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Abstract  

In this project the design of an automatic ground vehicle for use in warehouses is explained. 

Ecommerce has been growing rapidly across the globe because of the spread of the internet 

and due to the introduction and acceptance of secure digital payment systems. Volumes of 

products handled by online stores has been increasing exponentially because of increased 

demand. This has resulted in a need for online shops to automate some of their processes in 

order to make logistics more efficient. Automatic ground vehicles have been developed 

however they remain very expensive for small and medium businesses SMEs. In this project 

a low-cost automatic ground vehicle is developed to meet the needs of SMEs. 
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Chapter 1: Introduction 

1.1 Background and Introduction 

With the exponential growth in ecommerce transactions and market penetration, 

large retail businesses are incurring huge revenue losses due to the time wasted by 

employees moving around the warehouse to pick required items [1]. The world’s largest 

ecommerce businesses such as Amazon and Alibaba have started using thousands [1] of 

stock management robots and this has increased delivery efficiency considerably.  

According to Business Insider, Kiva robots used at 13 of Amazon fulfilment centres 

have reduced expenses by about 20% which amounts to about US$ 22million per centre [2]. 

The robots have also reduced order delivery cycle time from an average of 70 minutes to 

only 15 minutes [2]. Kiva robots have also allowed Amazon to build narrower isles and get 

rid of some handling systems. The smarter use of space has increased their inventory space 

by over 50%. 

For a 7.5 hours work shift at the Alibaba warehouse, workers would traditionally 

sort approximately 1,500 products after taking 27,924 steps. However, with the help of 

Quicktron robots the same workers now sort about 3,000 products having taken only an 

average of 2,563 steps during the same period [3]. Instead of workers walking around the 

warehouse to find products, they stay in their assigned stations and send commands to the 

autonomous robots to bring them specific shelves. The workers then pick the required items 

from the shelf. Thus, instead of the worker going to the shelves to pick an item, the shelves 

are brought to them.  
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Figure 1. 1: KIVA (left) and QUICKTRON (right) warehouse management robots 

carrying shelves 

 The automated guided vehicles (AGVs) are connected to a wireless network and 

use barcode scanners on the floor to navigate the warehouse. The AGVs are also equipped 

with obstacle avoidance sensors and they use the wireless network system to plan paths and 

avoid collisions. Kiva and Quicktron robots also lift and rotate shelves, allowing workers to 

easily pick products with minimum movement. The AGVs can carry up to 500 kilograms 

above them. When the battery is low they take themselves to charging stations. A 5-minute 

charge can give the AGV enough power to operate for 4-5 hours [4]. At Alibaba, the 

autonomous robots are reported to do 70% of the work. 

This new technology is not yet adopted by African countries because the robots are 

very expensive reaching as high as USD 50, 0000 per unit [4]. Ecommerce is also rapidly 

growing in Africa with almost double the global growth rate because of the globalization, 

the rise of startups and the spread use of the internet [5]. Large international online shops 

like Jumia (Nigeria), Takealot (South Africa) and Kilimall (Kenya) have extensively 

expanded their warehouses and may need to automate them. 

1.2 Problem Definition 

Given the rapid growth rate of African ecommerce businesses, there is a need to 

automate warehouse logistics in order to increase efficiency and cut costs. There is therefore 

a need to design and develop efficient and low-cost robots for ecommerce businesses. 

1.3 The Objectives of the Project work 

This project is focused on the design and fabrication of an automated ground vehicle 

for stock management in ecommerce warehouses. The robotic vehicle should increase the 



8 
 

efficiency of ecommerce warehouse logistics, thereby cutting down on costs. The AGV 

should be designed with minimised cost of production for increased affordability. The robot 

should quickly, accurately, and safely move stock to where it is needed. It should receive 

commands wirelessly on an internet-based system then plan and navigates its path to pick 

the required shelf and deliver it to a working station where a worker will pick the required 

items. This should be achieved with minimum changes to the warehouse environment and 

at low production costs. The project will also mainly focus on solving the problem of 

accurate localization. 

1.4 Expected Outcomes of the Project Work 

At the end of the project, I should deliver a working prototype of an automated 

ground robot for stock management. The low-cost robot is expected to safely, accurately 

and quickly pick a shelf and place it where it is needed. The robot will receive commands 

wirelessly. 

1.5 Motivation and Justification for the Project Topic 

Technology is advancing tremendously, however, the adoption of trending 

technology in Africa remains relatively low because of the high costs of operation. 

Automated stock management is one of the technologies which can be very profitable for 

African communities, particularly ecommerce businesses where most systems are manual 

and slow. I have had the opportunity to meet and discuss with the CEO of one of Africa’s 

largest ecommerce businesses, Jumia. The business has been growing remarkably since its 

establishment in 2012. Started in Nigeria, Jumia now operates in 14 African countries 

including Ghana, Kenya and South Africa. The business now has about half a million 

customers [6]. In my discussion with the CEO for Ghana Jumia, he explained to me that 

they need a robot that can pick and place a shelf. He also explained that at the moment they 

cannot give a robot to hand pick products because they can easily break. They have asked 

for a proof of concept for the robot that can pick shelves. They promised to take on the 
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project and fund it if the proof of concept is satisfactory to the Jumia executive. This has 

given me the energy to invest time and resources on this project. It is a great opportunity to 

make a difference and apply my engineering skills. 
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Chapter 2: Literature Review 

 

2.1 Automatic Guided Vehicles Overview  

Automated or automatic guided vehicles (AGVs) are mobile robots that follow 

markers or other physical guides, vision or lasers and are often used in material handling, 

assembly lines, plants or manufacturing facilities [15]. A number AGVs such as Amazon’s 

Kiva and Alibaba’s Quicktron for warehouse management and related applications have 

been designed, fabricated, and implemented. The research is still in its premature stage and 

is ongoing both in academia and the industry. Most AGVs in development are however, 

mainly used for surveillance and inventory management. 

AGVs are often battery powered [7] and are controlled from a central database. They 

can operate both indoors and outdoors. There is often a user interface where the operator 

can issue commands through wireless communication [8]. Host software in internal 

centralised controllers are used by the AGV to plan and navigate a path from the start 

position to the goal point. In other more complex systems, AGVs are connected to a 

supervisory software which facilitates effective communication between robots, control 

traffic routing for maximized efficiency and assign missions to the fleet. The supervisory 

software is often referred to as Warehouse Management System (WMS). Some AGVs 

periodically report to charging stations when the battery is drained. 

2.2 Installation of the System 

AGVs can be installed in both new and existing facilities. However, it is easier to 

incorporate and integrate designs before the facility is constructed. When considering 

installing an AGV system in a facility that was already established it is important that the 

changes that are required for it to be functional be kept at minimum. Every AGV is 

customised for a unique task and specific environment set up. There have however been 
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concerns of standardising and regulating AGVs so that compatibility becomes easier even 

with robots from different manufacturers. 

2.3 Local Path Planning and Navigation 

   The vehicles need a way of knowing and navigating their environment. They achieve 

this by using precise maps which are usually in the form of occupational grids. An 

occupational grid contains vital information of an environment indicating where there are 

pathways, obstacles and other points of interest [9, i-Fork]. The occupation grid is often a 

nested array of binary numbers, where a ‘1’ often represents an occupied space and ‘0’ 

represents free coordinate. A pathway would therefore be a series of connected free spaces 

that link the robots, initial location and its planned destination. There can be many possible 

pathways, the robot needs to route the most efficient and cost-effective path. The AGVs are 

equipped with sensors such as LASER and LIDAR which help them sense unexpected 

objects and avoid crushing when there are sudden changes in the environment for example 

a pedestrian close to the robot’s path. 

2.4 Safety and Efficiency 

 It is important to consider safety implications when using robots especially where 

they share the environment with humans like in a warehouse [8]. Sensors installed on AGVs 

cannot detect and differentiate between objects. Therefore, AGVs are required to operate at 

low speeds in critical zones such that they can behave safely when responding to 

unpredictable situations [10]. It is also important for the vehicles to have the capability to 

replan and reroute in situations where an alternative path becomes necessary due to 

unexpected obstructions. Where this is not possible, the AGV would get stuck and would 

require human assistance [8]. 
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2.5 Coordination and Fleet Management  

In a system where many AGVs are simultaneously working, a central system would 

be in charge of coordinating routing for each vehicle thereby avoiding collisions. Path 

planning by one AGV can be very difficult [11] because of limited knowledge about the 

environment especially about non-stationary objects, it gets even more complex when using 

a centralised system and the challenge extends with increasing number of AGVs. A partially 

decentralised [13] coordination strategy was introduced. The approach consists of 

hierarchical architecture that implements path planning in two layers: topological layer and 

route map layer. Local negotiation will then take place between AGVs based on shared 

information about the state of the fleet. 

2.5 Market Opportunities 

AGVs are expected to diffuse in warehouse management and the current major 

competitors are manual forklifts. However, human driven forklifts account for most injuries 

and fatalities in the shop floors, due to human error. A survey conducted by Aberdeen Group 

revealed that 90% of 150 surveyed managers showed commitment to invest in automating 

their warehouses to increase efficiency, monitoring and performance [10].  Even though the 

market for AGVs is gradually growing, manufacturers face hurdles because of high initial 

installation costs and the changes required to make the system fit. On average installation 

costs for an individual vehicle average around US$ 125, 000 per vehicle [10]. Currently 

only big businesses can afford AGV technology installation and operation costs. 

2.6 Major Challenges  

Currently highly skilled and trained personnel are required for the operation and 

maintenance of AGVs. User interfaces are also not as user friendly. Furthermore, AGV 

systems on the market require extensive environment changes and their installation fees are 

very high. The simplification of the user interface, operation and maintenance will 
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undoubtably increase the adoption of AGVs reducing initial and operation costs will diffuse 

AGVs into small to medium enterprises (SMEs). 

 One other major challenge with AGVs is accurate localization. Sensors such as 

LIDAR and cameras that are required for high accuracy positioning are very expensive and 

require high speed processors. Using odometry sensors would increase the vehicle’s 

accuracy, however, this method is expensive both in terms of the required computational 

time which makes processing slow and cost of required sensors which is high.  

GPS is not being used on warehouse management robots because it does not work 

properly indoors.  RFID technology has been one of the mainly employed technologies in 

addressing the localization problem. This method was successfully implemented in a design 

by Laiwatimena et al in their design for a mini fork lift based on an AtMega 8535 

microcontroller [14]. Another advantage is there is minimal changes to the environment. 

This project therefore will be focused on minimizing changes to the warehouse 

environment when installing AGVs. Accurate localization and easy operation of AGVs will 

also be addressed in this project. Most importantly this project seeks to reduce the cost of 

buying and installing AGVs. 
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Chapter 3: Design 

3.1 Design Specifications 

The design specifications of the automatic ground vehicle are as below: 

• The AGV should have low production, installation and operational costs, each 

vehicle should cost less than US$3,500-5000 (based on the budget provided by the 

Jumia Ghana CEO) for purchasing and installation price 

• There should be minimum changes to the environment within which the robot will 

operate 

• The AGV should be easy and safe to operate without much training for personnel 

• The AGV should receive wireless commands, plan its path and navigate safely and 

quickly 

• The AGV should pick the accurate shelf and place it where it is needed 

• The AGV should be able to avoid obstacles and plan an alternative path if necessary 

• The AGV should be able to precisely follow a line and localize itself 

3.2 The System Design 

 

Figure 3.1: Diagram showing a simplified 2D design of the automated vehicle 

 

The design shown in Fig 3.1 is the proposed solution to meet the design objectives 

in section 3.1. For optimised and simple localization, RFID floor mapping and line 
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following technics have been chosen since they are affordable and accurate. The methods 

also require minimum changes to the environment. The robot system is made up of a 

software system for navigation, frame for supporting all parts, mechanical lifting 

mechanism and electrical system for control. The robot would be controlled from a 

webserver; thus it would require a wireless communication system. As it navigates the 

environment it will avoid collision using an ultrasonic sensor. In the following section, the 

Pugh matrix is used to explain how components and materials have been selected for the 

design. 

3.3 Components and Materials Selection 

In an effort to achieve the design objectives stated in section 3.1 we have to carefully 

select the best materials and components for the project such that we can optimise resources 

and reduce cost.  The Pugh Matrix has been used for the selection of components and 

materials. A scale of 1-5 has been used to rank the components. The values 1 and 5 represent 

poor and excellent respectively and every value will range between these two extremes. 

3.31 Pugh Matrix for Microcontroller Boards 

A microcontroller is needed to read values from sensors and control the motors. Most 

importantly the controller will be used for receiving commands, planning and navigating 

the path from start to goal position. There are four possible components for this task as listed 

on the matrix below. The Raspberry Pi is robust and very reliable; however, it is quite 

expensive and difficult to configure. The Arduino board is very affordable and easy to use 

but it does not have wireless connectivity unless an additional module is used. PIC 

microcontrollers are very difficult to configure and program, but they are very affordable. 

For this project the ESP32 development board was chosen because it is cheap, easy to 

program and it is itself a wireless board. Thus, it would be very easy and quick to send, 

receive and implement commands. 
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M
at

er
ia

l Cost Wireless 

Connectivity 

Configuration 

And 

Programming 

 

Processing 

Speed and 

Memory 

 

Total 

Scales 6 4 3 2 15 

Arduino 1 -1 1 1 10 

ESP32 1 1 0 1 12 

Raspberry Pi 0 0 1 1 5 

PIC 1 -1 -1 1 1 

Table 3.1: Pugh matrix for microcontroller boards 

3.3.2 Pugh Matrix for Frame Material 

  For the prototype design it is desirable to for its weight to be relatively small. 

Furthermore, it should be easy to manufacture. Acrylic and ABS plastic materials were 

chosen because of their low weight, easy manufacturability and availability. Parts for the 

frame and cases for sensors were 3D printed. 

F
ra

m
e 

M
at

er
ia

l 

 

Cost Manufacturability Weight Durability Total 

Scales 3 5 5 2 15 

ABS (3D 

Printed) 

1 1 1 0 13` 

Acrylic 1 0 1 0 13 

Steel 0 0 -1 1 -3 

Aluminium 0 0 1 1 7. 

Table 3.2:  Pugh matrix for robot frame material 

 

3.3.3 Pugh Matrix for Localization Sensors 

Possible sensors for localization included cameras, RFID, IR, QR and Barcodes. For 

the purposes of floor mapping, the RFID was chosen because it does not require much 

changes to the environment for its installation. Similarly, the IR sensors were chosen for 

line following because this would not require major changes to the warehouse. Cameras 

would give very accurate localization however they are very expensive to purchase and use. 

Computer vision requires high processing speeds and thus a more robust microcontroller 
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and software program. This would be very difficult with the ESP32. QR and Barcodes are 

hard to configure with the ESP32 development board. 
L

o
ca

li
za

ti
o
n
  

 

Cost Accuracy Configuration 

And 

Programming 

Environment 

Changes 

Total 

Scales 5 3 4 3 15 

Cameras -1 1 -1 0 -9 

RFID 1 1 1 1 15 

QR 0 1 0 1 6 

Bar Code 1 1 -1 1 6 

IR 1 0 1 1 12 

Table 3.3: Table 3.1: Pugh matrix for localization sensors 

 

3.3.4 Pugh Matrix for Lifting Mechanism 

A lifting mechanism will be required for lifting and placing shelves. The belts and 

pulley system is most suitable because the prototype motors are low power and weights to 

be lifted are relatively small. Because of the small weights a very strong locking 

mechanism is not as necessary. Most importantly this system is readily available and 

cheap to install. 

F
o
rk

 L
if

ti
n
g
 

M
ec

h
an

is
m

 Cost Locking 

Mechanism/ 

Efficiency 

Weight Durability Total 

Scales 4 4 4 3 15 

Chains & 

Pulley 

1 0 1 0 8 

Belts & 

Pulley 

1 0 1 0 8 

Gears & 

Rack 

0 1 1 0 8 

Hydraulic  -1 1 0 1 3 

Table 3.4: Pugh matrix for lifting mechanism 
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3.2 The Software Program 

The robot will be controlled using the flow chart below. It will wait to receive a command 

via wireless connection (WiFi). The command can either be for the AGV to pick a shelf or 

for it to go the charging station. Once it has this information it will plan its path and begin 

navigation. The robot will keep relocalizing when it comes across an RFID tag at a corner. 

This improves its accuracy as it moves towards the goal. Upon reaching the goal, the robot 

will go on standby waiting for a command and the cycle repeats.    

 

Figure 3.2: Flowchart showing how the software on the automatic ground vehicle works 
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3.4 The Automatic Ground Vehicle Frame Design 

 

Figure 3.4:  The AGV robot frame SolidWorks 3D design 

The AGV would have a platform for mounting sensors in front and a lifting mechanism on 

top as shown in the figure above. The robot will be very close to the ground for stability and 

for increased sensor accuracy. 

 

3.4.1 The First AGV Prototype 

 

Figure 3.5: Images showing the arrangement of sensors on the first prototype AGV 

Shown in the images above is the automatic ground vehicle prototype made with 

acrylic and 3D printed ABS material. The AGV is controlled using the ESP32 

microcontroller. The ultrasonic sensor is installed in front together with infrared (IR) sensors 

below. The RFID reader is also very close to the front but below the robot. Three infrared 

sensors were used. The centre IR sensor should stay on the black line while the left and right 

IR sensors should always be on white, this way the robot will always follow the black line.  

RFID Card Reader Ultrasonic Sensor IR Sensors 
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Figure 3.5: Block diagram showing how components relate 

 The block diagram below shows the connection of the AGV hardware. The 

major components are the ESP 32 microcontroller board, RFID sensors, and the IR sensors. 

The ESP32 controller will receive a command from a webserver, plan the path and use the 

IR sensors, RFID and motor drivers for navigation. The battery level sensor will always be 

checking battery capacity when it is below threshold the robot will stop receiving commands 

and drive to the nearest charging spot and wait to be recharged. The AVG will notify the 

database of its status – low battery. Shown below is the electrical circuit of the system.  

 

Figure 3.8: Circuit diagram showing all electrical connections between components  

ESP 32 

Microcontroller 

RFID   Sensor 

LCD + LEDs (3) 

Batteries 

Motors (4) + Drivers(2) 

IR Sensors (3) 

 

Web Server 
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3.4.2. The Second AGV Prototype 

 

Figure 3.7: Images showing the microcontrollers and LCD on the second AGV prototype 

 

The second AGV prototype is controlled using an ESP8266 and the Arduino Uno. This 

development was necessary because the RFID reader was not working with the ESP32 

microntroller. In the second prototype the ESP8266 which has fewer input/output pins was 

used for wireless communication, localization and obstacle avoidance. The Arduino Uno 

was used for navigation; thus, it was used to control the motors. The ESP8266 and the 

Arduino Uno communicate using serial communication.  The prototype 2 AGV also has a 

button which allows the user to calibrate the sensors using a white and black surface when 

the system boots. An LCD has also been added for the user or observer to understand how 

the robot is acting. The block diagram below shows the configuration of the system. 

 

ESP8266 

Arduino Uno 

LCD 
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Figure 3.9: Block diagram showing the configuration of components on the second 

prototype 

3.5 The Robot Working Environment 

The working environment of the robot should be clearly defined with a model for 

simplification. An occupational grid will be used to make a map for the warehouse which 

the robot can easily interpret. The AGV mainly needs to know its position and areas where 

there are obstacles. Given this information the robot can know which areas it can safely 

move and which ones to avoid. Each coordinate on the grid represents nodes which can 

either be free or occupied. The software program which runs of the robot represents 

occupied nodes with 1s and free nodes with 0s. 

ESP 8266 

Microcontroller 

(1) 

 
ESP 8266 

Microcontroller 

(2) 

  

  

 

Cloud Server 

  

PC 

(Python + 

Arduino) 

  

  

Arduino Uno Motor Driver 

Path 

Location 

Path 

Path 

Speed + 

 Direction 

Path 

Location 

Location 
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Figure 3.10: A typical grid which will be used for occupancy 

3.6 The Path Planning and Navigation Algorithm 

 

The AGV will implement the wavefront algorithm to navigate the warehouse work space. 

According to Ashesi Robotics the wavefront algorithm is a cell-decomposition path 

planning method in which the workspace is divided into equal polygons [16]. Each polygon 

is assigned (x, y) coordinates and the working space would be labelled with 0’s and 1’s 

where they represent free and occupied spaces respectively. A typical wavefront matrix is 

shown in figure [Figure XYZ] below: 

 
Figure 3.11: An example of a wavefront grid map 
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Given a workspace like the one in the diagram above, each square would be allocated a 

number. The start coordinate is the goal coordinate is allocated the value 2 and neighbouring 

cells will be numbered incrementally beginning at 3 until the start position has been labelled. 

These numbers represent the number of steps required to move from the start to goal 

position. Therefore, the shortest possible path will be the one with decreasing values from 

start to goal as in the figure below. 

 
Figure 3.12: Wavefront grid showing the shortest path from start to goal 

 

In this project the wavefront path planning algorithm will be implemented using Python. 

The path will be sent to the ESP8266 via serial communication and finally to the robot 

through the webserver. 
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Chapter 4: Methodology 

4.1 Sensors and Motor Control 

The robot will navigate the warehouse working space based on sensor values. Tests will be 

performed for line following, obstacle avoidance and localization. These tests are explained in the 

following subsections. 

4.1.1 Line Following Test 

The IR sensors output high voltage values when they reflect light on dark (black) surfaces, 

they also return low values for light (white) surfaces. These values will be mapped to either 

1 or 0 respectively. Motors will be controlled based on these IR values in order for the robot 

to follow the black line. The table below summarizes how the robot would behave based on 

the IR sensor values. 

Left IR Sensor Centre IR Sensor Right IR Sensor Interpretation 

1 1 1 Black Surface (Coordinate) 

1 1 0 Turn Left to Align 

1 0 1 Not Possible (Stop robot) 

1 0 0 Turn Left to Align 

0 1 1 Turn Right to Align 

0 1 0 Forward (Robot on black line) 

0 0 1 Turn Right to Align 

0 0 0 White Surface (Coordinate + RFID) 

Table 4.1: Table: Table showing expected robot behaviour based on IR sensor values 

4.1.2 Obstacle Avoidance Test 

The robot should be able to maintain a minimum distance of 0.2m from obstacles. Readings 

will be taken using the ultrasonic sensor and obstacles will be placed in front of the robot to 

observe how it reacts. 

4.1.3 Localization Test 

 During navigation the robot should also be able to detect RFID tags placed at specific 

coordinates of the working space. 

4.2 Communication Test 

Paths for the robot will be computed on the PC and sent to the robot using a webserver. The 

information will be sent in the form of a string of commands. Communication between the ESP8266 
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(connected to the PC) and the webserver will be tested. Another test will be conducted for retrieving 

the path from the webserver by the ESP8266 on the robot. 

4.3 Navigation Test 

Once the ESP8266 on the robot receives the commands from the webserver it should begin 

navigation. The AGV will be tested in an environment set up as shown in Fig. 8 below. The 

commands from the webserver will instruct the actions of the robot. The commands will instruct the 

robot to navigate a path.   Tests will be done for paths A (at the origin) to point B (shelf 2 at shelf 

row 2) and from B to point C (the Counter). The oberver will observe the robot navigate each od 

these two paths 10 times and record whether it reached the destination or not. A one value statistics 

T-Test will be conducted to anaylyse the results statistically.      

 
Figure 4.1: Occupancy grid with key points used to test the robot 

 

The robot will have to navigate from its initial location to the chosen goal location. The observer 

will record whether the robot succeeded or failed to reach a specified goal. Several tests will be 

carried out for different start point and shelves coordinates. 

RFID  

Card 
Coordinate 

A 

B 

C 
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Chapter 5: Results and Analysis 
 

  

Table 4.1: Images showing the robot during line following tests 

The robot was tested using the methodology explained in chapter 4. The results will be 

analysed on the followiing sections. 

5.1 Line Following Results 

The robot successfully followed the black lines. The AGV behaviour ws as expected, it 

would turn into the right direction when sensor values chnaged during navigation. Shown 

below are images from the test. 

 
Figure 5.2: Images showing the robot taking decisions based on IR sensor values 
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5.2 Obstacle Avoidance Results 

The AGV is able to avoid obstacles with a stopping distance. The table below summarises 

the values on the AGV’s stopping distance when approaching obstacles. 

Test Desired Stopping Distance Observed Stopping Distance 

1 0.2m 0.23 

2 0.2m 0.19 

3 0.2m 0.18 

4 0.2m 0.20 

5 0.2m 0.22 

Table 5.1: Results from the obstacle avoidance test 

5.3 Localization Results 

The robot ESP8266 is able to read the RFID information at a maximum range of 0.02m. 

 

Figure 5.3:  Example results from the RFID test 

 

5.4 Communication Results 

Communication between the ESP8266 on the PC and the webserver as well as between the 

ESP8266 on the robot and the server has been implememnted successfully. The path was 

sent and received as was expected. Ultrasonic sensor and RFID information has also be 

successfully sent between the the robot ESP8266 and the Arduino Uno.  

5.5 Navigation Results 

 

The navigation test could not be performed because it has been observed that the wheels of 

the robot are not turning 90 and 360 degrees because of insufficient friction between the 
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wheels and the robot. Initially it was assumed it was a power problem, it has taken long to 

realise this challenge. There is need for a solution to the friction problem. 
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Chapter 6: Conclusion 

6.1 Discussion 

The communication, sensing and path planning have been successfully implemented. 

However, the project could not yield expected results because of unforeseen challenges. 

There is need for a rougher surface or rough wheels to increase the friction between the two 

surfaces. Given the tests conducted with the communication, sensing and path planning the 

robot is working theoretically or in the sense of a simulation. There is need however to make 

it work in practice. 

6.2 Limitations 

There are a number of challenges involved with this project. It is very easy to design 

a system theoretically, but its implementation is usually limited with physical elements. 

Varying levels of intensity significantly affect how the robot differentiates between black 

and white using IR sensors because the threshold would have shifted. Another challenge has 

been with the barcode scanner which was available was not compatible with the 

microcontroller. Using RFID would not be as efficient because they have a very short and 

limited detection range. Furthermore, the ESP32 microcontroller which would be needed 

for connecting the barcode scanner or RFID reader had all its input/output ports exhausted. 

Friction has been the major challenge which has hindered progress of this project. 

6.3 Future Work 

There is need to seek a solution to the friction problem with this the robot can be 

tested conveniently. In order to minimise the number of microcontrollers used sufficient 

knowledge in required in C data structures with this path planning can be done locally on 

the robot which would receive commands directly from the webserver. A barcode scanner 

compatible with the ESP32, ESP8266 or Arduino would make it easier for the robot to 

identify shelves. Furthermore, this technology is common already in shops and would be 
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cheap for them to implement. A Raspberry-Pi could also be used for more reliability and 

compatibility with the number of sensors and processing required.  
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Appendix 

A.1 Arduino Navigation Code 

1. #include <Wire.h>    
2. #include <LiquidCrystal_I2C.h>   
3.    
4. #include<SoftwareSerial.h> //Included SoftwareSerial Library   
5. //Started SoftwareSerial at RX and TX pin of ESP8266/NodeMCU   
6. //SoftwareSerial s(8,9);   
7.    
8. LiquidCrystal_I2C lcd(0x27,20,4);    
9.    
10. //IR Sensor Pins   
11. int leftIR = A1;   
12. int rightIR = A0;   
13. int centerIR = A2;   
14.    
15. //IR Sensor Values   
16. int leftValue;   
17. int rightValue;   
18. int centerValue;   
19.    
20. //IR Sensor Threshhold for B/W   
21. int threshHold;   
22.    
23. //FRFFFRFFFT   
24. String path = "FFLFRFT"; //Initialized variable to store recieved data   
25. String action;    
26.    
27. //Motors   
28. int motorA1 = 5; //IN1   
29. int motorA2 = 6; //IN2   
30. int motorB1 = 10; //IN4   
31. int motorB2 = 11; //IN3   
32.    
33. //Motor Control   
34. int enable = 3;    
35. int turn_delay = 500;   
36. int turn_speed = 225;   
37. int vSpeed = 120;   
38.    
39. //US Sensor   
40. int echoPin = 8;   
41. int trigPin = 2;   
42. long duration;   
43. int distance;   
44.    
45. //button pin   
46. int button = A3;   
47. int buttonValue;   
48.    
49. //white and black averages   
50. float blackAvg = 0;   
51. float whiteAvg = 0;   
52.    
53. //path index   
54. int Idx = 0;   
55. int test = 0;   
56.    
57. void setup() {   
58.   //Serial communication    
59.   Serial.begin(9600);   
60.   //s.begin(9600);   
61.    
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62.   //IR sensors   
63.   pinMode(leftIR, INPUT);   
64.   pinMode(rightIR, INPUT);   
65.   pinMode(centerIR, INPUT);   
66.    
67.   //US sensors   
68.   pinMode(trigPin, OUTPUT); // Sets the trigPin as an Output   
69.   pinMode(echoPin, INPUT); // Sets the echoPin as an Input   
70.    
71.   //Motors   
72.   pinMode(motorA1, OUTPUT);   
73.   pinMode(motorA2, OUTPUT);   
74.   pinMode(motorB1, OUTPUT);   
75.   pinMode(motorB2, OUTPUT);   
76.    
77.   //Speed   
78.   pinMode(enable, OUTPUT);     
79.    
80.   //LCD   
81.   lcd.init();                      // initialize the lcd    
82.   lcd.init();   
83.   lcd.backlight();   
84.    
85.   //Calibrating Black Value    
86.      
87.   lcd.setCursor(0,0);   
88.   lcd.print("Put Sensors on Black");   
89.    
90.   lcd.setCursor(0,2);   
91.   lcd.print("Then press OK button");   
92.      
93.   buttonValue = analogRead(button);   
94.   Serial.print("buttonValue");   
95.   Serial.println(buttonValue);   
96.    
97.   Serial.print("Put IR Sensors on Black");   
98.   Serial.println("And press the okay button");   
99.      
100.   while (buttonValue != 0){   
101.      
102.   leftValue = analogRead(leftIR);   
103.   rightValue = analogRead(rightIR);   
104.   centerValue = analogRead(centerIR);   
105.      
106.   delay(1000);   
107.      
108.   blackAvg = (leftValue + rightValue + centerValue)/3;   
109.   buttonValue = analogRead(button);   
110.   delay(1000);     
111.    }   
112.        
113.   lcd.clear();   
114.    
115.   lcd.setCursor(0,0);   
116.   lcd.print("Average Black Value ");   
117.   Serial.print(" Average Black Value:");   
118.    
119.   lcd.setCursor(9,2);   
120.   lcd.print(blackAvg);   
121.   Serial.println(blackAvg);   
122.      
123.   delay(2500);   
124.    
125.   //Calibarting white value   
126.      
127.   lcd.clear();   
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128.   lcd.setCursor(0,0);   
129.   lcd.print("Put Sensors on White");   
130.    
131.   lcd.setCursor(0,2);   
132.   lcd.print("Then press OK button");   
133.      
134.   buttonValue = analogRead(button);   
135.    
136.   Serial.print("Put IR Sensors on White");   
137.   Serial.println(" And press the okay button");   
138.      
139.   while (buttonValue != 0){   
140.          
141.   leftValue = analogRead(leftIR);   
142.   rightValue =  analogRead(rightIR);   
143.   centerValue =  analogRead(centerIR);   
144.   delay(1000);   
145.      
146.   whiteAvg = (leftValue + rightValue + centerValue)/3;   
147.   buttonValue = analogRead(button);    
148.          
149.   }   
150.       
151.   lcd.clear();   
152.    
153.   lcd.setCursor(0,0);   
154.   lcd.print("Average White Value");   
155.   Serial.print("Average White Value:");   
156.    
157.   lcd.setCursor(9,2);   
158.   lcd.print(whiteAvg);   
159.   Serial.println(whiteAvg);   
160.      
161.   delay(2500);   
162.    
163.   //Displaying threshold   
164.      
165.   threshHold = (whiteAvg+blackAvg)/2;   
166.      
167.   lcd.clear();   
168.   lcd.setCursor(0,0);   
169.   lcd.print("Threshhold Value");   
170.   Serial.print("Threshhold Value: ");   
171.    
172.   lcd.setCursor(9,2);   
173.   lcd.print(threshHold);   
174.   Serial.println(threshHold);   
175.   delay(2000);   
176.      
177.   //Initializing System   
178.   lcd.clear();   
179.   lcd.setCursor(2,0);   
180.   lcd.print("SWIFTRON SYSTEM");   
181.    
182.   lcd.setCursor(4,2);   
183.   lcd.print("INITIALIZED");     
184.    
185.   Serial.println("SWIFTRON SYSTEM INITIALIZED");   
186.   delay(2000);   
187.  }   
188.    
189.    
190. void loop() {   
191.     pathFollower();     
192.     stopMotors();    
193.   }   
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194.    
195.    
196. void pathFollower(){   
197.      
198.     test = 0;   
199.        
200.     action = path[Idx];   
201.        
202.     Serial.println(action);   
203.        
204.     //display to LCD and Serial   
205.     screen();   
206.      
207.     lcd.setCursor(0,3);   
208.        
209.     if (action == "F"){ //+ while idx          
210.          
211.       while (test == 0){   
212.          
213.       //Read from sensors     
214.       leftValue = analogRead(leftIR);   
215.       rightValue =  analogRead(rightIR);   
216.       centerValue =  analogRead(centerIR);   
217.          
218.       screen();   
219.       lcd.setCursor(9,3);    
220.          
221.             //Forward          
222.         if ((leftValue < threshHold) && (centerValue > threshHold) && (ri

ghtValue < threshHold)){ //(ir3 > threshHold) &&   
223.             forward(vSpeed);   
224.             Serial.print("Forward");   
225.             lcd.print("Forward");         
226.             }   
227.                
228.           //Left, leftIR on black   
229.         else if((leftValue > threshHold) && (rightValue < threshHold)){   
230.             spinLeft(turn_speed,turn_delay);   
231.             Serial.print("SpinLeft");   
232.             lcd.print("SpinLeft");   
233.             }   
234.          
235.            //Right, rightIR on black   
236.         else if((leftValue < threshHold) && (rightValue > threshHold)){   
237.             spinRight(turn_speed,turn_delay);   
238.             Serial.print("SpinRight");   
239.             lcd.print("SpinRight");   
240.             }   
241.          
242.            //All sensors on black   
243.         else if((leftValue > threshHold) && (centerValue > threshHold) &&

(rightValue > threshHold)){   
244.             Serial.print("Black");   
245.             lcd.print("Black");   
246.             //exit;   
247.             test = 1;   
248.                
249.             forward(vSpeed);   
250.             delay(150);   
251.             stopMotors();   
252.             ++Idx;   
253.             }   
254.               
255.            //All sesnsors on white   
256.          else if((leftValue < threshHold) && (centerValue < threshHold) &

& (rightValue < threshHold)){//(centerIR < threshHold) &&   
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257.             Serial.print("White");   
258.             lcd.print("White");   
259.             //exit;   
260.             test = 1;   
261.                
262.            forward(vSpeed);   
263.            delay(150);   
264.            stopMotors();   
265.             ++Idx;   
266.                
267.             //look for RFID, if not found stop   
268.    
269.             if (s.available()>0) {     
270.        
271.                    //s.listen();     
272.                    RFID = s.readString(); //Read the serial data and stor

e it     
273.                    Serial.println(RFID);     
274.                     lcd.clear();     
275.                     lcd.setCursor(3,0);     
276.                     lcd.print("RFID DETECTED");     
277.                          
278.                     lcd.setCursor(0,1);     
279.                     lcd.print("ID: ");     
280.                        
281.                     lcd.setCursor(3,1);     
282.                     lcd.print(RFID);     
283.                         
284.                     lcd.setCursor(0,3);     
285.                     lcd.print("Swiftron Relocalized");     
286.                        
287.                           
288.                    }     
289.             }   
290.               
291.          else{   
292.             stopMotors();   
293.             Serial.print("Unknown");   
294.                
295.             lcd.setCursor(0,3);   
296.             lcd.print("Error: Robot Stopped");   
297.             }     
298.        
299.        delay(200);   
300.        }   
301.      
302.     }   
303.         
304.          
305.   else if(action == "L"){   
306.          
307.     spinLeft(turn_speed,1250);   
308.     lcd.print("Turning Left: 90");   
309.     Serial.println("Turning Left: 90");   
310.     ++Idx;   
311.        
312.     }   
313.    
314.   else if(action == "R"){   
315.          
316.     spinRight(turn_speed,1250);   
317.     lcd.print("Turning Right: 90");   
318.     Serial.println("Turning Right: 90");   
319.     ++Idx;   
320.          
321.     }   
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322.    
323.   else if(action == "T"){   
324.        
325.     spinRight(turn_speed,2500);   
326.     lcd.print("Turning 360");   
327.     Serial.println("Turning 360");   
328.     ++Idx;   
329.          
330.     }   
331.    
332.   else{   
333.        
334.     stopMotors();   
335.     delay(2500);   
336.     lcd.print("MISSION COMPLETE");   
337.     Serial.println("MISSION COMPLETE");   
338.        
339.     }   
340.    
341.     delay(3500);    
342.        
343.  }   
344.    
345. void screen(){   
346.    lcd.clear();   
347.     lcd.setCursor(3,0);   
348.     lcd.print("SWIFTRON ROBOT");   
349.        
350.     //Read from sensors     
351.     leftValue = analogRead(leftIR);   
352.     rightValue =  analogRead(rightIR);   
353.     centerValue =  analogRead(centerIR);   
354.        
355.     //IR Values Display on LCD   
356.     lcd.setCursor(2,1);   
357.     lcd.print(leftValue);   
358.      
359.     lcd.setCursor(9,1);   
360.     lcd.print(centerValue);   
361.      
362.     lcd.setCursor(16,1);   
363.     lcd.print(rightValue);   
364.      
365.     lcd.setCursor(3,2);   
366.     lcd.print("ThreshHold: ");   
367.      
368.     lcd.setCursor(15,2);   
369.     lcd.print(threshHold);   
370.       
371.     Serial.println(threshHold);   
372.       
373.     //IR Values Display on PC   
374.     Serial.print("Left: ");   
375.     Serial.println(leftValue);   
376.      
377.     Serial.print("Right: ");   
378.     Serial.println(rightValue);   
379.      
380.     Serial.print("Center: ");   
381.     Serial.println(centerValue);   
382.      
383.     Serial.print("");   
384.     Serial.println("");   
385.        
386.   }   
387.    
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388. void forward(int Speed){   
389.      
390.   Serial.println("[] SWIFTRON going forward");   
391.   digitalWrite (motorA1,LOW);   
392.   digitalWrite(motorA2,HIGH);                          
393.   digitalWrite (motorB1,LOW);   
394.   digitalWrite(motorB2,HIGH);   
395.    
396.   analogWrite(enable, Speed);   
397.   }   
398.    
399. void reverse(){   
400.   Serial.println("[] SWIFTRON reversing");   
401.   digitalWrite (motorA1,HIGH);   
402.   digitalWrite(motorA2,LOW);                          
403.   digitalWrite (motorB1,HIGH);   
404.   digitalWrite(motorB2,LOW);   
405.      
406.   analogWrite(enable, turn_speed);   
407.   }   
408.    
409. void stopMotors(){     
410.   Serial.println("[] Motors Stopped");   
411.   digitalWrite (motorA1,LOW);   
412.   digitalWrite(motorA2,LOW);                          
413.   digitalWrite (motorB1,LOW);   
414.   digitalWrite(motorB2,LOW);   
415.   }   
416.    
417. void spinLeft(int Speed, int Delay){   
418.      Serial.println("[] SWIFTRON turning LEFT");   
419.      digitalWrite(motorA2, LOW);               // GET /H turns the LED on

   
420.      digitalWrite(motorA1, HIGH);   
421.              
422.      digitalWrite(motorB2, HIGH);   
423.      digitalWrite(motorB1, LOW);   
424.         
425.      analogWrite(enable, Speed);   
426.      delay(Delay);        
427.      stopMotors();    
428.   }   
429.    
430. void spinRight(int Speed, int Delay){   
431.      Serial.println("[] SWIFTRON turning RIGHT");   
432.         
433.      digitalWrite(motorA2, HIGH);               // GET /H turns the LED o

n   
434.      digitalWrite(motorA1, LOW);   
435.              
436.      digitalWrite(motorB2, LOW);   
437.      digitalWrite(motorB1, HIGH);    
438.    
439.      analogWrite(enable, Speed);        
440.      delay(Delay);   
441.      stopMotors();    
442.   }   
443.    

 


