature which includes checking how

often SMS notifications are sent, and number of checks executed every day. It provides an

interface where the administrator can easily view records of all customers from the database

and configure the format of the SMS message to be sent to targeted customers. The

12

secondary users of the application are the employees of Cadmus Electronics in various

branches within the country. Employees will be given unique credentials with which they

will use to be authenticated in order to use the system. The employees will use the

application to add records of new and regular customers whose information are not yet

captured by the company. This will expedite the process of accumulating new customer data

for the application’s database.

 The SMS API will be used to compile selected customers’ names and phone

numbers from the database by the web application and send the SMS message notifying

them to pay their subscription fees before their accounts are suspended. Because of monthly

package subscription, the process of sending messages will be done at least few days before

the end of the month, depending on the requirements of Cadmus Management team.

3.2 Tools and Frameworks

3.2.1 HTML

 HTML (Hypertext Markup Language) is a computer language that allows users to

create webpages in a website by manipulating tags and using hyperlinks, which can be

accessed globally via the internet (Aronson, 1995, p. 3). The latest version of HTML being

used currently is HTML5.

3.2.2 CSS

 CSS (Cascading Style Sheets) is a styling language that is used to design the

appearance of HTML elements on a webpage (Sklar, 2001). It helps to make websites look

13

appealing to the eye. The Bootstrap template used in the implementation of this project

comes with its own pre-defined CSS files.

3.2.3 JavaScript

 JavaScript is a programming language with Object-Oriented functionalities that is

normally used in web browsers to control interactions with users and change the appearance

or behavior with HTML elements. It is normally referred to as a client-side programming

language because it is normally run on client computers (computers that request services

and resources from servers) (Flanagan, 2006). For this project, JavaScript was used both at

the client-side and the server-side (thanks to Node.js, which will be explained later on).

3.2.4 Heroku

 Heroku is a Platform-as-a-Service (PaaS) that allows developers to create and run

web applications that are hosted on remote servers at a little to no cost, depending on the

scale of the application (Solheim, 2015). Heroku supports multiple languages and

frameworks including Node.js, a framework that enables JavaScript to be used for server-

side scripting. Heroku was used to host the web application remotely, with a server URL

provided for free. Heroku also provides a few resources called addons, which were used by

the web application for specific features; Mailgun for email verification of new users

created, Mongo DB’s mLab as a cloud database on which the Parse Server runs, PaperTrail

for keeping logs of events and errors that occur on the server, and Scheduler for automating

the sending of SMS notifications to customers according to a specified time schedule.

14

3.2.5 Gentellela Bootstrap Template

Gentellela Alela is a free Bootstrap template that provides an interactive and multi-

layered dashboard interface integrated with many features and tools for administrative work.

The template was built by Colorlib, a group of WordPress theme developers (“20 Free

Bootstrap Admin Dashboard Templates 2018,” 2018).

3.2.6 Parse Server

 The Parse Platform is an open-source Backend-as-a-Service that provides backend

resources (e.g SDKs and APIs) for developers to utilize without struggling to build a

backend server from scratch (“Parse + Open Source,” n.d.). Parse was once owned by

Facebook but was shut down early 2017 (Lardinois & Constine, n.d.), after migrating to

MongoDB, an open-source database program and now runs on mLab, its cloud database

server which Heroku supports. It now runs as an open-source project. Parse also provides

support for Node.js and JavaScript server-side scripting.

3.2.7 Node.js

 Node.js is a JavaScript Framework that enables users to write JavaScript programs

to be executed on the server. Node.js supports asynchronous programming; it can run

processes without having to wait for results immediately, allowing it to run other processes

and when results of a function are ready, they are accessed and displayed accordingly

(Tilkov & Vinoski, 2010). Node.js enables the developer to install and integrate the Parse

SDK (Software Development Kit) into this project, as well as other tools and libraries such

as the Parse Dashboard, Heroku tools including mLab (MongoDB’s web-based Database-

as-a-Service) and Hubtel’s SMS API (“parse,” n.d.).

15

3.2.8 Hubtel

 Hubtel is a web service portal that provides tools to help connect businesses with

their customers effectively. Hubtel provides developers with resources such as Short

Message Peer-to-Peer (SMPP), Short Message Services (SMS) and Mobile Money, which

can be integrated into mobile and web applications (“Learning The Hubtel Basics,” n.d.).

Hubtel’s SMS API was used for this project to send SMS notifications to DSTV subscribers.

3.3 Sequence Diagram and Database Schema

Figure 3.2: Sequence diagram

16

Figure 3.3: Database schema

17

Chapter 4: Implementation

Majority of this project’s implementation was carried out with Heroku; from

development and hosting on a remote server, to providing resources to support Parse Server

(including the Parse Dashboard), Node.js, and MondoDB’s mLab; a web-based database

that Heroku supports. The SMS Messaging aspect of the project was done using Hubtel’s

SMS API called SMSGH. The “Gentellela” Bootstrap template provided its own HTML,

CSS and JavaScript files which were edited to suit the needs of the project. This chapter

provides evidence of implementation of the aforementioned tools and frameworks along

with sufficient description.

4.1 Configuring Heroku and Node.js on local machine

After installing Node.js on the developer’s machine, Heroku’s Command Line

Interface (CLI) was installed to create and manage the web application from the computer’s

terminal.

Figure 4.1: Heroku CLI login via terminal.

On Heroku’s website, the application is created and given a name. then using the Git

feature which Heroku’s CLI supports, the application is cloned to the developer’s computer,

which contains several files and folders provided by Node.js for web server configuration.

18

The main configuration file in the project is the index.js file, which contains JavaScript code

used to configure the application to run with Node.js and Parse. A sample Parse Serve code

is cloned from GitHub and merged with the cloned application.

4.2: Activating Web Application with Parse

Figure 4.2: Code to initialize Heroku application running on Parse Server

The image above indicates the key code in the index.js file required to activate and

run the web application running on the Parse server. The asterix (*) represents an

alphanumeric string which is a randomly generated key that is assigned to the web

application. The ‘serverURL’ is the URL of the web application that can be accessed in a

web browser. These configuration settings must correspond with the settings in the

application on Heroku’s website.

Figure 4.3: Configuration on Heroku’s website

19

Figure 4.4: Configuration of application from Heroku

4.3 Installing Parse Dashboard

 After configuring the application to correspond with Heroku, the Node Package

Manager (npm) provided by Node.js, is used to install other libraries and tools relevant for

the application. The first tool to download is the Parse Server which runs on MongoDB’s

mLab. The next tool to download is the Parse Dashboard which can be installed and run

locally on a computer (parse-dashboard (GitHub)). It provides a holistic view of

applications that are running on the Parse Server and gives details of such apps including

Sessions (number of Sign ups and Logins), Parse Users, Classes created, and also gives the

administrator full access to create, rename, edit and delete classes and users. The Parse

Dashboard can be accessed once installed on a computer via the link http://localhost:4040.

In this project, there is one class created initially; DSTV_Customer, which has the properties

of a customer.

20

Figure 4.5: Parse Dashboard running locally.

 To deploy the application to run on Heroku’s server, the Git functionality is used

with the CLI to push the applications folders and files to the server. Using Heroku’s

PaperTrail addon, the administrator can view the logs in Heroku to read the background

processes running in the web application and be informed when the application has been

deployed or not.

Figure 4.6: Snippet logs showing application being pushed to server for deployment.

21

Figure 4.7: View from Heroku logs confirming that application is running.

4.4 Installing Heroku addons

 For the OrionMonitor web application, four (4) resources, called addons provided

by Heroku were installed. Each resource has an initial free package, which can be upgraded

for a monthly cost depending on the scale and needs of the application.

4.4.1 mLab

The first addon to be installed is mLab, which is a cloud database service provider

that hosts databases provided by MongoDB. This serves as the cloud database of the web

application.

4.4.2 PaperTrail

PaperTrail is a tool used to track the background processes and statuses of the

application and makes it easier to locate problems and fix errors. It was used in the

debugging process as OrionMonitor was being built.

22

4.4.3 Mailgun

Mailgun is an addon that is used by the web application to send emails to clients or

customers, per the developer’s choice. For an employee to sign up as a user for the

application, an email would have to be sent to the head administrator for confirmation before

granting the employee a user ID which will be used to login and add new customers to the

database.

4.4.4 Scheduler

The Heroku Scheduler addon is used by OrionMonitor to run the SMS notification process

on a daily basis. Each day, the application will check its database for a list of customers

whose monthly subscriptions are due in less than a specific number of days (3 in this case),

and then send them an SMS notification reminding them to pay their bills at the nearest

Cadmus Electronics branch before the due date.

Figure 4.8: List of Heroku addons used by OrionMonitor.

23

4.4 Integrating Hubtel’s SMS API

 Hubtel’s SMS API is integrated into OrionMonitor by first installing the SMSGH

package using npm. Hubtel provides a variety of bundles to purchase monthly in order to

send SMS messages. For this project, a monthly fee of GHC10 was paid for 380 SMS

messages to be sent using OrionMonitor.

Figure 4.9: Details of Hubtel’s SMS messaging bundle for the month of March, 2018.

24

 To implement the SMS API, a section of code was copied from SMSGH’s source

code on GitHub, which contains a variety of methods for sending SMS messages.

Figure 4.10: SMSGH source code from GitHub.

4.5 Web Interface

Once OrionMonitor is opened on the web, the initial page that loads by default is the

Login page which prompts the user to enter his/her credentials to login and view the

dashboard. There is also an option to create a new admin user for the application, which can

only be approved of by sending a request to an existing administrator’s email address.

25

Figure 4.11: Login page

Figure 4.12: Sign up page

26

Figure 4.13: Code demonstrating creation of a Parse User from sign up form

After a new user completes the form, the fields in the form are parsed to the

application server and are used to create a new Parse User, as shown in the code above.

After the user is created, he/she is redirected to the login page to be authenticated before

proceeding as a new user. After the new user is created, the administrator will assign him/her

with an access level that will determine the level of privileges the user will have access to.

Once login is completed, the user is assigned a session which grants him/her access to other

pages without having to login again. The user is then redirected to the main dashboard where

he/she can perform necessary administrative duties.

27

Figure 4.14: Dashboard view after successful login

 An overview of the dashboard displays the total number of DSTV customers, the

total amount of Hubtel’s SMS bundle, and the total number of SMS messages sent within

the week so far. The page that shows the list of DSTV customers with their details: full

name, address, phone number, gender, date monthly subscription is due, and number of days

left.

28

Figure 4.15: List of DSTV customers with their details

4.6 Adding New DSTV Customer

 OrionMonitor allows users to add new customers to its database. It has a page that

provides a form to allow the administrator/user to add a new DSTV customer to the

database. Here, the employee at a particular Cadmus branch can fill in the details to add a

new customer to the database. Key details include name, phone number and date on which

account is due to be suspended. After filling in all fields and saving, a new user is created,

and the number of days left to the customer’s account suspension is calculated by taking the

current date’s time and subtracting it from the due date’s time.

29

Figure 4.16: Form for adding new DSTV customer.

4.7 SMS Targets

The SMS Targets page shows a list of customers whose monthly subscriptions are

due to expire in a specific number of days. The page also has a text field which contains the

sample SMS message to be broadcasted to the list of customers, which can be edited as

needed by the administrator.

.

Figure 4.17: Parse Query of DSTV customers whose accounts are due in less than 3 days.

30

Figure 4.18: List of customers whose accounts expire in less than 3 days in SMS Targets

page

Figure 4.19: Code snippet of function that sends an SMS notification to one customer

31

Chapter 5: Testing and Results

This chapter explains the results obtained from performing various tests on the

application to ensure that its core functions meet the requirements highlighted in chapter 2.

The tests performed were in three categories: unit tests, system-level tests, and user test.

5.1 Unit Test

 The unit tests involving preforming tests on functions and features individually to

ensure that desired results are obtained, and unexpected errors are corrected before

integrating them into the system.

5.1.1 Creating and Logging in a Parse User

The Parse Server’s API provides an option to create a Parse User class for an

application running on its server. The key parameters for creating a new Parse User were

username and email address. Additional attributes such as first name, last name, and phone

number were included.

Figure 5.1: Server code to create new Parse User.

32

Figure 5.2: Logs from Heroku’s server confirming new Parse User created.

According to the logs provided by Heroku’s PaperTrail addon, the new Parse User

was successfully created with all of its associated attributes. On the Parse Dashboard, the

User class has its first instance which is the new user created.

5.1.2 Send SMS Notification to Customer

 Hubtel’s SMS API contains a variety of functions to use when composing and

sending SMS message. The main method used is sending an SMS message was

“QuickMessage()”. This function takes in three parameters; the sender’s name or phone

number, the recipient’s phone number (in the format “233*********”), and the message

content, all of which are in the form of strings (within double or single quotes).

5.3: Function to send quick SMS message to selected user.

33

5.2 Integrated Testing

5.2.1 Creating Parse Object (DSTV Customer)

 Orion Monitor has a webpage which allows the user to add new DSTV subscribers

visiting a Cadmus branch to the database. In this page the user fills all the details in the form

and submits the form. Using JavaScript, the application ensures that all fields in the form

must be filled before submitting the form to the server. On the application server, all the

details are taken from the form and are used to create a new instance of DSTV_Customer

class in the database, which can be viewed on the Parse Dashboard.

Figure 5.4: Form to add new DSTV_Customer

34

Figure 5.5: Parse code to create new DSTV_Customer instance

Figure 5.6: Parse Dashboard showing new DSTV_Customer created

Figure 5.7: New DSTV customer added to list on webpage.

35

5.3 Automating SMS notifications

To use Heroku’s Scheduler, a file is created and named sendsms with no

extensions. This file is then stored in the root directory of the project. The code in the

sendsms file does the following:

1. Query the Parse database to find a list of customers whose monthly subscriptions

are due to be suspended in less than 3 days.

2. Each customer’s name, phone number and number of days left are retrieved and

stored as parameters.

3. The function that sends the SMS notification is called and the parameters for each

customer are passed to it.

On Heroku, the Scheduler addon is opened and a new task is created. The name of the task

is the name of the file that contains the query and SMS codes (sendsms). A schedule is set

for the task (in this case, every day at 12am).

Figure 5.8: Creating new task with Heroku Scheduler addon.

36

Figure 5.9: sendsms file with Parse Query and Hubtel SMS code.

Figure 5.10: Scheduled task sendsms running in background.

37

Figure 5.11: Screenshot of SMS notifications received on customers’ phones.

5.4 Challenges

The main challenge in the application’s testing was assigning specific user IDs to

employees of Cadmus whose main use of OrionMonitor is inputting new customer data to

be added to the database. The only way to identify a logged in user is by using a session

token, which is checked before opening subsequent pages in the application. Also, Parse has

a function that is used to retrieve the current logged in user (Parse.User.current()), but cannot

however be used in Node.JS environment. This therefore makes it difficult to give a unique

ID to a set of users to distinguish them from each other apart from the main administrator

of the application.

Another challenge faced during development was using the Mailgun addon to send

emails to the administrator in order to grant access to a new user.

38

5.5 Analysis of Results

At the end of the testing phase, most of the results prove to be satisfactory in meeting

the requirements. The web application is hosted on Heroku’s server and can be accessed via

web browsers. The Parse Dashboard can be accessed locally on the developer’s computer

and allows for more oversight of the application’s database operations. Users (employees

working at various branches of Cadmus) of OrionMonitor can add new DSTV customers

with ease and can view the number of days left for a customer’s subscription to end.

39

Chapter 6: Conclusion and Recommendations

6.1 Current Limitations

 Cadmus Electronics is yet to begin collection of details of Canal+ subscribers to be

added to the web application’s database. Hence only DSTV subscribers’ details are available

in OrionMonitor’s database.

6.2 Future Works

 One major issue to consider is how OrionMonitor will know when a DSTV

subscriber has paid his/her monthly DSTV subscription fees. A possible solution would be

to grant OrionMonitor access to DSTV’s subscribers database for solely querying purposes

so that customers who have already made payments in advance will be exempted from the

SMS target list.

 Another future addition to OrionMonitor is making use of email as an alternate

means of communicating DSTV and Canal+ subscription reminders to SMS. Having a

secondary means of communicating with customers would prove efficient in the event that

the SMS fails in unexpected events.

6.3 Summary

The aim of this project was to provide Cadmus Electronics with an electronic

database that would enable them to keep track of the regular customers they have and the

new customers that will be added as time passes. The project’s implementation so far fulfils

40

the core requirement of Cadmus Electronics having a database of its regular and new DSTV

customers. With this application, employees working in various branches of Cadmus will

be able to add new customer records as and when they become available. Thanks to Hubtel’s

SMS API, Cadmus can keep in contact with its customers regularly and also build a strong

relationship with new customers. This will hence promote the brand of Cadmus as the

number one DSTV and Canal+ Dealer in Ghana.

41

References

20 Free Bootstrap Admin Dashboard Templates 2018. (2018, February 15). Retrieved February

19, 2018, from https://colorlib.com/wp/free-bootstrap-admin-dashboard-templates/

App Server. (n.d.). Retrieved March 17, 2018, from

http://www.theserverside.com/news/1363671/What-is-an-App-Server

Aronson, L. (1995). HTML 3 Manual of Style (2nd ed.). Hightstown, NJ, USA: Ziff-Davis Publishing

Co.

Chan, S. L. (2000). Information technology in business processes. Business Process Management

Journal, 6(3), 224–237. https://doi.org/10.1108/14637150010325444

Dix, S., Jamieson, K., & Shimul, A. S. (2016). SMS advertising the Hallyu way: drivers, acceptance

and intention to receive. Asia Pacific Journal of Marketing and Logistics, 28(2), 366–380.

https://doi.org/10.1108/APJML-09-2015-0146

Flanagan, D. (2006). JavaScript: The Definitive Guide. O’Reilly Media, Inc.

Herman, S. (2007). SMS reference: keeping up with your clients. The Electronic Library, 25(4),

401–408. https://doi.org/10.1108/02640470710779817

Jetty, S., & K, J. P. A. (2013). SMS-based content alert system: a case with Bundelkhand University

Library, Jhansi. New Library World, 114(1/2), 20–31.

https://doi.org/10.1108/03074801311291938

Learning The Hubtel Basics. (n.d.). Retrieved March 19, 2018, from http://help.hubtel.com/the-

hubtel-platform/introduction-to-hubtel/learning-the-hubtel-basics

Li, F. (2004). Database Technology and Database-Driven Web Applications. Strategic Planning for

Energy and the Environment, 24(1), 49–65. https://doi.org/10.1080/10485230409509655

Mano, W. (2005). Exploring the African view of the global. Global Media and Communication,

1(1), 50–55.

parse. (n.d.). Retrieved March 20, 2018, from https://www.npmjs.com/package/parse

42

Parse + Open Source. (n.d.). Retrieved February 19, 2018, from http://parseplatform.org/

parse-dashboard (GitHub): (2018). JavaScript, Parse. Retrieved from https://github.com/parse-

community/parse-dashboard (Original work published 2016)

Pricing | mLab Cloud MongoDB Hosting. (n.d.). Retrieved February 6, 2018, from

https://mlab.com/plans/pricing/#plan-type=shared

Sklar, J. (2001). Cascading Style Sheets (1st ed.). Boston, MA, United States: Course Technology

Press.

Solheim, J. (2015). Web Apps in the Computer Science Curriculum: A Guide Using Heroku, Java

Servlets, and Postgres. J. Comput. Sci. Coll., 30(5), 126–133.

Tilkov, S., & Vinoski, S. (2010). Node.js: Using JavaScript to Build High-Performance Network

Programs. IEEE Internet Computing, 14(6), 80–83. https://doi.org/10.1109/MIC.2010.145

Yusuf, A., & Nnadi, G. (1988). Structure and Functions of Computer Database Systems. Vikalpa,

13(4), 37–44.

