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Abstract 

Road surface quality information is critical to road users when navigating road networks, 

and road authorities when making decisions on road infrastructure. However, not many 

systems exist that readily provide this information. This work connects prior work and 

proposes a geographic information system for crowdsourcing and aggregating 

probabilistic road surface quality information collected from users’ smartphones from 

various times and at different geographic locations.  
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Chapter 1: Introduction 

Drivers, riders, and pedestrians consider multiple factors when navigating road 

networks. Some of these factors are distance, traffic, and the quality of road surfaces [12]. 

There exist mapping services, such as Google Maps and Waze, that provide information on 

routing, distance, and traffic, to make navigation more convenient. However, not many exist 

that comprehensively show the surface quality of roads, which is useful to users during 

navigation [34]. 

  Research suggests a strong correlation between the surface qualities of roads and 

road accidents, traffic, and travel times [14,24]. It is, therefore, crucial for governments and 

road authorities to obtain relevant road surface quality information to make data-driven 

decisions on road infrastructure. This task of acquiring such information at scale is, 

however, challenging, costly and labour-intensive because it currently requires the use of 

specialized equipment [30]. 

With the rapid increase in usage and ownership of smartphones, especially in 

emerging countries [27], crowdsourcing techniques [23] can be used to obtain road surface 

quality data from people’s smartphones. By utilizing readings from smartphone sensors 

such as the linear accelerometer, gyroscope, and GPS, it is possible to classify the surface 

quality of road segments [13]. The road surface quality information from classification can 

then be displayed on a map interface to be used by drivers when navigating, and by 

institutions such as governments and road authorities when planning transport infrastructure 

maintenance. 
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In this work, I propose Kwanalytics, a system for crowdsourcing, aggregating, 

storing and visualizing road surface quality information obtained from smartphone sensors. 

To effectively create this system, the following research questions are explored: 

1. How to aggregate classification information (in the form of probability 

distributions) over the dimensions of time and geographical space? 

2. How to store and retrieve data over segments of roads? 

1.1 Prior Work 

This work builds upon some prior work at Ashesi University that focus on methods 

of classifying road surface quality information from sensor readings, user research to 

determine the usefulness of road surface quality information, and approaches to collect 

sensor information in the first place. They are as follows:  

Vorgbe [36] implemented a classifier (using logistic regression) that took input from 

smartphone sensors such as linear accelerometer and gyroscope readings to classify road 

surfaces with labels {good, fair,bad}. The classifier was able to distinguish between good 

and bad roads with a true positive rate of 92%, good and fair roads with 83% accuracy but 

was unable to differentiate between fair and bad roads. 

  Doku [12] conducted user experience research on whether the embedding of road 

surface quality information into a map interface such as Google Maps would be useful to 

users and how best to visualize such information. It was concluded that embedding surface 

quality was helpful and that a colour-coded visual might be sufficient. 

Abeo [1] built up on issues raised in Vorgbe’s [36] work by evaluating five 

classification algorithms to determine which would best classify accelerometer and 
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gyroscope readings. It was concluded that for the data tested on, the best performing 

classifier was the decision-tree based classifier with an overall accuracy rate of 92%. 

Boohene [9] then implemented an application to collect sensor readings from 

smartphones to a backend data store and prototyped a visualization of the collected data on 

a map interface to aid road users in navigation. 

The main objective of this research is to build upon Boohene’s work [9] by 

proposing an alternative approach to store collected road surface quality information and 

filling in the gaps not addressed by his work (namely crowdsourcing and aggregation). This 

work also connects prior work to form an end-to-end system for crowdsourcing road and 

visualizing road surface quality information.  

In summary, the main contributions of this work are as follows: 

1. A pipeline architecture design for crowdsourcing, aggregating and storing road surface 

quality information. 

2. A method to aggregate probability distributions over the dimension of time. 

3. A geospatial grid-based approach to aggregating information over road segments and 

geometries.  
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Chapter 2: Background and Related Work 

2.1 Classifying Road Surface Quality from Smartphone Sensor Readings 

This project works on the assumption that road surface quality information can be 

obtained from smartphone sensor readings using a classifier [13]. Many research papers 

have explored approaches to classifying sensor data from smartphones to obtain road 

surface quality information. Some used threshold-based classifiers [31], some used machine 

learning methods such as K-means clustering [1] and Support Vector Machines [7,25] 

others used signal processing techniques [3]. The various approaches have strengths and 

weaknesses depending on factors such as frequency of recording, the speed of the vehicle, 

and others, as outlined in Sattar et al.’s survey [30]. Most of these projects focus on testing 

the feasibility of their proposed classification approach and not necessarily how readings 

from multiple users can be crowdsourced. 

2.2 Crowdsourcing Road Surface Quality Information 

Crowdsourcing involves obtaining information from large numbers of people using 

technology. By leveraging sensors in people’s smartphones, it is possible to obtain sensor 

information on a large-scale at lesser costs compared to traditional approaches (for example, 

using sensor networks). According to Kanhere [23], this sensing can be categorized as 

people-centric (collecting data about the user) or environment-centric (collecting data about 

the user’s surroundings). This project falls in the second category, where road surface 

quality information is obtained from people’s smartphones. To the best of my knowledge, 

there is only one work that crowdsources road surface quality information using 

environment-centric sensing: SmartRoadSense by Alessandroni et al. [3]. 
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Alessandroni et al. [3] proposed a Geographic Information System called 

‘SmartRoadSense’ that crowdsources road surface quality information from smartphones. 

They collected accelerometer readings from smartphones, classified them with a 

mathematical model [18] to obtain an ordinal ‘roughness index’ describing the quality of 

the road surface. They then stored the information in a spatial database (PostgreSQL with 

PostGIS extension) and visualized the information using a mapping service. In their 

approach, they aggregated the collected road surface quality information by computing the 

arithmetic average of the roughness indices for each segment of a road. 

Freschi et al. [26] built upon Alessandroni et al. [3]’s system to enable it to scale 

effectively. They acknowledged that such a system, collecting massive amounts of data, 

may have storage overhead as many data points have to be processed. They addressed this 

issue by aggregating the collected sensor data spatially and temporally. To aggregate sensor 

readings spatially, they sampled ‘centroid points’ for each road segment and averaged all 

roughness indices within a specific radius of the centroid points. To temporally aggregate 

the roughness indices, they used a weighted average function to give more weight to recent 

observations. 

Sattar et al. [30] in reviewing the various road surface quality work claimed that 

“[the] best approach to crowdsourcing road surface anomalies from multiple sources would 

be a probabilistic and spatiotemporal-based approach that would overcome both the 

uncertainty and variability in road surface anomalies”. State-of-the-art approaches 

acknowledged that indeed variance in the types of devices and vehicles used affected the 

accuracy of their classifiers. This paper attempt to address the issue Sattar et al. [30] raised 

by proposing a system that works with probabilistic classification information (obtained 

from a multi-class classifier) and aggregates it with spatio-temporal aggregation methods.  
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 2.3 Data Aggregation 

Since crowdsourcing requires collecting massive amounts of data, there is a need for 

aggregation techniques to summarize such data to reduce the storage and computation 

overhead in a way that preserves information. This system involves summarizing road 

surface quality information (in the form of probability distributions) over the dimensions of 

time and space. The following subsections give an overview of probability, spatial and 

temporal aggregation methods. 

2.3.1 Probability Aggregation 

The problem of combining (‘pooling’) probabilistic information (‘opinions’) from 

different individuals is defined by Dietrich et al. [11] as the opinion pooling problem. It 

involves applying some function (‘pooling method’) to a collection of probability 

distributions to obtain a single aggregate distribution. 

 

Figure 2.1: The Opinion Pooling Problem. P1, P2, and P3 are combined by a pooling 

method PG to obtain an aggregate distribution PG (P1, P2, P3) 
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Pooling Methods 

A pooling method is a function that combines multiple probabilities to obtain an 

approximation of their ‘true’ combination. In their reviews, Allard et al. [4] and Genest et 

al. [17] showed some pooling methods and explained that the choice of method depended 

on its application and desired properties. They also categorized most pooling methods based 

on how information was combined: additive or multiplicative. 

Additive Methods 

Additive methods express the aggregate of probabilities as the disjunction (union) 

of the constituent probabilities using addition. Methods include the most commonly used 

linear pooling (weighted arithmetic average) [5] and the beta-transformed arithmetic 

average [28]. 

 

Figure 2.2: Additive Pooling Methods 

 

Multiplicative Methods  

Multiplicative methods, on the other hand, express the aggregate of probabilities as 

the conjunction (intersection) of these probabilities using multiplication. These methods 

require normalizing the aggregate probability with a constant c, to ensure the output is a 

discrete probability distribution (also called Probability Mass Function – PMF). Methods 
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include geometric pooling (normalized weighted geometric average) [17], multiplicative 

pooling [11], and conflation (normalized weighted product) [21]. 

 
 

Figure 2.3: Multiplicative pooling methods 

 

2.3.2 Temporal Aggregation 

  Temporal aggregation involves partitioning information into groups by a time 

granularity (for example, daily, monthly, or yearly), and applying a function on each group 

to obtain aggregates [16]. Systems that work with streaming information (sequences of 

continuously recorded data) often use the sliding window approach to summarize data [33]. 

It involves computing over only the N-most recent elements to answer queries where N is 

defined as the window size. 
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Figure 2.4: Illustration of Sliding Window 

 

2.3.3 Spatial Aggregation 

I have identified two main approaches to aggregating geospatial information 

regarding roads: aggregation based on road geometry and aggregation based on a grid index. 

Aggregation based on Road Geometry 

This involves aggregating information across road segments based on their geometry 

(shapes and coordinates). This approach requires prior information about road geometries 

and the connections between roads in a network. Roads are divided into segments by placing 

‘landmark points’ on each road and computing aggregates for each landmark point.  

Freschi et al. [15] used this approach to aggregate information for roads. They 

created landmark points (centroids) along a road geometry to divide it into segments. All 

observations that fell within a given radius of each centroid were aggregated and associated 

with that centroid. 
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Figure 2.5: Freschi et al. [15]’s approach to spatial aggregation: placing centroids 

(average points) on a road segment 

 

The limitations of this approach are that (i) it requires pre-processing a road network 

to determine where to place landmark points and (ii) it becomes more complicated when 

landmark points’ locations are computed dynamically. 

 

Aggregation based on a Grid Index  

Another approach to aggregating spatial information over roads is to use a grid-based 

model (index) of the Earth, mapping portions of road segments to given cells and storing 

data for each cell. Grid indexes divide the Earth’s surface into uniformly shaped cells to 

enable efficient aggregation of information. They can be classified into two forms: 

graticular and geodesic grid indexes. 

Graticular Grid Indexes 

These grid systems use the longitude and latitude lines (graticules) as a mesh around 

the Earth’s surface to divide it into evenly spaced cells. They then use a geocoding 
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algorithm, such as GeoHash [32], to map GPS coordinates (latitude-longitude pairs) to the 

various cells in the grid. 

 

Figure 2.6: GeoHash-based approach divides the Earth with longitude and latitude lines 

into rectangular cells [32]. The red line indicates space-filling curve mapping each 2-D 

cell to a 1-D index. 

 

A limitation of graticular grid indexes is the precision error in aggregation because 

cells are not uniformly shaped (due to the curvature of the Earth around the poles). 

 

Geodesic Grid Indexes 

Geodesic grid indexes [29], like graticular grid indexes, divide the Earth’s surface 

into uniformly spaced cells. However, instead of using graticules to divide the Earth’s 

surface, they project points on the Earth’s surface unto a polyhedron and partition each face 

of the polyhedron into uniform grids. The use of projection overcomes the precision error 

from using graticules and results in uniformly shaped, uniformly sized and easily indexable 

grid cells. The shapes of the cells in a geodesic grid index may vary depending on the 

application: triangular, square, or hexagonal. 
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Figure 2.7: Possible cell shapes in a geodesic grid index [29] 
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Chapter 3: Methodology 

  This section introduces the architecture design of the proposed system and further 

overviews its various stages, showing the implementation of the stages to which this paper 

contributes. 

 

Figure 3.1: High-Level pipeline architecture of Kwanalytics, showing how contributions 

of this paper (highlighted in green) fit with the previous work done [1,9, 12, 36]. 

The proposed geographic information system (shown in figure 3.1) uses a pipeline 

architecture to tackle the problem of crowdsourcing road surface quality information 

because the processes involved occur in connected stages.  

In summary, the full process of the pipeline is described as follows: 

i. As vehicle navigates a road, collect sensor readings and GPS trail (Collection) 

ii. Classify sensor readings to obtain surface quality information of the road segments 

on which the vehicle travels (Classification) 

iii.  Map the recorded GPS trail from (i) onto corresponding grid cells (spatial 

aggregation) and aggregate the classification information for each cell with that 

already associated with it (probability and temporal aggregation) 

iv. Store the newly computed aggregate in the data store for all cells from (iii) (Storage) 
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v. Retrieve surface quality information (the aggregate) and visualize on map service 

(visualization) 

3.1 Data Collection and Classification 

Sensor readings and GPS trails are collected and validated from Android devices 

with an application built by Vorgbe [36]. The collected readings are then passed into a 

classifier [1,  36] which accepts a time series of sensor readings over a given segment and 

produces road surface quality information in the form of probability mass functions (PMFs). 

This output PMF gives the probability that a given road segment belongs to a given class X 

of road surface quality from a set of labels {very bad, bad, good, very good}. 

 

Figure 3.2: Sample output of classifier: A Probability Mass Function 

 

x Very Bad Bad Very Good Good 
P(X=x) 0.10 0.48 0.40 0.02 

Figure 3.3: Hash table Representation of Probability Mass Function 

The outputs from these stages are a GPS trail of a road segment (represented by a collection 

of latitude-longitude GPS coordinates), the corresponding surface quality information of 

that road segment (represented by a hash table with labels as keys and probabilities as 

values), and timestamp information (time of observation). 



 

  

 
15 

3.2 Spatial Aggregation 

At this stage, the GPS trail representing a road segment (Figure 3.4) is divided into 

parts (Figure 3.5), and the surface quality information of the segment is associated with each 

part for further aggregation. Of the two approaches for spatial aggregation mentioned earlier 

in Chapter 2, the grid-based approach was chosen because it did not require pre-processing 

a road network. This makes it well suited for geographic regions where road networks 

undergo development and deterioration. 

 

 

 

 

 

 

Using a grid index raised two further questions or design choices:  

i. What should the shape a unit grid cell be? 

ii. What should the size of each unit grid cell be? 

Shape of a unit Grid Cell 

A hexagon-based grid system (Uber’s H3 [10]) was chosen for aggregating 

information over road segments. Birch et al. [8] explained that the hexagonal and 

quadrilateral cell shapes were the most adequate for spatial aggregation and concluded 

that the choice of which to use depended on its application. For instance, the quadrilateral-

Figure 3.5: Spatially aggregated T into 
grid cells (pink) 

Figure 3.4: A trail of GPS coordinates T 
(black outline) 
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shaped grid cells can be recursively divided into smaller grid cells but have two types of 

neighbours (adjacent and diagonally separated cells). In contrast, the hexagonal-shaped 

grid cells are more compact and have one type of neighbour, making them more adequate 

for analysis involving movement across cells. Their stark differences, however, were 

irrelevant to the requirement of this project (cell indexing). Both were equally valid; hence 

the decision on which shape to use was based on the comparative performances of two 

available production-ready grid systems (the hexagonal grid system H3 [9] and the 

quadrilateral grid system S2 [19]). Experiment 4 in Chapter 4 provides more information 

on their performances. 

Size of a unit Grid Cell 

The size of a unit grid cell is crucial to the performance of the system. Using too 

large a cell might result in multiple roads covered by one grid cell (Figure 3.6) and using 

too small a cell might result in gaps and uncovered regions of a road (Figure 3.7). The 

choice size of a unit grid cell should ideally depend on the size of a road, but the various 

road standards make this problematic. Sizes and standards of roads vary by country [6] 

hence there may not be a one-size-fits-all. 
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The revised decision, therefore, was to pick a ‘good enough’ size to minimize the 

errors shown above. After consulting a few highway standards reports [2, 35], the chosen 

cell size (cell edge length) was 3.65 m (the minimum lane width of roads).  

Though this choice prevents the scenario of a grid cell covering multiple road 

segments, it is still susceptible to leaving uncovered regions of road segments. Map 

matching [20], mapping ‘raw’ GPS trails to a road network (in this case Google Maps), 

was used to deal with this problem. Experiment 5 in Chapter 4 demonstrates the efficacy 

of this approach.  

In summary, the spatial aggregation process, mapping road segments to 

corresponding grid cells, is as follows: 

i. Obtain GPS trail over road segment 

ii. Map match the trail to obtain a consistent polyline (using Google Maps API) 

Figure 3.6: Large grid cell size result in 

incorrectly representing road segments. In 

this scenario, one grid cell covers n > 2 

different road segments 

Figure 3.7: Small grid cell sizes result 

in large 'uncovered' regions on road 

segments. In this scenario, grid cells 

barely cover the one road segment. 
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iii. Map the polyline to grid cells (using H3 grid system and an interpolation algorithm) 

For (iii), this paper introduces an algorithm that maps polylines to grid cells by 

stepping incrementally along the input line segment over fixed intervals and maps each new 

point to a grid cell. Figure 3.8 and Figure 3.9 below visualize and outline the algorithm for 

this process. 

 

Figure 3.8: Mapping a polyline into grid cells. Grid cells are represented as red circles 

for easy illustration 

 

 

Figure 3.9:  Algorithm for mapping road segments (represented as polylines) to grid cells 
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Runtime Complexity 

The runtime complexity of the algorithm in Figure 3.9 is O(ǁPǁ) where ǁPǁ is the 

distance (in units) of the polyline P. It is more specifically O(ǁPǁ/d) where d is the step 

distance.  

3.3 Probability Aggregation 

After spatial aggregation, the road surface quality information for each grid cell is 

aggregated with existing information. This section details how the chosen pooling method 

was selected based on its properties and the system’s requirements. It further details how the 

method is implemented to suit the system. 

The appropriate pooling method should have the following properties: 

• Weighted: It should support weights to enable weighting observations differently. 

• Has no hyperparameters: It should not require tuning or calibration to be useful 

as there is no available training data for aggregation. 

• Epistemically Valid: It should produce approximations close to the true 

combination of probabilities. According to Dietrich et al. [11], an epistemically 

valid pooling method should depend ‘primarily on the opinions of the more 

competent observations’ as opposed to giving equal weight to each observation. 

• Commutative: The output aggregate PMF of the method should not depend on the 

order in which PMFs are pooled [22]. That is, PG (p1, p2, p3) = PG (p2, p1, p3) [28]. 

• Works with asymmetric information: It should work with input PMFs based off 

different information [11] (in the system’s case, smartphone sensor readings are 

assumed to be variant and dependent on various factors such as the type of vehicle 

and the quality of sensors on the phone).  
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• Iterative: Because aggregation in the system is done on a ‘rolling’ basis (only one 

aggregate is stored, and inputs are discarded), the pooling method must be iterative 

to support updating an aggregate with new information in a consistent manner. 

That is PG (p1, p2, p3) = PG (PG (p1, p2), p3). 

 

Table 3.1: Comparison of pooling methods with associated relevant properties 

 Linear 
Beta-

Transformed 
Linear 

Geometric Multiplicative Conflation 

Weighted ✓ ✓ ✓  ✓ 
Epistemically Valid    ✓ ✓ ✓ 
No Hyperparameters ✓  ✓ ✓ ✓ 

Commutative ✓ ✓ ✓ ✓ ✓ 
Work with Asymmetric 

Information    ✓ ✓ 

Iterative     ✓ 
 

Various literature [4,11,21–23] was consulted to obtain the properties of various 

pooling methods mentioned in Chapter 2. These pooling methods were then compared 

based on their properties (as shown in Table 3.1). Based on the system requirements, 

conflation, a normalized weighted product of the PMFs, was chosen. In addition to having 

the properties detailed in (Table 3.1), it also minimizes the loss of Shannon information 

and does not require weights to sum up to one since it uses relative weights [21]. 

 

Mathematical Formula for Conflation 

The aggregate probability, PG (E) of each outcome E ∈ {E1, E2…Ek} across all n 

PMFs: [P1, P2... Pn] with associated weights in W: [w1, w2… wn] is defined as: 
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Figure 3.10: Formula for Conflation 

 
Where c, the normalization constant, is the inverse of the sum of values of each outcome 

post-aggregation.  

 

Figure 3.11: Normalization constant 

 

Algorithm for Aggregating PMF (in Records) using the Conflation Method 

The conflation method was implemented in Python 3. It accepts input PMFs 

(represented as an array of hash tables) and their corresponding weights (represented as an 

array of floats) and outputs an aggregate PMF. 
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Figure 3.12 Algorithm for aggregating road surface quality information (PMFs)  

 

Runtime Complexity 

The runtime complexity of the algorithm in Figure 3.12 is O(n).  It is more 

specifically O(n.j) where n is the number of PMFs to be aggregated, and j is the number of 

outcomes across all PMFs (a constant, 4 labels for each class of road surface quality). 

 

Dealing with Zero-values. 

Since conflation is based on the multiplication of probabilities, if one PMF has a 

zero value for a given outcome, the aggregate will continue to be zero. This property is 

defined by Allard et al. [4] as ‘0/1 enforcing’ and was overcome by working within a 

range [0.001, 0.999].  
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3.4 Temporal Aggregation 

For later temporal analysis of road surface quality information, the system uses a 

time granularity of a day. For each road segment corresponding to a grid cell, the system 

keeps daily aggregates (aggregate of all PMFs observed during a day).  

Further, the sliding window approach is used to temporally aggregate observations 

(PMFs) because this system works with streaming information. A window size of 365 days 

was chosen to connote “considering observations made over the past year (365 days), what 

is the surface quality of a road segment?”. Therefore, for each grid cell representing a portion 

of a road segment, daily aggregates as well as global aggregates are kept and regularly 

updated. Global aggregates represent the surface quality information of a road segment at 

any time t, and daily aggregates represent the surface quality of a road segment at any day 

over the past 365 days. 

 

Figure 3.13: Temporal aggregation: for each road segment, the continuous data are 

aggregated by day, and each day’s aggregate are further aggregated to obtain a global 

aggregate that represents the surface quality of that road segment.  
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Weighting Observations by Time 

 A requirement for this system is to consider recent observations (PMFs) more than 

older observations. This was done by weighting observations according to how long ago 

they were observed. An exponential decay function was used to weigh observations because 

of its horizontal asymptote. As an observation gets older, its corresponding weight 

approaches zero. The weighting function defines the weight w of a PMF observed at time ti 

aggregated at time tA as follows: 

 

Figure 3.14: Weighting function to weight observations according to their recency 

 

Where T, the time constant, is the value of Δt that gives a weight of 0.368. Since 

we are working with a sliding window of length 1 year (365 days), the value of T = 134 

days (0.365 x 365 days).  

To illustrate how weights are assigned to observations, consider an example. 

Suppose observations have been made on Day 1, Day 10 and Day 100 and aggregation is 

performed on Day 100, the weights of each observation are calculated as follows: 

 

Table 3.2: Showing how weights are assigned to each daily aggregate when computing the 

global aggregate 

 Day 10 Day 30 Day 100 
ti 10 30 100 
tA 100 100 100 
 Δt 90 70 0 

w(Δt) 0.51086915 0.59310249 1 
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Figure 3.15: Graph representing w(t) the weight function and the corresponding weights 

of the three observations 

 

Note: Observations made on the same day are aggregated with a uniform weight of 1 since 

Δt is 0 for those observations. 

End-to-end Aggregation: Putting it all together 

In the previous subsections, the various aspects of aggregation (spatial, probability 

and temporal) were detailed. This subsection attempts to put them all together in one 

procedure.  

Given a GPS trail of coordinates, T representing a road segment, taken at 

DateTime t, with surface quality information (PMF) P, the aggregation process is as 

follows: 
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Figure 3.16: Algorithm of the entire aggregation process  

 

Runtime Complexity  

The asymptotic runtime complexity of the aggregation process is O(c), where c is 

the number of grid cells obtained from the spatial aggregation of the GPS trail. 

3.5 Data Storage 

A document-based datastore, MongoDB, is used to store surface quality information 

over road segments (grid cells in the grid index). Each document represents associated 

information of each grid cell and consists: 

i. The grid cell’s ID defined by the grid index system used for querying 

ii. The global aggregate PMF  

iii. A timestamp for the global aggregate PMF 

iv. Label for the surface quality information 
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v. A collection of PMF-Timestamp pairs representing daily aggregates and the 

times they were recorded 

 

Figure 3.17:  Information is stored for each grid cell 

 

3.6 Data Retrieval and Visualization 

Given an arbitrary route (road segment), the system performs the same mapping 

done in spatial aggregation to map the road to associated grid cells. The surface quality label 

of the road segment is retrieved from the datastore and used to visualize the road segment 

on Google Maps. 

 

Figure 3.18: Retrieved label information for each grid cell is used to colour the cell 
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Chapter 4: Experiments and Results 

This section describes the various experiments and tests ran to verify and 

demonstrate critical aspects of the stages of the system’s pipeline architecture to which this 

paper contributes. The experiments and testing aimed to answer the following questions:  

1. Is conflation as a probability aggregation method commutative and iterative? 

2. What effect do outlier probabilities have on probability aggregates? 

3. Does temporally aggregating daily aggregates maintain the iterative property?  

4. Which has better performance at querying grid cells, H3 or S2? 

5. Is map matching effective in ensuring consistent polylines for spatial aggregation? 

All experiments were carried on a 2.3 quad-core 8th generation Intel Core i5 processor, 

8GB RAM, running OS X 10.15.4.  

Experiment 1: Verifying Critical Properties of Conflation as an Aggregation Method 

  This experiment verifies the commutative and iterative properties of the chosen 

probability methods. Experiments were done in Microsoft Excel. A random sample of five 

PMFs was generated (biased towards one outcome) and aggregates were computed with 

uniform and non-uniform weights. 

Commutative Property: Is PG (p1, p2) = PG (p2, p1) and PG (p1, p2, p3, p4, p5) = PG (p2, 

p5, p3, p4, p1)? [28]. 
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Table 4.1: Results from aggregating five PMFs 

Input: 5 random PMFs (with a bias for very bad) 

 Very Bad Bad Very Good Good 
PMF 1 0.02 0.9 0.02 0.06 
PMF 2 0.3 0.5 0.01 0.19 
PMF 3 0.1 0.6 0.2 0.1 
PMF 4 0.9 0.02 0.03 0.05 
PMF 5 0.87 0.05 0.03 0.05 

 
PG (p1, p2) 0.01283 0.96236 0.00043 0.02438 
PG (p2, p1) 0.01283 0.96236 0.00043 0.02438 

     
PG (p1, p2, p3, p4, p5) 0.63257 0.36355 0.00004 0.00384 
PG (p2, p5, p3, p4, p1) 0.63257 0.36355 0.00004 0.00384 

 

It can be observed from Table 4.1 that the aggregate values for PG (p1, p2) and PG 

(p2, p1) are equal, likewise PG (p1, p2, p3, p4, p5) = PG (p2, p5, p3, p4, p1). Therefore, 

the commutative property of the aggregation method is verified. 

 

Iterative Property: Is PG (p1, p2, p3) = PG (PG (p1, p2), p3)?  

The iterative property is the most relevant because it enables the system to store 

one ‘rolling’ aggregate value, thereby removing the need for keeping all observations. 

Table 4.2 shows the results from computing rolling aggregates (incrementally updating 

aggregates with new information - PG (PG (p1, p2), p3)) and computing standard 

aggregates (computing aggregates of all the information - PG (p1, p2, p3)) 
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Table 1.2: Results from computing rolling and standard aggregates of five PMFs 

Input: 5 random PMFs (with a bias for very bad) 
 Very Bad Bad Very Good Good 

PMF 1 0.02 0.9 0.02 0.06 
PMF 2 0.3 0.5 0.01 0.19 
PMF 3 0.1 0.6 0.2 0.1 
PMF 4 0.9 0.02 0.03 0.05 
PMF 5 0.87 0.05 0.03 0.05 

 
PG (p1, p2, p3, p4, p5) 0.63257 0.36355 0.00005 0.00384 

 
PG (p1, p2) 0.01283 0.96236 0.00043 0.02438 

PG (PG (p1, p2), p3) 0.00221 0.99345 0.00015 0.00419 
PG (PG (PG (p1, p2), p3), p4) 0.09003 0.90027 0.00020 0.00950 

PG (PG (PG (PG (p1, p2), p3), p4), p5) 0.63257 0.363545 0.00005 0.00384 
 

It can be observed that the final aggregated from either computing aggregating 

rolling aggregates or computing standard aggregate is the same (in bold). This result verifies 

the iterative property of the aggregation method. 

Experiment 2: What Effect do Outlier Probabilities have on Probability Aggregates? 

This experiment investigates how the probability aggregation method performs 

with outliers (extreme probability values that deviate from other observations). The case 

scenario is described as follows: 

Suppose we have five observed PMFs from five different smartphones for a given 

road segment. Four of the five observed PMFs are the same (reasonably inclined towards 

‘very bad’ with probability 0.6) and one, an outlier (somewhat inclined towards ‘good’ 

with probability 0.6999 and extremely against ‘very bad’ with probability 0.0001).  
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Control: Assuming all observations are the same (each with uniform weight 0.2), the 

aggregate is shown in Table 4.3 below. 

Table 4.3: Results from aggregating five unanimous PMFs (each with weight 0.2) 

Input: 5 random PMFs (with a bias for a very bad) 
 Very Bad Bad Very Good Good 

PMF 1 (w = 0.2) 0.6 0.2 0.1 0.1 
PMF 2 (w = 0.2) 0.6 0.2 0.1 0.1 
PMF 3 (w = 0.2) 0.6 0.2 0.1 0.1 
PMF 4 (w = 0.2) 0.6 0.2 0.1 0.1 
PMF 5 (w = 0.2) 0.6 0.2 0.1 0.1 

     
PG (p1, p2, p3, p4, p5) 0.99564 0.00410 0.00013 0.00013 

 

Without any outlier, and with unanimous observations, the aggregate surface quality of the 

road segment was ‘very bad’ with a probability ~0.99. 

Now, assuming an outlier observation is introduced (highlighted in red) with 

extreme probability ~0.001 for ‘very bad’ and all observations are combined uniformly, 

the results are shown in Table 4.4 below. 

Table 4.4: Results from aggregating one outlier PMF highlighted in red and four 

unanimous PMFs (each with weight 0.2) 

Input: 5 random PMFs (with bias with a  very bad) 
 Very Bad Bad Very Good Good 

PMF 1 (w = 0.2) 0.001 0.2 0.1 0.699 
PMF 2 (w = 0.2) 0.6 0.2 0.1 0.1 
PMF 3 (w = 0.2) 0.6 0.2 0.1 0.1 
PMF 4 (w = 0.2) 0.6 0.2 0.1 0.1 
PMF 5 (w = 0.2) 0.6 0.2 0.1 0.1 

PG (p1, p2, p3, p4, p5) 0.24476 0.60434 0.01889 0.13201 
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When an outlier was introduced, the aggregate probabilities and road surface 

quality information changed from ‘very bad’ to ‘bad’ (highlighted in green). This suggests 

that outliers do impact the result of aggregation and therefore, must be filtered out during 

aggregation. 

A solution to this outlier phenomenon would be to give less weight to ‘unreliable’ 

or outlier observations. Table 4.5 shows the results from the scenario but with non-

uniform weights (the outlier receives less weight than others). 

Table 4.5: Results from aggregating four unanimous PMFs with uniform weight (~0.2) 

and one outlier with less weight (~0.02) 

Input: 5 random PMFs (with a bias for very bad) 
 Very Bad Bad Very Good Good 

PMF 1 (w = 0.02439) 0.001 0.2 0.1 0.699 
PMF 2 (w = 0.2439) 0.6 0.2 0.1 0.1 
PMF 3 (w = 0.2439) 0.6 0.2 0.1 0.1 
PMF 4 (w = 0.2439) 0.6 0.2 0.1 0.1 
PMF 5 (w = 0.2439) 0.6 0.2 0.1 0.1 

PG (p1, p2, p3, p4, p5) 0.97687 0.02049 0.00119 0.00145 
 

When the outlier observation was weighted less than the rest of the observations, it 

barely affected the aggregate. The final aggregate surface quality (‘very bad’) highlighted 

in green coincided with that of the control group.   

Experiment 3: Does Temporally Aggregating Daily Aggregates Maintain the Iterative 

Property?  

 Chapter 3 Section 4 explained the process of temporal aggregation. For each road 

segment, all PMFs observed in a day are aggregated to obtain daily aggregates which are 

then aggregated to obtain a global aggregate. This experiment simulates the temporal 
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aggregation of a random sample of PMFs observed on different days and verifies if the 

proposed aggregation method maintains the iterative property required by the system. The 

experiment was conducted with a Python 3 implementation of the desired algorithm and a 

case scenario as follows: 

Suppose we have five PMFs observed for a given road segment and the first two, 

observed on Day 1, were aggregated separately from the remaining three, observed on Day 

10. Will the global aggregate at Day 10 (tA = 10) be the same if it were calculated as the 

aggregate of Day 1 and Day 10 aggregates as if it were calculated as an aggregate of all 

observed PMFs?  

Control: Aggregate all PMFs assuming all observations are available. The PMFs observed 

on Day 1 are given lesser weight than more recent PMFs observed on Day 10. Table 4.6 

below shows the results. 

Table 4.6: Results from the temporal aggregation of five PMFs 

Input: 5 random PMFs (with a bias for very bad) 
 w(Dt) Very Bad Bad Very Good Good 

PMF 1 (t = 1) 0.94 0.2 0.5 0.2 0.1 
PMF 2 (t = 1) 0.94 0.2 0.3 0.4 0.1 
PMF 3 (t = 10) 1 0.3 0.5 0.1 0.1 
PMF 4 (t = 10) 1 0.8 0.05 0.05 0.1 
PMF 5 (t = 10) 1 0.1 0.1 0.1 0.7 

PG (p1, p2, p3, p4, p5)  0.67654 0.24253 0.02695 0.05398 
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Aggregating daily aggregates: Aggregate the daily aggregates for Day 1 and Day 10. 

Table 4.7: Computing the Day 1 aggregate. Day 1 = PG (p1, p2) 

Input: 5 random PMFs (with a bias for very bad) 
 w(Dt) Very Bad Bad Very Good Good 

PMF 1 (t = 1) 1 0.2 0.5 0.2 0.1 
PMF 2 (t = 1) 1 0.2 0.3 0.4 0.1 
PG (p1, p2)  0.14286 0.53571 0.28571 0.03571 

 

Table 4.8: Computing the Day 10 aggregate. Day 10 = PG (p3, p4, p5) 

Input: 5 random PMFs (with a bias for very bad) 
 w(Dt) Very Bad Bad Very Good Good 

PMF 3 (t = 10) 1 0.3 0.5 0.1 0.1 
PMF 4 (t = 10) 1 0.8 0.05 0.05 0.1 
PMF 5 (t = 10) 1 0.1 0.1 0.1 0.7 

      
PG (p3, p4, p5)  0.70588 0.07353 0.01470 0.20588 

 

Table 4.9: Results from aggregating Day 1 and Day 10 aggregates 

Input: 5 random PMFs (with a bias for very bad) 
 w(Dt) Very Bad Bad Very Good Good 

PG (p1, p2) 0.94 0.14286 0.53571 0.28571 0.03571 
PG (p3, p4, p5) 1 0.70588 0.07353 0.01470 0.20588 

      
PG (PG (p1, p2), PG (p3, p4, p5))  0.67654 0.24253 0.02695 0.05398 

 

The aggregate of daily aggregates for day 1 and day 10 aggregates, PG (PG (p1, p2), 

PG (p3, p4, p5)) was the same as the aggregate of observations altogether, PG (p1, p2, p3, 

p4, p5). This verifies that the aggregation method remains iterative when aggregating 

temporal (daily) aggregates.  
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Experiment 4: Comparing the Performance of two Candidate Grid Systems (a 

Hexagonal (Uber’s H3) and a Quadrilateral (Google’s S2) Grid System. 

This experiment compares the performance of two grid index systems (hexagon-

based Uber’s H3 and quadrilateral-based Google’s S2) in cell querying (finding the 

corresponding grid cell given a GPS coordinate) at similar resolutions (cell sizes). 

Setup 

Workloads of uniformly distributed random GPS coordinates in increasing 

quantities were each run 1000 times on both grid systems (implemented in Python 3) and 

the response times were recorded using the Python 3’s native timeit module.  

Results 

Table 4.10: Response times (seconds) of the two systems across various workloads sizes  

 Workload Size (number of queries) 

 1 10 100 1000 10000 100000 1000000 
H3 

(res = 12) 0.00001 0.00005 0.00048 0.00495 0.05234 0.52507 5.03337 

S2 
(res = 20) 0.00003 0.00025 0.00270 0.02520 0.26324 2.57054 24.64204 

 
 

 
Figure 4.1: Graphs of response times against workload sizes of both systems. Left uses a 

linear scale and right uses a logarithmic scale. 
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The hexagonal-based H3 system was at least twice as fast as the quadrilateral-based S2 

system at querying GPS coordinates across all workloads. 

Experiment 5: Verifying the Efficacy of Map Matching in Spatial Aggregation 

This simulation experiment verifies the efficacy of map matching to tackle the issue 

of GPS trails of vehicles travelling on uncovered sides of a road segment. Google Maps’ 

map matching and map API was used to perform map matching and visualization. 

Consider two vehicles ride on both banks of the road segment and generate parallel 

GPS trails T1 and T2. Spatial aggregation on both trails produces the associated sets of grid 

cells G1 and G2. For successful spatial aggregation, there must be no difference between G1 

and G2. More formally, G1 ∆ G2 = ∅. The symmetric difference between G1 and G2 were 

compared when T1 and T2 were spatially aggregated with and without map-matching.   

 

 

  

 

 

 
 

 

 

As depicted in Figure 4.2, without map matching, the resultant sets of grid cells 

from the spatial aggregation were different, but with map matching (Figure 4.3), the 

Figure: 4.3 Results from spatial 

aggregation of T1 (red) and T2 

(blue) with map matching. All grid 

cells were shared. |G1 ∆ G2| = 0 

Figure 4.2: Results from spatial 

aggregation of T1 (red) and T2 (blue) 

without map matching. Only 1 grid 

cell was shared. |G1 ∆ G2 |= 68 
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resultant grid cells are equal, sharing all grid cells (shown as purple). This implies that 

map matching is a suitable technique to handle variant trails on the same road segment. It 

does not matter whether the GPS trail travels along uncovered regions as they would 

always be mapping to the same polyline. 
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Chapter 5: Conclusions and Recommendations 

5.1 Summary 

This paper; connects prior work [1,9,12,36] into one proposed pipeline system 

architecture for crowdsourcing and aggregating probabilistic road surface quality 

information over time and space, verifies conflation as a method for aggregating weighted 

probability mass function and introduces an approach to aggregating information over road 

segments with geospatial grid indexes. This is one more step towards making road surface 

quality information available to road users and administrators. 

5.2 Limitations 

  This paper verifies the efficacy of chosen methods for the overall system 

theoretically but is yet to conduct a ‘real-world’ test. The lack of a ‘ground truth’ dataset of 

surface quality information for existing road segments makes it difficult to test how well 

the system performs completely. 

  Another limitation discovered in experiment 3 of Chapter 4 is that outlier 

observations of road surface quality limit the output of aggregation. The lack of a filtering 

process on input information makes the system susceptible to the effect of outlier 

information. 

 Lastly, the proposed system works with the assumption that a working multi-class 

classifier produces probabilistic surface quality information for any road segment travelled 

in a 10-second time window. Changes to the classifier may affect how aggregation is done  
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5. 3 Future Work 

  First, and foremost, a real-world case over a given geographic region with ground 

truth data available would be required to test the effectiveness and performance of this 

system thoroughly. 

Another area to explore would be how to filter out unreliable and outlier 

information that may skew output aggregates. Experiment 3 hints that weighting outlier 

information with a much lesser value significantly reduces its effect on the aggregate. 

More work could be done on how to visualize the information. Doku [12] verified 

that colour-coded visuals are useful in communicating road surface quality information; 

however, existing map services often use colours to show live traffic information. 

Alternative visuals can be explored, especially those considering the temporal nature of 

the information gathered (there should be some distinction to more recent information). 

On the user perspective, an interface could be created to enable road administrators 

(government authorities and road authorities) to view and collect the road surface quality 

information gathered over long periods for further temporal analysis. 

  



 

 40 

References 

[1] Anthony Anabila Abeo. 2018. Evaluating and choosing a machine learning 

algorithm for classifying road surface quality data. Thesis. Ashesi University. 

[2] African Union. 2011. Basic guidelines for road classification and standards on 

trans-african highways. African Union. 

[3] Giacomo Alessandroni, Lorenz Cuno Klopfenstein, Saverio Delpriori, Matteo 

Dromedari, Gioele Luchetti, Brendan Paolini, Andrea Seraghiti, Emanuele 

Lattanzi, Valerio Freschi, Alberto Carini, and Alessandro Bogliolo. 2014. 

SmartRoadSense: Collaborative Road Surface Condition Monitoring.  

[4] D. Allard, A. Comunian, and P. Renard. 2012. Probability Aggregation Methods in 

Geoscience. Math Geosci 44, 5 (July 2012), 545–581. 

[5] Michael Bacharach. 1979. Normal Bayesian Dialogues. Journal of the American 

Statistical Association 74, 368 (1979), 837–846.  

[6] Robert Bartlett. 2016. Road design standards 6.1. (2016), 11. 

[7] Ravi Bhoraskar, Nagamanoj Vankadhara, Bhaskaran Raman, and Purushottam 

Kulkarni. 2012. Wolverine: Traffic and road condition estimation using 

smartphone sensors. In 2012 Fourth International Conference on Communication 

Systems and Networks (COMSNETS 2012), 1–6.  

[8] Colin P.D. Birch, Sander P. Oom, and Jonathan A. Beecham. 2007. Rectangular 

and hexagonal grids used for observation, experiment and simulation in ecology. 

Ecological Modelling 206, 3–4 (August 2007), 347–359.  

[9] Kwabena Boohene. 2017. Automated Collection and Visualization of Road 

Quality Data to Aid Driver Navigation. Thesis. Ashesi University. 



 

  

 
41 

[10] Isaac Brodsky. 2018. H3: Uber’s Hexagonal Hierarchical Spatial Index. Uber 

Engineering Blog. Retrieved December 17, 2019 from https://eng.uber.com/h3/ 

[11] Franz Dietrich and Christian List. 2016. Probabilistic Opinion Pooling. The Oxford 

Handbook of Probability and Philosophy.  

[12] Antoinette Doku. 2014. Embedding information about road surface quality into 

Google Maps to improve navigation. Thesis. Ashesi University. 

[13] Viengnam Douangphachanh and Hiroyuki Oneyama. 2013. Estimation of road 

roughness condition from smartphones under realistic settings. In 2013 13th 

International Conference on ITS Telecommunications (ITST), 433–439.  

[14] Ahmed Elghriany, Ping Yi, Peng Liu, and Quan Yu. 2016. Investigation of the 

effect of pavement roughness on crash rates for rigid pavement. Journal of 

Transportation Safety & Security 8, 2 (April 2016), 164–176.  

[15] V. Freschi, S. Delpriori, L. C. Klopfenstein, E. Lattanzi, G. Luchetti, and A. 

Bogliolo. 2014. Geospatial data aggregation and reduction in vehicular sensing 

applications: The case of road surface monitoring. In 2014 International 

Conference on Connected Vehicles and Expo (ICCVE), 711–716. 

[16] Johann Gamper, Michael Böhlen, and Christian S. Jensen. 2009. Temporal 

Aggregation. Encyclopedia of Database Systems (2009), 2924–2929.  

[17] Christian Genest and James V. Zidek. 1986. Combining Probability Distributions: 

A Critique and an Annotated Bibliography. Statist. Sci. 1, 1 (February 1986), 114–

135.  

[18] Thomas D. Gillespie. 1992. Fundamentals of Vehicle Dynamics. SAE 

International, Warrendale, PA. 

[19] Google. S2 Geometry. Retrieved December 18, 2019 from http://s2geometry.io 



 

 42 

[20] Mahdi Hashemi and Hassan A. Karimi. 2014. A critical review of real-time map-

matching algorithms: Current issues and future directions. Computers, 

Environment and Urban Systems 48, (November 2014), 153–165.  

[21] Theodore Hill. 2008. Conflations of Probability Distributions. Transactions of the 

American Mathematical Society 363, (August 2008).  

[22] Theodore P. Hill and Jack Miller. 2011. How to combine independent data sets for 

the same quantity. Chaos 21, 3 (July 2011), 033102.  

[23] Salil S. Kanhere. 2013. Participatory Sensing: Crowdsourcing Data from Mobile 

Smartphones in Urban Spaces. In Distributed Computing and Internet Technology 

(Lecture Notes in Computer Science), Springer Berlin Heidelberg, 19–26. 

[24] Ted R. Miller and Eduard Zaloshnja. 2009. On a Crash Course: The Dangers and 

Health Costs of Deficient Roadways.  

[25] Mikko Perttunen, Oleksiy Mazhelis, Fengyu Cong, Mikko Kauppila, Teemu 

Leppänen, Jouni Kantola, Jussi Collin, Susanna Pirttikangas, Janne Haverinen, 

Tapani Ristaniemi, and Jukka Riekki. 2011. Distributed Road Surface Condition 

Monitoring Using Mobile Phones. In Ubiquitous Intelligence and Computing, 

Ching-Hsien Hsu, Laurence T. Yang, Jianhua Ma and Chunsheng Zhu (eds.). 

Springer Berlin Heidelberg, Berlin, Heidelberg, 64–78.  

[26] Richard Pettigrew. 2019. Aggregating incoherent agents who disagree. Synthese 

196, 7 (July 2019), 2737–2776.  

[27] Jacob Poushter. 2016. Smartphone Ownership and Internet Usage Continues to 

Climb in Emerging Economies. Pew Research Center, Washington, DC. Retrieved 

from https://www.pewresearch.org/global/2016/02/22/smartphone-ownership-and-

internet-usage-continues-to-climb-in-emerging-economies/ 



 

  

 
43 

[28] Roopesh Ranjan and Tilmann Gneiting. 2010. Combining probability forecasts. 

Journal of the Royal Statistical Society: Series B (Statistical Methodology) 72, 1 

(2010), 71–91.  

[29] Kevin Sahr, Denis White, and A. Jon Kimerling. 2003. Geodesic Discrete Global 

Grid Systems. Cartography and Geographic Information Science 30, 2 (January 

2003), 121–134. 

[30] Shahram Sattar, Songnian Li, and Michael Chapman. 2018. Road Surface 

Monitoring Using Smartphone Sensors:A Review. Sensors 18, (November 2018), 

3845.  

[31] Girisha D De Silva, Ravin S Perera, and Nayanajith M Laxman. Automated 

Pothole Detection System. 5. 

[32] Iping Supriana, Dody Dharma, Dicky Satya, Dessi Satya, and Lestari. 2015. 

Geohash Index Based Spatial Data Model for Corporate.  

[33] Kanat Tangwongsan, Martin Hirzel, Scott Schneider, and Kun-Lung Wu. 2015. 

General incremental sliding-window aggregation. Proc. VLDB Endow. 8, 7 

(February 2015), 702–713.  

[34] Transport Focus. 2017. Road surface quality: what road users want from 

Highways England. Transport Focus. Retrieved December 6, 2019 from 

https://www.transportfocus.org.uk/research-publications/publications/road-surface-

quality-road-users-want-highways-england/ 

[35] United Nations Economic and Social Commission for Asia and the Pacific. 1993. 

Asian highway classification and design standards. United Nations Economic and 

Social Commission for Asia and the Pacific. 



 

 44 

[36] Francis Delali Vorgbe. 2014. Classification of road surface quality using Android 

smartphone devices. Thesis. Ashesi University. 

 

 

 



 

 

 

ASHESI UNIVERSITY 

 

KWANALYTICS: A GEOGRAPHIC INFORMATION SYSTEM FOR 

CROWDSOURCING AND AGGREGATING ROAD SURFACE 

QUALITY INFORMATION FROM SMARTPHONES 

 

UNDERGRADUATE THESIS 

B.Sc. Computer Science 

 

Kevin Kwesi Kafui de Youngster 

2020 

 

 



ASHESI UNIVERSITY 

 

 

KWANALYTICS: A GEOGRAPHIC INFORMATION SYSTEM FOR 

CROWDSOURCING AND AGGREGATING ROAD SURFACE 

QUALITY INFORMATION FROM SMARTPHONE 

 

 

UNDERGRADUATE THESIS 

Undergraduate Thesis submitted to the Department of Computer Science, Ashesi 

University in partial fulfilment of the requirements for the award of Bachelor of Science 

degree in Computer Science. 

 

 

Kevin Kwesi Kafui de Youngster 

2020 



 

  

 
i 

DECLARATION 

I hereby declare that this Undergraduate Thesis is the result of my own original work and 

that no part of it has been presented for another degree in this university or elsewhere.  

Candidate’s Signature……………………………………………………………………… 

Candidate’s Name:………………………………………………………………………… 

Date:…………………….. 

 

I hereby declare that preparation and presentation of this Undergraduate Thesis were 

supervised in accordance with the guidelines on supervision of Undergraduate Thesis laid 

down by Ashesi University.  

Supervisor’s Signature: ………………………………………………………………….. 

Supervisor’s Name:……………………………………………………………………….. 

Date:……………………… 

  



 

 ii 

Acknowledgements 

Firstly, I express my deepest gratitude to my supervisor, Dr Ayorkor Korsah, who, despite 

having so many responsibilities (especially during this pandemic), supported and guided 

me throughout the entire project. Her keen insights and level-headedness when 

communicating with me helped in times of despair, and for that, I am eternally grateful.  

 
I also thank my parents and younger siblings for providing physical and emotional support 

to help me finish this project as we were all staying in due to the COVID-19 pandemic.  

 
I also give special shout-outs to my colleagues, who supported me by offering to listen and 

pretending to understand as I rambled on my many thoughts and theories—shout-outs to 

Oracking Amenreynolds, Marcus Nartey, Kuukua Bentil and others. 

 

Finally, many thanks to the lecturers including Abdul Wasay who offered advice that 

helped me bring this project to fruition, and the Computer Science Department of Ashesi 

University, for providing a robust structured curriculum that supported my growth in the 

understanding the field that is Computer Science. 



 

  

 
iii 

Abstract 

Road surface quality information is critical to road users when navigating road networks, 

and road authorities when making decisions on road infrastructure. However, not many 

systems exist that readily provide this information. This work connects prior work and 

proposes a geographic information system for crowdsourcing and aggregating 

probabilistic road surface quality information collected from users’ smartphones from 

various times and at different geographic locations.  
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Chapter 1: Introduction 

Drivers, riders, and pedestrians consider multiple factors when navigating road 

networks. Some of these factors are distance, traffic, and the quality of road surfaces [12]. 

There exist mapping services, such as Google Maps and Waze, that provide information on 

routing, distance, and traffic, to make navigation more convenient. However, not many exist 

that comprehensively show the surface quality of roads, which is useful to users during 

navigation [34]. 

  Research suggests a strong correlation between the surface qualities of roads and 

road accidents, traffic, and travel times [14,24]. It is, therefore, crucial for governments and 

road authorities to obtain relevant road surface quality information to make data-driven 

decisions on road infrastructure. This task of acquiring such information at scale is, 

however, challenging, costly and labour-intensive because it currently requires the use of 

specialized equipment [30]. 

With the rapid increase in usage and ownership of smartphones, especially in 

emerging countries [27], crowdsourcing techniques [23] can be used to obtain road surface 

quality data from people’s smartphones. By utilizing readings from smartphone sensors 

such as the linear accelerometer, gyroscope, and GPS, it is possible to classify the surface 

quality of road segments [13]. The road surface quality information from classification can 

then be displayed on a map interface to be used by drivers when navigating, and by 

institutions such as governments and road authorities when planning transport infrastructure 

maintenance. 
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In this work, I propose Kwanalytics, a system for crowdsourcing, aggregating, 

storing and visualizing road surface quality information obtained from smartphone sensors. 

To effectively create this system, the following research questions are explored: 

1. How to aggregate classification information (in the form of probability 

distributions) over the dimensions of time and geographical space? 

2. How to store and retrieve data over segments of roads? 

1.1 Prior Work 

This work builds upon some prior work at Ashesi University that focus on methods 

of classifying road surface quality information from sensor readings, user research to 

determine the usefulness of road surface quality information, and approaches to collect 

sensor information in the first place. They are as follows:  

Vorgbe [36] implemented a classifier (using logistic regression) that took input from 

smartphone sensors such as linear accelerometer and gyroscope readings to classify road 

surfaces with labels {good, fair,bad}. The classifier was able to distinguish between good 

and bad roads with a true positive rate of 92%, good and fair roads with 83% accuracy but 

was unable to differentiate between fair and bad roads. 

  Doku [12] conducted user experience research on whether the embedding of road 

surface quality information into a map interface such as Google Maps would be useful to 

users and how best to visualize such information. It was concluded that embedding surface 

quality was helpful and that a colour-coded visual might be sufficient. 

Abeo [1] built up on issues raised in Vorgbe’s [36] work by evaluating five 

classification algorithms to determine which would best classify accelerometer and 
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gyroscope readings. It was concluded that for the data tested on, the best performing 

classifier was the decision-tree based classifier with an overall accuracy rate of 92%. 

Boohene [9] then implemented an application to collect sensor readings from 

smartphones to a backend data store and prototyped a visualization of the collected data on 

a map interface to aid road users in navigation. 

The main objective of this research is to build upon Boohene’s work [9] by 

proposing an alternative approach to store collected road surface quality information and 

filling in the gaps not addressed by his work (namely crowdsourcing and aggregation). This 

work also connects prior work to form an end-to-end system for crowdsourcing road and 

visualizing road surface quality information.  

In summary, the main contributions of this work are as follows: 

1. A pipeline architecture design for crowdsourcing, aggregating and storing road surface 

quality information. 

2. A method to aggregate probability distributions over the dimension of time. 

3. A geospatial grid-based approach to aggregating information over road segments and 

geometries.  
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Chapter 2: Background and Related Work 

2.1 Classifying Road Surface Quality from Smartphone Sensor Readings 

This project works on the assumption that road surface quality information can be 

obtained from smartphone sensor readings using a classifier [13]. Many research papers 

have explored approaches to classifying sensor data from smartphones to obtain road 

surface quality information. Some used threshold-based classifiers [31], some used machine 

learning methods such as K-means clustering [1] and Support Vector Machines [7,25] 

others used signal processing techniques [3]. The various approaches have strengths and 

weaknesses depending on factors such as frequency of recording, the speed of the vehicle, 

and others, as outlined in Sattar et al.’s survey [30]. Most of these projects focus on testing 

the feasibility of their proposed classification approach and not necessarily how readings 

from multiple users can be crowdsourced. 

2.2 Crowdsourcing Road Surface Quality Information 

Crowdsourcing involves obtaining information from large numbers of people using 

technology. By leveraging sensors in people’s smartphones, it is possible to obtain sensor 

information on a large-scale at lesser costs compared to traditional approaches (for example, 

using sensor networks). According to Kanhere [23], this sensing can be categorized as 

people-centric (collecting data about the user) or environment-centric (collecting data about 

the user’s surroundings). This project falls in the second category, where road surface 

quality information is obtained from people’s smartphones. To the best of my knowledge, 

there is only one work that crowdsources road surface quality information using 

environment-centric sensing: SmartRoadSense by Alessandroni et al. [3]. 
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Alessandroni et al. [3] proposed a Geographic Information System called 

‘SmartRoadSense’ that crowdsources road surface quality information from smartphones. 

They collected accelerometer readings from smartphones, classified them with a 

mathematical model [18] to obtain an ordinal ‘roughness index’ describing the quality of 

the road surface. They then stored the information in a spatial database (PostgreSQL with 

PostGIS extension) and visualized the information using a mapping service. In their 

approach, they aggregated the collected road surface quality information by computing the 

arithmetic average of the roughness indices for each segment of a road. 

Freschi et al. [26] built upon Alessandroni et al. [3]’s system to enable it to scale 

effectively. They acknowledged that such a system, collecting massive amounts of data, 

may have storage overhead as many data points have to be processed. They addressed this 

issue by aggregating the collected sensor data spatially and temporally. To aggregate sensor 

readings spatially, they sampled ‘centroid points’ for each road segment and averaged all 

roughness indices within a specific radius of the centroid points. To temporally aggregate 

the roughness indices, they used a weighted average function to give more weight to recent 

observations. 

Sattar et al. [30] in reviewing the various road surface quality work claimed that 

“[the] best approach to crowdsourcing road surface anomalies from multiple sources would 

be a probabilistic and spatiotemporal-based approach that would overcome both the 

uncertainty and variability in road surface anomalies”. State-of-the-art approaches 

acknowledged that indeed variance in the types of devices and vehicles used affected the 

accuracy of their classifiers. This paper attempt to address the issue Sattar et al. [30] raised 

by proposing a system that works with probabilistic classification information (obtained 

from a multi-class classifier) and aggregates it with spatio-temporal aggregation methods.  
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 2.3 Data Aggregation 

Since crowdsourcing requires collecting massive amounts of data, there is a need for 

aggregation techniques to summarize such data to reduce the storage and computation 

overhead in a way that preserves information. This system involves summarizing road 

surface quality information (in the form of probability distributions) over the dimensions of 

time and space. The following subsections give an overview of probability, spatial and 

temporal aggregation methods. 

2.3.1 Probability Aggregation 

The problem of combining (‘pooling’) probabilistic information (‘opinions’) from 

different individuals is defined by Dietrich et al. [11] as the opinion pooling problem. It 

involves applying some function (‘pooling method’) to a collection of probability 

distributions to obtain a single aggregate distribution. 

 

Figure 2.1: The Opinion Pooling Problem. P1, P2, and P3 are combined by a pooling 

method PG to obtain an aggregate distribution PG (P1, P2, P3) 
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Pooling Methods 

A pooling method is a function that combines multiple probabilities to obtain an 

approximation of their ‘true’ combination. In their reviews, Allard et al. [4] and Genest et 

al. [17] showed some pooling methods and explained that the choice of method depended 

on its application and desired properties. They also categorized most pooling methods based 

on how information was combined: additive or multiplicative. 

Additive Methods 

Additive methods express the aggregate of probabilities as the disjunction (union) 

of the constituent probabilities using addition. Methods include the most commonly used 

linear pooling (weighted arithmetic average) [5] and the beta-transformed arithmetic 

average [28]. 

 

Figure 2.2: Additive Pooling Methods 

 

Multiplicative Methods  

Multiplicative methods, on the other hand, express the aggregate of probabilities as 

the conjunction (intersection) of these probabilities using multiplication. These methods 

require normalizing the aggregate probability with a constant c, to ensure the output is a 

discrete probability distribution (also called Probability Mass Function – PMF). Methods 
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include geometric pooling (normalized weighted geometric average) [17], multiplicative 

pooling [11], and conflation (normalized weighted product) [21]. 

 
 

Figure 2.3: Multiplicative pooling methods 

 

2.3.2 Temporal Aggregation 

  Temporal aggregation involves partitioning information into groups by a time 

granularity (for example, daily, monthly, or yearly), and applying a function on each group 

to obtain aggregates [16]. Systems that work with streaming information (sequences of 

continuously recorded data) often use the sliding window approach to summarize data [33]. 

It involves computing over only the N-most recent elements to answer queries where N is 

defined as the window size. 
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Figure 2.4: Illustration of Sliding Window 

 

2.3.3 Spatial Aggregation 

I have identified two main approaches to aggregating geospatial information 

regarding roads: aggregation based on road geometry and aggregation based on a grid index. 

Aggregation based on Road Geometry 

This involves aggregating information across road segments based on their geometry 

(shapes and coordinates). This approach requires prior information about road geometries 

and the connections between roads in a network. Roads are divided into segments by placing 

‘landmark points’ on each road and computing aggregates for each landmark point.  

Freschi et al. [15] used this approach to aggregate information for roads. They 

created landmark points (centroids) along a road geometry to divide it into segments. All 

observations that fell within a given radius of each centroid were aggregated and associated 

with that centroid. 
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Figure 2.5: Freschi et al. [15]’s approach to spatial aggregation: placing centroids 

(average points) on a road segment 

 

The limitations of this approach are that (i) it requires pre-processing a road network 

to determine where to place landmark points and (ii) it becomes more complicated when 

landmark points’ locations are computed dynamically. 

 

Aggregation based on a Grid Index  

Another approach to aggregating spatial information over roads is to use a grid-based 

model (index) of the Earth, mapping portions of road segments to given cells and storing 

data for each cell. Grid indexes divide the Earth’s surface into uniformly shaped cells to 

enable efficient aggregation of information. They can be classified into two forms: 

graticular and geodesic grid indexes. 

Graticular Grid Indexes 

These grid systems use the longitude and latitude lines (graticules) as a mesh around 

the Earth’s surface to divide it into evenly spaced cells. They then use a geocoding 
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algorithm, such as GeoHash [32], to map GPS coordinates (latitude-longitude pairs) to the 

various cells in the grid. 

 

Figure 2.6: GeoHash-based approach divides the Earth with longitude and latitude lines 

into rectangular cells [32]. The red line indicates space-filling curve mapping each 2-D 

cell to a 1-D index. 

 

A limitation of graticular grid indexes is the precision error in aggregation because 

cells are not uniformly shaped (due to the curvature of the Earth around the poles). 

 

Geodesic Grid Indexes 

Geodesic grid indexes [29], like graticular grid indexes, divide the Earth’s surface 

into uniformly spaced cells. However, instead of using graticules to divide the Earth’s 

surface, they project points on the Earth’s surface unto a polyhedron and partition each face 

of the polyhedron into uniform grids. The use of projection overcomes the precision error 

from using graticules and results in uniformly shaped, uniformly sized and easily indexable 

grid cells. The shapes of the cells in a geodesic grid index may vary depending on the 

application: triangular, square, or hexagonal. 
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Figure 2.7: Possible cell shapes in a geodesic grid index [29] 

  



 

  

 
13 

Chapter 3: Methodology 

  This section introduces the architecture design of the proposed system and further 

overviews its various stages, showing the implementation of the stages to which this paper 

contributes. 

 

Figure 3.1: High-Level pipeline architecture of Kwanalytics, showing how contributions 

of this paper (highlighted in green) fit with the previous work done [1,9, 12, 36]. 

The proposed geographic information system (shown in figure 3.1) uses a pipeline 

architecture to tackle the problem of crowdsourcing road surface quality information 

because the processes involved occur in connected stages.  

In summary, the full process of the pipeline is described as follows: 

i. As vehicle navigates a road, collect sensor readings and GPS trail (Collection) 

ii. Classify sensor readings to obtain surface quality information of the road segments 

on which the vehicle travels (Classification) 

iii.  Map the recorded GPS trail from (i) onto corresponding grid cells (spatial 

aggregation) and aggregate the classification information for each cell with that 

already associated with it (probability and temporal aggregation) 

iv. Store the newly computed aggregate in the data store for all cells from (iii) (Storage) 
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v. Retrieve surface quality information (the aggregate) and visualize on map service 

(visualization) 

3.1 Data Collection and Classification 

Sensor readings and GPS trails are collected and validated from Android devices 

with an application built by Vorgbe [36]. The collected readings are then passed into a 

classifier [1,  36] which accepts a time series of sensor readings over a given segment and 

produces road surface quality information in the form of probability mass functions (PMFs). 

This output PMF gives the probability that a given road segment belongs to a given class X 

of road surface quality from a set of labels {very bad, bad, good, very good}. 

 

Figure 3.2: Sample output of classifier: A Probability Mass Function 

 

x Very Bad Bad Very Good Good 
P(X=x) 0.10 0.48 0.40 0.02 

Figure 3.3: Hash table Representation of Probability Mass Function 

The outputs from these stages are a GPS trail of a road segment (represented by a collection 

of latitude-longitude GPS coordinates), the corresponding surface quality information of 

that road segment (represented by a hash table with labels as keys and probabilities as 

values), and timestamp information (time of observation). 
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3.2 Spatial Aggregation 

At this stage, the GPS trail representing a road segment (Figure 3.4) is divided into 

parts (Figure 3.5), and the surface quality information of the segment is associated with each 

part for further aggregation. Of the two approaches for spatial aggregation mentioned earlier 

in Chapter 2, the grid-based approach was chosen because it did not require pre-processing 

a road network. This makes it well suited for geographic regions where road networks 

undergo development and deterioration. 

 

 

 

 

 

 

Using a grid index raised two further questions or design choices:  

i. What should the shape a unit grid cell be? 

ii. What should the size of each unit grid cell be? 

Shape of a unit Grid Cell 

A hexagon-based grid system (Uber’s H3 [10]) was chosen for aggregating 

information over road segments. Birch et al. [8] explained that the hexagonal and 

quadrilateral cell shapes were the most adequate for spatial aggregation and concluded 

that the choice of which to use depended on its application. For instance, the quadrilateral-

Figure 3.5: Spatially aggregated T into 
grid cells (pink) 

Figure 3.4: A trail of GPS coordinates T 
(black outline) 
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shaped grid cells can be recursively divided into smaller grid cells but have two types of 

neighbours (adjacent and diagonally separated cells). In contrast, the hexagonal-shaped 

grid cells are more compact and have one type of neighbour, making them more adequate 

for analysis involving movement across cells. Their stark differences, however, were 

irrelevant to the requirement of this project (cell indexing). Both were equally valid; hence 

the decision on which shape to use was based on the comparative performances of two 

available production-ready grid systems (the hexagonal grid system H3 [9] and the 

quadrilateral grid system S2 [19]). Experiment 4 in Chapter 4 provides more information 

on their performances. 

Size of a unit Grid Cell 

The size of a unit grid cell is crucial to the performance of the system. Using too 

large a cell might result in multiple roads covered by one grid cell (Figure 3.6) and using 

too small a cell might result in gaps and uncovered regions of a road (Figure 3.7). The 

choice size of a unit grid cell should ideally depend on the size of a road, but the various 

road standards make this problematic. Sizes and standards of roads vary by country [6] 

hence there may not be a one-size-fits-all. 
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The revised decision, therefore, was to pick a ‘good enough’ size to minimize the 

errors shown above. After consulting a few highway standards reports [2, 35], the chosen 

cell size (cell edge length) was 3.65 m (the minimum lane width of roads).  

Though this choice prevents the scenario of a grid cell covering multiple road 

segments, it is still susceptible to leaving uncovered regions of road segments. Map 

matching [20], mapping ‘raw’ GPS trails to a road network (in this case Google Maps), 

was used to deal with this problem. Experiment 5 in Chapter 4 demonstrates the efficacy 

of this approach.  

In summary, the spatial aggregation process, mapping road segments to 

corresponding grid cells, is as follows: 

i. Obtain GPS trail over road segment 

ii. Map match the trail to obtain a consistent polyline (using Google Maps API) 

Figure 3.6: Large grid cell size result in 

incorrectly representing road segments. In 

this scenario, one grid cell covers n > 2 

different road segments 

Figure 3.7: Small grid cell sizes result 

in large 'uncovered' regions on road 

segments. In this scenario, grid cells 

barely cover the one road segment. 
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iii. Map the polyline to grid cells (using H3 grid system and an interpolation algorithm) 

For (iii), this paper introduces an algorithm that maps polylines to grid cells by 

stepping incrementally along the input line segment over fixed intervals and maps each new 

point to a grid cell. Figure 3.8 and Figure 3.9 below visualize and outline the algorithm for 

this process. 

 

Figure 3.8: Mapping a polyline into grid cells. Grid cells are represented as red circles 

for easy illustration 

 

 

Figure 3.9:  Algorithm for mapping road segments (represented as polylines) to grid cells 
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Runtime Complexity 

The runtime complexity of the algorithm in Figure 3.9 is O(ǁPǁ) where ǁPǁ is the 

distance (in units) of the polyline P. It is more specifically O(ǁPǁ/d) where d is the step 

distance.  

3.3 Probability Aggregation 

After spatial aggregation, the road surface quality information for each grid cell is 

aggregated with existing information. This section details how the chosen pooling method 

was selected based on its properties and the system’s requirements. It further details how the 

method is implemented to suit the system. 

The appropriate pooling method should have the following properties: 

• Weighted: It should support weights to enable weighting observations differently. 

• Has no hyperparameters: It should not require tuning or calibration to be useful 

as there is no available training data for aggregation. 

• Epistemically Valid: It should produce approximations close to the true 

combination of probabilities. According to Dietrich et al. [11], an epistemically 

valid pooling method should depend ‘primarily on the opinions of the more 

competent observations’ as opposed to giving equal weight to each observation. 

• Commutative: The output aggregate PMF of the method should not depend on the 

order in which PMFs are pooled [22]. That is, PG (p1, p2, p3) = PG (p2, p1, p3) [28]. 

• Works with asymmetric information: It should work with input PMFs based off 

different information [11] (in the system’s case, smartphone sensor readings are 

assumed to be variant and dependent on various factors such as the type of vehicle 

and the quality of sensors on the phone).  
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• Iterative: Because aggregation in the system is done on a ‘rolling’ basis (only one 

aggregate is stored, and inputs are discarded), the pooling method must be iterative 

to support updating an aggregate with new information in a consistent manner. 

That is PG (p1, p2, p3) = PG (PG (p1, p2), p3). 

 

Table 3.1: Comparison of pooling methods with associated relevant properties 

 Linear 
Beta-

Transformed 
Linear 

Geometric Multiplicative Conflation 

Weighted ✓ ✓ ✓  ✓ 
Epistemically Valid    ✓ ✓ ✓ 
No Hyperparameters ✓  ✓ ✓ ✓ 

Commutative ✓ ✓ ✓ ✓ ✓ 
Work with Asymmetric 

Information    ✓ ✓ 

Iterative     ✓ 
 

Various literature [4,11,21–23] was consulted to obtain the properties of various 

pooling methods mentioned in Chapter 2. These pooling methods were then compared 

based on their properties (as shown in Table 3.1). Based on the system requirements, 

conflation, a normalized weighted product of the PMFs, was chosen. In addition to having 

the properties detailed in (Table 3.1), it also minimizes the loss of Shannon information 

and does not require weights to sum up to one since it uses relative weights [21]. 

 

Mathematical Formula for Conflation 

The aggregate probability, PG (E) of each outcome E ∈ {E1, E2…Ek} across all n 

PMFs: [P1, P2... Pn] with associated weights in W: [w1, w2… wn] is defined as: 
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Figure 3.10: Formula for Conflation 

 
Where c, the normalization constant, is the inverse of the sum of values of each outcome 

post-aggregation.  

 

Figure 3.11: Normalization constant 

 

Algorithm for Aggregating PMF (in Records) using the Conflation Method 

The conflation method was implemented in Python 3. It accepts input PMFs 

(represented as an array of hash tables) and their corresponding weights (represented as an 

array of floats) and outputs an aggregate PMF. 
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Figure 3.12 Algorithm for aggregating road surface quality information (PMFs)  

 

Runtime Complexity 

The runtime complexity of the algorithm in Figure 3.12 is O(n).  It is more 

specifically O(n.j) where n is the number of PMFs to be aggregated, and j is the number of 

outcomes across all PMFs (a constant, 4 labels for each class of road surface quality). 

 

Dealing with Zero-values. 

Since conflation is based on the multiplication of probabilities, if one PMF has a 

zero value for a given outcome, the aggregate will continue to be zero. This property is 

defined by Allard et al. [4] as ‘0/1 enforcing’ and was overcome by working within a 

range [0.001, 0.999].  
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3.4 Temporal Aggregation 

For later temporal analysis of road surface quality information, the system uses a 

time granularity of a day. For each road segment corresponding to a grid cell, the system 

keeps daily aggregates (aggregate of all PMFs observed during a day).  

Further, the sliding window approach is used to temporally aggregate observations 

(PMFs) because this system works with streaming information. A window size of 365 days 

was chosen to connote “considering observations made over the past year (365 days), what 

is the surface quality of a road segment?”. Therefore, for each grid cell representing a portion 

of a road segment, daily aggregates as well as global aggregates are kept and regularly 

updated. Global aggregates represent the surface quality information of a road segment at 

any time t, and daily aggregates represent the surface quality of a road segment at any day 

over the past 365 days. 

 

Figure 3.13: Temporal aggregation: for each road segment, the continuous data are 

aggregated by day, and each day’s aggregate are further aggregated to obtain a global 

aggregate that represents the surface quality of that road segment.  
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Weighting Observations by Time 

 A requirement for this system is to consider recent observations (PMFs) more than 

older observations. This was done by weighting observations according to how long ago 

they were observed. An exponential decay function was used to weigh observations because 

of its horizontal asymptote. As an observation gets older, its corresponding weight 

approaches zero. The weighting function defines the weight w of a PMF observed at time ti 

aggregated at time tA as follows: 

 

Figure 3.14: Weighting function to weight observations according to their recency 

 

Where T, the time constant, is the value of Δt that gives a weight of 0.368. Since 

we are working with a sliding window of length 1 year (365 days), the value of T = 134 

days (0.365 x 365 days).  

To illustrate how weights are assigned to observations, consider an example. 

Suppose observations have been made on Day 1, Day 10 and Day 100 and aggregation is 

performed on Day 100, the weights of each observation are calculated as follows: 

 

Table 3.2: Showing how weights are assigned to each daily aggregate when computing the 

global aggregate 

 Day 10 Day 30 Day 100 
ti 10 30 100 
tA 100 100 100 
 Δt 90 70 0 

w(Δt) 0.51086915 0.59310249 1 
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Figure 3.15: Graph representing w(t) the weight function and the corresponding weights 

of the three observations 

 

Note: Observations made on the same day are aggregated with a uniform weight of 1 since 

Δt is 0 for those observations. 

End-to-end Aggregation: Putting it all together 

In the previous subsections, the various aspects of aggregation (spatial, probability 

and temporal) were detailed. This subsection attempts to put them all together in one 

procedure.  

Given a GPS trail of coordinates, T representing a road segment, taken at 

DateTime t, with surface quality information (PMF) P, the aggregation process is as 

follows: 
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Figure 3.16: Algorithm of the entire aggregation process  

 

Runtime Complexity  

The asymptotic runtime complexity of the aggregation process is O(c), where c is 

the number of grid cells obtained from the spatial aggregation of the GPS trail. 

3.5 Data Storage 

A document-based datastore, MongoDB, is used to store surface quality information 

over road segments (grid cells in the grid index). Each document represents associated 

information of each grid cell and consists: 

i. The grid cell’s ID defined by the grid index system used for querying 

ii. The global aggregate PMF  

iii. A timestamp for the global aggregate PMF 

iv. Label for the surface quality information 
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v. A collection of PMF-Timestamp pairs representing daily aggregates and the 

times they were recorded 

 

Figure 3.17:  Information is stored for each grid cell 

 

3.6 Data Retrieval and Visualization 

Given an arbitrary route (road segment), the system performs the same mapping 

done in spatial aggregation to map the road to associated grid cells. The surface quality label 

of the road segment is retrieved from the datastore and used to visualize the road segment 

on Google Maps. 

 

Figure 3.18: Retrieved label information for each grid cell is used to colour the cell 



 

 28 

Chapter 4: Experiments and Results 

This section describes the various experiments and tests ran to verify and 

demonstrate critical aspects of the stages of the system’s pipeline architecture to which this 

paper contributes. The experiments and testing aimed to answer the following questions:  

1. Is conflation as a probability aggregation method commutative and iterative? 

2. What effect do outlier probabilities have on probability aggregates? 

3. Does temporally aggregating daily aggregates maintain the iterative property?  

4. Which has better performance at querying grid cells, H3 or S2? 

5. Is map matching effective in ensuring consistent polylines for spatial aggregation? 

All experiments were carried on a 2.3 quad-core 8th generation Intel Core i5 processor, 

8GB RAM, running OS X 10.15.4.  

Experiment 1: Verifying Critical Properties of Conflation as an Aggregation Method 

  This experiment verifies the commutative and iterative properties of the chosen 

probability methods. Experiments were done in Microsoft Excel. A random sample of five 

PMFs was generated (biased towards one outcome) and aggregates were computed with 

uniform and non-uniform weights. 

Commutative Property: Is PG (p1, p2) = PG (p2, p1) and PG (p1, p2, p3, p4, p5) = PG (p2, 

p5, p3, p4, p1)? [28]. 
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Table 4.1: Results from aggregating five PMFs 

Input: 5 random PMFs (with a bias for very bad) 

 Very Bad Bad Very Good Good 
PMF 1 0.02 0.9 0.02 0.06 
PMF 2 0.3 0.5 0.01 0.19 
PMF 3 0.1 0.6 0.2 0.1 
PMF 4 0.9 0.02 0.03 0.05 
PMF 5 0.87 0.05 0.03 0.05 

 
PG (p1, p2) 0.01283 0.96236 0.00043 0.02438 
PG (p2, p1) 0.01283 0.96236 0.00043 0.02438 

     
PG (p1, p2, p3, p4, p5) 0.63257 0.36355 0.00004 0.00384 
PG (p2, p5, p3, p4, p1) 0.63257 0.36355 0.00004 0.00384 

 

It can be observed from Table 4.1 that the aggregate values for PG (p1, p2) and PG 

(p2, p1) are equal, likewise PG (p1, p2, p3, p4, p5) = PG (p2, p5, p3, p4, p1). Therefore, 

the commutative property of the aggregation method is verified. 

 

Iterative Property: Is PG (p1, p2, p3) = PG (PG (p1, p2), p3)?  

The iterative property is the most relevant because it enables the system to store 

one ‘rolling’ aggregate value, thereby removing the need for keeping all observations. 

Table 4.2 shows the results from computing rolling aggregates (incrementally updating 

aggregates with new information - PG (PG (p1, p2), p3)) and computing standard 

aggregates (computing aggregates of all the information - PG (p1, p2, p3)) 
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Table 1.2: Results from computing rolling and standard aggregates of five PMFs 

Input: 5 random PMFs (with a bias for very bad) 
 Very Bad Bad Very Good Good 

PMF 1 0.02 0.9 0.02 0.06 
PMF 2 0.3 0.5 0.01 0.19 
PMF 3 0.1 0.6 0.2 0.1 
PMF 4 0.9 0.02 0.03 0.05 
PMF 5 0.87 0.05 0.03 0.05 

 
PG (p1, p2, p3, p4, p5) 0.63257 0.36355 0.00005 0.00384 

 
PG (p1, p2) 0.01283 0.96236 0.00043 0.02438 

PG (PG (p1, p2), p3) 0.00221 0.99345 0.00015 0.00419 
PG (PG (PG (p1, p2), p3), p4) 0.09003 0.90027 0.00020 0.00950 

PG (PG (PG (PG (p1, p2), p3), p4), p5) 0.63257 0.363545 0.00005 0.00384 
 

It can be observed that the final aggregated from either computing aggregating 

rolling aggregates or computing standard aggregate is the same (in bold). This result verifies 

the iterative property of the aggregation method. 

Experiment 2: What Effect do Outlier Probabilities have on Probability Aggregates? 

This experiment investigates how the probability aggregation method performs 

with outliers (extreme probability values that deviate from other observations). The case 

scenario is described as follows: 

Suppose we have five observed PMFs from five different smartphones for a given 

road segment. Four of the five observed PMFs are the same (reasonably inclined towards 

‘very bad’ with probability 0.6) and one, an outlier (somewhat inclined towards ‘good’ 

with probability 0.6999 and extremely against ‘very bad’ with probability 0.0001).  
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Control: Assuming all observations are the same (each with uniform weight 0.2), the 

aggregate is shown in Table 4.3 below. 

Table 4.3: Results from aggregating five unanimous PMFs (each with weight 0.2) 

Input: 5 random PMFs (with a bias for a very bad) 
 Very Bad Bad Very Good Good 

PMF 1 (w = 0.2) 0.6 0.2 0.1 0.1 
PMF 2 (w = 0.2) 0.6 0.2 0.1 0.1 
PMF 3 (w = 0.2) 0.6 0.2 0.1 0.1 
PMF 4 (w = 0.2) 0.6 0.2 0.1 0.1 
PMF 5 (w = 0.2) 0.6 0.2 0.1 0.1 

     
PG (p1, p2, p3, p4, p5) 0.99564 0.00410 0.00013 0.00013 

 

Without any outlier, and with unanimous observations, the aggregate surface quality of the 

road segment was ‘very bad’ with a probability ~0.99. 

Now, assuming an outlier observation is introduced (highlighted in red) with 

extreme probability ~0.001 for ‘very bad’ and all observations are combined uniformly, 

the results are shown in Table 4.4 below. 

Table 4.4: Results from aggregating one outlier PMF highlighted in red and four 

unanimous PMFs (each with weight 0.2) 

Input: 5 random PMFs (with bias with a  very bad) 
 Very Bad Bad Very Good Good 

PMF 1 (w = 0.2) 0.001 0.2 0.1 0.699 
PMF 2 (w = 0.2) 0.6 0.2 0.1 0.1 
PMF 3 (w = 0.2) 0.6 0.2 0.1 0.1 
PMF 4 (w = 0.2) 0.6 0.2 0.1 0.1 
PMF 5 (w = 0.2) 0.6 0.2 0.1 0.1 

PG (p1, p2, p3, p4, p5) 0.24476 0.60434 0.01889 0.13201 
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When an outlier was introduced, the aggregate probabilities and road surface 

quality information changed from ‘very bad’ to ‘bad’ (highlighted in green). This suggests 

that outliers do impact the result of aggregation and therefore, must be filtered out during 

aggregation. 

A solution to this outlier phenomenon would be to give less weight to ‘unreliable’ 

or outlier observations. Table 4.5 shows the results from the scenario but with non-

uniform weights (the outlier receives less weight than others). 

Table 4.5: Results from aggregating four unanimous PMFs with uniform weight (~0.2) 

and one outlier with less weight (~0.02) 

Input: 5 random PMFs (with a bias for very bad) 
 Very Bad Bad Very Good Good 

PMF 1 (w = 0.02439) 0.001 0.2 0.1 0.699 
PMF 2 (w = 0.2439) 0.6 0.2 0.1 0.1 
PMF 3 (w = 0.2439) 0.6 0.2 0.1 0.1 
PMF 4 (w = 0.2439) 0.6 0.2 0.1 0.1 
PMF 5 (w = 0.2439) 0.6 0.2 0.1 0.1 

PG (p1, p2, p3, p4, p5) 0.97687 0.02049 0.00119 0.00145 
 

When the outlier observation was weighted less than the rest of the observations, it 

barely affected the aggregate. The final aggregate surface quality (‘very bad’) highlighted 

in green coincided with that of the control group.   

Experiment 3: Does Temporally Aggregating Daily Aggregates Maintain the Iterative 

Property?  

 Chapter 3 Section 4 explained the process of temporal aggregation. For each road 

segment, all PMFs observed in a day are aggregated to obtain daily aggregates which are 

then aggregated to obtain a global aggregate. This experiment simulates the temporal 
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aggregation of a random sample of PMFs observed on different days and verifies if the 

proposed aggregation method maintains the iterative property required by the system. The 

experiment was conducted with a Python 3 implementation of the desired algorithm and a 

case scenario as follows: 

Suppose we have five PMFs observed for a given road segment and the first two, 

observed on Day 1, were aggregated separately from the remaining three, observed on Day 

10. Will the global aggregate at Day 10 (tA = 10) be the same if it were calculated as the 

aggregate of Day 1 and Day 10 aggregates as if it were calculated as an aggregate of all 

observed PMFs?  

Control: Aggregate all PMFs assuming all observations are available. The PMFs observed 

on Day 1 are given lesser weight than more recent PMFs observed on Day 10. Table 4.6 

below shows the results. 

Table 4.6: Results from the temporal aggregation of five PMFs 

Input: 5 random PMFs (with a bias for very bad) 
 w(Dt) Very Bad Bad Very Good Good 

PMF 1 (t = 1) 0.94 0.2 0.5 0.2 0.1 
PMF 2 (t = 1) 0.94 0.2 0.3 0.4 0.1 
PMF 3 (t = 10) 1 0.3 0.5 0.1 0.1 
PMF 4 (t = 10) 1 0.8 0.05 0.05 0.1 
PMF 5 (t = 10) 1 0.1 0.1 0.1 0.7 

PG (p1, p2, p3, p4, p5)  0.67654 0.24253 0.02695 0.05398 
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Aggregating daily aggregates: Aggregate the daily aggregates for Day 1 and Day 10. 

Table 4.7: Computing the Day 1 aggregate. Day 1 = PG (p1, p2) 

Input: 5 random PMFs (with a bias for very bad) 
 w(Dt) Very Bad Bad Very Good Good 

PMF 1 (t = 1) 1 0.2 0.5 0.2 0.1 
PMF 2 (t = 1) 1 0.2 0.3 0.4 0.1 
PG (p1, p2)  0.14286 0.53571 0.28571 0.03571 

 

Table 4.8: Computing the Day 10 aggregate. Day 10 = PG (p3, p4, p5) 

Input: 5 random PMFs (with a bias for very bad) 
 w(Dt) Very Bad Bad Very Good Good 

PMF 3 (t = 10) 1 0.3 0.5 0.1 0.1 
PMF 4 (t = 10) 1 0.8 0.05 0.05 0.1 
PMF 5 (t = 10) 1 0.1 0.1 0.1 0.7 

      
PG (p3, p4, p5)  0.70588 0.07353 0.01470 0.20588 

 

Table 4.9: Results from aggregating Day 1 and Day 10 aggregates 

Input: 5 random PMFs (with a bias for very bad) 
 w(Dt) Very Bad Bad Very Good Good 

PG (p1, p2) 0.94 0.14286 0.53571 0.28571 0.03571 
PG (p3, p4, p5) 1 0.70588 0.07353 0.01470 0.20588 

      
PG (PG (p1, p2), PG (p3, p4, p5))  0.67654 0.24253 0.02695 0.05398 

 

The aggregate of daily aggregates for day 1 and day 10 aggregates, PG (PG (p1, p2), 

PG (p3, p4, p5)) was the same as the aggregate of observations altogether, PG (p1, p2, p3, 

p4, p5). This verifies that the aggregation method remains iterative when aggregating 

temporal (daily) aggregates.  
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Experiment 4: Comparing the Performance of two Candidate Grid Systems (a 

Hexagonal (Uber’s H3) and a Quadrilateral (Google’s S2) Grid System. 

This experiment compares the performance of two grid index systems (hexagon-

based Uber’s H3 and quadrilateral-based Google’s S2) in cell querying (finding the 

corresponding grid cell given a GPS coordinate) at similar resolutions (cell sizes). 

Setup 

Workloads of uniformly distributed random GPS coordinates in increasing 

quantities were each run 1000 times on both grid systems (implemented in Python 3) and 

the response times were recorded using the Python 3’s native timeit module.  

Results 

Table 4.10: Response times (seconds) of the two systems across various workloads sizes  

 Workload Size (number of queries) 

 1 10 100 1000 10000 100000 1000000 
H3 

(res = 12) 0.00001 0.00005 0.00048 0.00495 0.05234 0.52507 5.03337 

S2 
(res = 20) 0.00003 0.00025 0.00270 0.02520 0.26324 2.57054 24.64204 

 
 

 
Figure 4.1: Graphs of response times against workload sizes of both systems. Left uses a 

linear scale and right uses a logarithmic scale. 
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The hexagonal-based H3 system was at least twice as fast as the quadrilateral-based S2 

system at querying GPS coordinates across all workloads. 

Experiment 5: Verifying the Efficacy of Map Matching in Spatial Aggregation 

This simulation experiment verifies the efficacy of map matching to tackle the issue 

of GPS trails of vehicles travelling on uncovered sides of a road segment. Google Maps’ 

map matching and map API was used to perform map matching and visualization. 

Consider two vehicles ride on both banks of the road segment and generate parallel 

GPS trails T1 and T2. Spatial aggregation on both trails produces the associated sets of grid 

cells G1 and G2. For successful spatial aggregation, there must be no difference between G1 

and G2. More formally, G1 ∆ G2 = ∅. The symmetric difference between G1 and G2 were 

compared when T1 and T2 were spatially aggregated with and without map-matching.   

 

 

  

 

 

 
 

 

 

As depicted in Figure 4.2, without map matching, the resultant sets of grid cells 

from the spatial aggregation were different, but with map matching (Figure 4.3), the 

Figure: 4.3 Results from spatial 

aggregation of T1 (red) and T2 

(blue) with map matching. All grid 

cells were shared. |G1 ∆ G2| = 0 

Figure 4.2: Results from spatial 

aggregation of T1 (red) and T2 (blue) 

without map matching. Only 1 grid 

cell was shared. |G1 ∆ G2 |= 68 
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resultant grid cells are equal, sharing all grid cells (shown as purple). This implies that 

map matching is a suitable technique to handle variant trails on the same road segment. It 

does not matter whether the GPS trail travels along uncovered regions as they would 

always be mapping to the same polyline. 
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Chapter 5: Conclusions and Recommendations 

5.1 Summary 

This paper; connects prior work [1,9,12,36] into one proposed pipeline system 

architecture for crowdsourcing and aggregating probabilistic road surface quality 

information over time and space, verifies conflation as a method for aggregating weighted 

probability mass function and introduces an approach to aggregating information over road 

segments with geospatial grid indexes. This is one more step towards making road surface 

quality information available to road users and administrators. 

5.2 Limitations 

  This paper verifies the efficacy of chosen methods for the overall system 

theoretically but is yet to conduct a ‘real-world’ test. The lack of a ‘ground truth’ dataset of 

surface quality information for existing road segments makes it difficult to test how well 

the system performs completely. 

  Another limitation discovered in experiment 3 of Chapter 4 is that outlier 

observations of road surface quality limit the output of aggregation. The lack of a filtering 

process on input information makes the system susceptible to the effect of outlier 

information. 

 Lastly, the proposed system works with the assumption that a working multi-class 

classifier produces probabilistic surface quality information for any road segment travelled 

in a 10-second time window. Changes to the classifier may affect how aggregation is done  



 

  

 
39 

5. 3 Future Work 

  First, and foremost, a real-world case over a given geographic region with ground 

truth data available would be required to test the effectiveness and performance of this 

system thoroughly. 

Another area to explore would be how to filter out unreliable and outlier 

information that may skew output aggregates. Experiment 3 hints that weighting outlier 

information with a much lesser value significantly reduces its effect on the aggregate. 

More work could be done on how to visualize the information. Doku [12] verified 

that colour-coded visuals are useful in communicating road surface quality information; 

however, existing map services often use colours to show live traffic information. 

Alternative visuals can be explored, especially those considering the temporal nature of 

the information gathered (there should be some distinction to more recent information). 

On the user perspective, an interface could be created to enable road administrators 

(government authorities and road authorities) to view and collect the road surface quality 

information gathered over long periods for further temporal analysis. 
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