

ASHESI UNIVERSITY

THE DESIGN OF A LOWCOST AUTOMATIC GROUND VEHICLE

FOR WAREHOUSE STOCK MANAGEMENT

CAPSTONE

B.Sc. Mechanical Engineering

Eugene Kudzai Jamu

2019

1

ASHESI UNIVERSITY

THE DESIGN OF A LOWCOST AUTOMATIC GROUND VEHICLE FOR

WAREHOUSE STOCK MANAGEMENT

APPLIED

CAPSTONE PROJECT

Capstone Project submitted to the Department of Engineering, Ashesi University

 in partial fulfillment of the requirements for the award of Bachelor of Science degree in

 Mechanical Engineering

Eugene Kudzai Jamu

2019

2

DECLARATION

I hereby declare that this capstone is the result of my own original work and that no part of

it has been presented for another degree in this university or elsewhere.

Candidate’s Signature:

……………………………………………………………………………………………

Candidate’s Name:

……………………………………………………………………………………………

Date:

……………………………………………………………………………………………

I hereby declare that preparation and presentation of this capstone were supervised in

accordance with the guidelines on supervision of capstone laid down by Ashesi

University.

Supervisor’s Signature:

……………………………………………………………………………………………

Supervisor’s Name:

Acknowledgements

My profound gratitude to Dr. Heather Beem, Dr. Elena Rosca, Dr. Ayorkor Korsah and

Dr.Stephen K. Armah for their unwavering technical support and advice on this project.

3

Abstract

In this project the design of an automatic ground vehicle for use in warehouses is explained.

Ecommerce has been growing rapidly across the globe because of the spread of the internet

and due to the introduction and acceptance of secure digital payment systems. Volumes of

products handled by online stores has been increasing exponentially because of increased

demand. This has resulted in a need for online shops to automate some of their processes in

order to make logistics more efficient. Automatic ground vehicles have been developed

however they remain very expensive for small and medium businesses SMEs. In this project

a low-cost automatic ground vehicle is developed to meet the needs of SMEs.

4

Table of Contents

Chapter 1: Introduction .. 6

1.1 Background and Introduction .. 6

1.2 Problem Definition .. 7

1.3 The Objectives of the Project work .. 7

1.4 Expected Outcomes of the Project Work ... 8

1.5 Motivation and Justification for the Project Topic .. 8

Chapter 2: Literature Review .. 10

2.1 Automatic Guided Vehicles Overview.. 10

2.2 Installation of the System.. 10

2.3 Local Path Planning and Navigation .. 11

2.4 Safety and Efficiency .. 11

2.5 Coordination and Fleet Management ... 12

2.5 Market Opportunities ... 12

2.6 Major Challenges .. 12

Chapter 3: Design ... 14

3.1 Design Specifications... 14

3.2 The System Design ... 14

3.3 Components and Materials Selection ... 15

3.31 Pugh Matrix for Microcontroller Boards ... 15

3.3.2 Pugh Matrix for Frame Material .. 16

3.3.3 Pugh Matrix for Localization Sensors ... 16

3.3.4 Pugh Matrix for Lifting Mechanism ... 17

3.2 The Software Program ... 18

3.4 The Automatic Ground Vehicle Frame Design .. 19

3.4.1 The First AGV Prototype .. 19

3.4.2. The Second AGV Prototype .. 21

3.5 The Robot Working Environment ... 22

3.6 The Path Planning and Navigation Algorithm ... 23

Chapter 4: Methodology... 25

4.1 Sensors and Motor Control .. 25

4.1.1 Line Following Test .. 25

4.1.2 Obstacle Avoidance Test .. 25

4.1.3 Localization Test .. 25

4.2 Communication Test ... 25

5

4.3 Navigation Test ... 26

Chapter 5: Results and Analysis .. 27

5.1 Line Following Results .. 27

5.2 Obstacle Avoidance Results .. 28

5.3 Localization Results .. 28

5.4 Communication Results .. 28

5.5 Navigation Results .. 28

6.1 Discussion .. 30

6.2 Limitations .. 30

6.3 Future Work ... 30

References ... 32

Appendix ... 34

A.1 Arduino Navigation Code .. 34

6

Chapter 1: Introduction

1.1 Background and Introduction

With the exponential growth in ecommerce transactions and market penetration,

large retail businesses are incurring huge revenue losses due to the time wasted by

employees moving around the warehouse to pick required items [1]. The world’s largest

ecommerce businesses such as Amazon and Alibaba have started using thousands [1] of

stock management robots and this has increased delivery efficiency considerably.

According to Business Insider, Kiva robots used at 13 of Amazon fulfilment centres

have reduced expenses by about 20% which amounts to about US$ 22million per centre [2].

The robots have also reduced order delivery cycle time from an average of 70 minutes to

only 15 minutes [2]. Kiva robots have also allowed Amazon to build narrower isles and get

rid of some handling systems. The smarter use of space has increased their inventory space

by over 50%.

For a 7.5 hours work shift at the Alibaba warehouse, workers would traditionally

sort approximately 1,500 products after taking 27,924 steps. However, with the help of

Quicktron robots the same workers now sort about 3,000 products having taken only an

average of 2,563 steps during the same period [3]. Instead of workers walking around the

warehouse to find products, they stay in their assigned stations and send commands to the

autonomous robots to bring them specific shelves. The workers then pick the required items

from the shelf. Thus, instead of the worker going to the shelves to pick an item, the shelves

are brought to them.

7

Figure 1. 1: KIVA (left) and QUICKTRON (right) warehouse management robots

carrying shelves

 The automated guided vehicles (AGVs) are connected to a wireless network and

use barcode scanners on the floor to navigate the warehouse. The AGVs are also equipped

with obstacle avoidance sensors and they use the wireless network system to plan paths and

avoid collisions. Kiva and Quicktron robots also lift and rotate shelves, allowing workers to

easily pick products with minimum movement. The AGVs can carry up to 500 kilograms

above them. When the battery is low they take themselves to charging stations. A 5-minute

charge can give the AGV enough power to operate for 4-5 hours [4]. At Alibaba, the

autonomous robots are reported to do 70% of the work.

This new technology is not yet adopted by African countries because the robots are

very expensive reaching as high as USD 50, 0000 per unit [4]. Ecommerce is also rapidly

growing in Africa with almost double the global growth rate because of the globalization,

the rise of startups and the spread use of the internet [5]. Large international online shops

like Jumia (Nigeria), Takealot (South Africa) and Kilimall (Kenya) have extensively

expanded their warehouses and may need to automate them.

1.2 Problem Definition

Given the rapid growth rate of African ecommerce businesses, there is a need to

automate warehouse logistics in order to increase efficiency and cut costs. There is therefore

a need to design and develop efficient and low-cost robots for ecommerce businesses.

1.3 The Objectives of the Project work

This project is focused on the design and fabrication of an automated ground vehicle

for stock management in ecommerce warehouses. The robotic vehicle should increase the

8

efficiency of ecommerce warehouse logistics, thereby cutting down on costs. The AGV

should be designed with minimised cost of production for increased affordability. The robot

should quickly, accurately, and safely move stock to where it is needed. It should receive

commands wirelessly on an internet-based system then plan and navigates its path to pick

the required shelf and deliver it to a working station where a worker will pick the required

items. This should be achieved with minimum changes to the warehouse environment and

at low production costs. The project will also mainly focus on solving the problem of

accurate localization.

1.4 Expected Outcomes of the Project Work

At the end of the project, I should deliver a working prototype of an automated

ground robot for stock management. The low-cost robot is expected to safely, accurately

and quickly pick a shelf and place it where it is needed. The robot will receive commands

wirelessly.

1.5 Motivation and Justification for the Project Topic

Technology is advancing tremendously, however, the adoption of trending

technology in Africa remains relatively low because of the high costs of operation.

Automated stock management is one of the technologies which can be very profitable for

African communities, particularly ecommerce businesses where most systems are manual

and slow. I have had the opportunity to meet and discuss with the CEO of one of Africa’s

largest ecommerce businesses, Jumia. The business has been growing remarkably since its

establishment in 2012. Started in Nigeria, Jumia now operates in 14 African countries

including Ghana, Kenya and South Africa. The business now has about half a million

customers [6]. In my discussion with the CEO for Ghana Jumia, he explained to me that

they need a robot that can pick and place a shelf. He also explained that at the moment they

cannot give a robot to hand pick products because they can easily break. They have asked

for a proof of concept for the robot that can pick shelves. They promised to take on the

9

project and fund it if the proof of concept is satisfactory to the Jumia executive. This has

given me the energy to invest time and resources on this project. It is a great opportunity to

make a difference and apply my engineering skills.

10

Chapter 2: Literature Review

2.1 Automatic Guided Vehicles Overview

Automated or automatic guided vehicles (AGVs) are mobile robots that follow

markers or other physical guides, vision or lasers and are often used in material handling,

assembly lines, plants or manufacturing facilities [15]. A number AGVs such as Amazon’s

Kiva and Alibaba’s Quicktron for warehouse management and related applications have

been designed, fabricated, and implemented. The research is still in its premature stage and

is ongoing both in academia and the industry. Most AGVs in development are however,

mainly used for surveillance and inventory management.

AGVs are often battery powered [7] and are controlled from a central database. They

can operate both indoors and outdoors. There is often a user interface where the operator

can issue commands through wireless communication [8]. Host software in internal

centralised controllers are used by the AGV to plan and navigate a path from the start

position to the goal point. In other more complex systems, AGVs are connected to a

supervisory software which facilitates effective communication between robots, control

traffic routing for maximized efficiency and assign missions to the fleet. The supervisory

software is often referred to as Warehouse Management System (WMS). Some AGVs

periodically report to charging stations when the battery is drained.

2.2 Installation of the System

AGVs can be installed in both new and existing facilities. However, it is easier to

incorporate and integrate designs before the facility is constructed. When considering

installing an AGV system in a facility that was already established it is important that the

changes that are required for it to be functional be kept at minimum. Every AGV is

customised for a unique task and specific environment set up. There have however been

11

concerns of standardising and regulating AGVs so that compatibility becomes easier even

with robots from different manufacturers.

2.3 Local Path Planning and Navigation

 The vehicles need a way of knowing and navigating their environment. They achieve

this by using precise maps which are usually in the form of occupational grids. An

occupational grid contains vital information of an environment indicating where there are

pathways, obstacles and other points of interest [9, i-Fork]. The occupation grid is often a

nested array of binary numbers, where a ‘1’ often represents an occupied space and ‘0’

represents free coordinate. A pathway would therefore be a series of connected free spaces

that link the robots, initial location and its planned destination. There can be many possible

pathways, the robot needs to route the most efficient and cost-effective path. The AGVs are

equipped with sensors such as LASER and LIDAR which help them sense unexpected

objects and avoid crushing when there are sudden changes in the environment for example

a pedestrian close to the robot’s path.

2.4 Safety and Efficiency

 It is important to consider safety implications when using robots especially where

they share the environment with humans like in a warehouse [8]. Sensors installed on AGVs

cannot detect and differentiate between objects. Therefore, AGVs are required to operate at

low speeds in critical zones such that they can behave safely when responding to

unpredictable situations [10]. It is also important for the vehicles to have the capability to

replan and reroute in situations where an alternative path becomes necessary due to

unexpected obstructions. Where this is not possible, the AGV would get stuck and would

require human assistance [8].

12

2.5 Coordination and Fleet Management

In a system where many AGVs are simultaneously working, a central system would

be in charge of coordinating routing for each vehicle thereby avoiding collisions. Path

planning by one AGV can be very difficult [11] because of limited knowledge about the

environment especially about non-stationary objects, it gets even more complex when using

a centralised system and the challenge extends with increasing number of AGVs. A partially

decentralised [13] coordination strategy was introduced. The approach consists of

hierarchical architecture that implements path planning in two layers: topological layer and

route map layer. Local negotiation will then take place between AGVs based on shared

information about the state of the fleet.

2.5 Market Opportunities

AGVs are expected to diffuse in warehouse management and the current major

competitors are manual forklifts. However, human driven forklifts account for most injuries

and fatalities in the shop floors, due to human error. A survey conducted by Aberdeen Group

revealed that 90% of 150 surveyed managers showed commitment to invest in automating

their warehouses to increase efficiency, monitoring and performance [10]. Even though the

market for AGVs is gradually growing, manufacturers face hurdles because of high initial

installation costs and the changes required to make the system fit. On average installation

costs for an individual vehicle average around US$ 125, 000 per vehicle [10]. Currently

only big businesses can afford AGV technology installation and operation costs.

2.6 Major Challenges

Currently highly skilled and trained personnel are required for the operation and

maintenance of AGVs. User interfaces are also not as user friendly. Furthermore, AGV

systems on the market require extensive environment changes and their installation fees are

very high. The simplification of the user interface, operation and maintenance will

13

undoubtably increase the adoption of AGVs reducing initial and operation costs will diffuse

AGVs into small to medium enterprises (SMEs).

 One other major challenge with AGVs is accurate localization. Sensors such as

LIDAR and cameras that are required for high accuracy positioning are very expensive and

require high speed processors. Using odometry sensors would increase the vehicle’s

accuracy, however, this method is expensive both in terms of the required computational

time which makes processing slow and cost of required sensors which is high.

GPS is not being used on warehouse management robots because it does not work

properly indoors. RFID technology has been one of the mainly employed technologies in

addressing the localization problem. This method was successfully implemented in a design

by Laiwatimena et al in their design for a mini fork lift based on an AtMega 8535

microcontroller [14]. Another advantage is there is minimal changes to the environment.

This project therefore will be focused on minimizing changes to the warehouse

environment when installing AGVs. Accurate localization and easy operation of AGVs will

also be addressed in this project. Most importantly this project seeks to reduce the cost of

buying and installing AGVs.

14

Chapter 3: Design

3.1 Design Specifications

The design specifications of the automatic ground vehicle are as below:

• The AGV should have low production, installation and operational costs, each

vehicle should cost less than US$3,500-5000 (based on the budget provided by the

Jumia Ghana CEO) for purchasing and installation price

• There should be minimum changes to the environment within which the robot will

operate

• The AGV should be easy and safe to operate without much training for personnel

• The AGV should receive wireless commands, plan its path and navigate safely and

quickly

• The AGV should pick the accurate shelf and place it where it is needed

• The AGV should be able to avoid obstacles and plan an alternative path if necessary

• The AGV should be able to precisely follow a line and localize itself

3.2 The System Design

Figure 3.1: Diagram showing a simplified 2D design of the automated vehicle

The design shown in Fig 3.1 is the proposed solution to meet the design objectives

in section 3.1. For optimised and simple localization, RFID floor mapping and line

15

following technics have been chosen since they are affordable and accurate. The methods

also require minimum changes to the environment. The robot system is made up of a

software system for navigation, frame for supporting all parts, mechanical lifting

mechanism and electrical system for control. The robot would be controlled from a

webserver; thus it would require a wireless communication system. As it navigates the

environment it will avoid collision using an ultrasonic sensor. In the following section, the

Pugh matrix is used to explain how components and materials have been selected for the

design.

3.3 Components and Materials Selection

In an effort to achieve the design objectives stated in section 3.1 we have to carefully

select the best materials and components for the project such that we can optimise resources

and reduce cost. The Pugh Matrix has been used for the selection of components and

materials. A scale of 1-5 has been used to rank the components. The values 1 and 5 represent

poor and excellent respectively and every value will range between these two extremes.

3.31 Pugh Matrix for Microcontroller Boards

A microcontroller is needed to read values from sensors and control the motors. Most

importantly the controller will be used for receiving commands, planning and navigating

the path from start to goal position. There are four possible components for this task as listed

on the matrix below. The Raspberry Pi is robust and very reliable; however, it is quite

expensive and difficult to configure. The Arduino board is very affordable and easy to use

but it does not have wireless connectivity unless an additional module is used. PIC

microcontrollers are very difficult to configure and program, but they are very affordable.

For this project the ESP32 development board was chosen because it is cheap, easy to

program and it is itself a wireless board. Thus, it would be very easy and quick to send,

receive and implement commands.

16

M
at

er
ia

l Cost Wireless

Connectivity

Configuration

And

Programming

Processing

Speed and

Memory

Total

Scales 6 4 3 2 15

Arduino 1 -1 1 1 10

ESP32 1 1 0 1 12

Raspberry Pi 0 0 1 1 5

PIC 1 -1 -1 1 1

Table 3.1: Pugh matrix for microcontroller boards

3.3.2 Pugh Matrix for Frame Material

 For the prototype design it is desirable to for its weight to be relatively small.

Furthermore, it should be easy to manufacture. Acrylic and ABS plastic materials were

chosen because of their low weight, easy manufacturability and availability. Parts for the

frame and cases for sensors were 3D printed.

F
ra

m
e

M
at

er
ia

l

Cost Manufacturability Weight Durability Total

Scales 3 5 5 2 15

ABS (3D

Printed)

1 1 1 0 13`

Acrylic 1 0 1 0 13

Steel 0 0 -1 1 -3

Aluminium 0 0 1 1 7.

Table 3.2: Pugh matrix for robot frame material

3.3.3 Pugh Matrix for Localization Sensors

Possible sensors for localization included cameras, RFID, IR, QR and Barcodes. For

the purposes of floor mapping, the RFID was chosen because it does not require much

changes to the environment for its installation. Similarly, the IR sensors were chosen for

line following because this would not require major changes to the warehouse. Cameras

would give very accurate localization however they are very expensive to purchase and use.

Computer vision requires high processing speeds and thus a more robust microcontroller

17

and software program. This would be very difficult with the ESP32. QR and Barcodes are

hard to configure with the ESP32 development board.
L

o
ca

li
za

ti
o
n

Cost Accuracy Configuration

And

Programming

Environment

Changes

Total

Scales 5 3 4 3 15

Cameras -1 1 -1 0 -9

RFID 1 1 1 1 15

QR 0 1 0 1 6

Bar Code 1 1 -1 1 6

IR 1 0 1 1 12

Table 3.3: Table 3.1: Pugh matrix for localization sensors

3.3.4 Pugh Matrix for Lifting Mechanism

A lifting mechanism will be required for lifting and placing shelves. The belts and

pulley system is most suitable because the prototype motors are low power and weights to

be lifted are relatively small. Because of the small weights a very strong locking

mechanism is not as necessary. Most importantly this system is readily available and

cheap to install.

F
o
rk

 L
if

ti
n
g

M
ec

h
an

is
m

 Cost Locking

Mechanism/

Efficiency

Weight Durability Total

Scales 4 4 4 3 15

Chains &

Pulley

1 0 1 0 8

Belts &

Pulley

1 0 1 0 8

Gears &

Rack

0 1 1 0 8

Hydraulic -1 1 0 1 3

Table 3.4: Pugh matrix for lifting mechanism

18

3.2 The Software Program

The robot will be controlled using the flow chart below. It will wait to receive a command

via wireless connection (WiFi). The command can either be for the AGV to pick a shelf or

for it to go the charging station. Once it has this information it will plan its path and begin

navigation. The robot will keep relocalizing when it comes across an RFID tag at a corner.

This improves its accuracy as it moves towards the goal. Upon reaching the goal, the robot

will go on standby waiting for a command and the cycle repeats.

Figure 3.2: Flowchart showing how the software on the automatic ground vehicle works

19

3.4 The Automatic Ground Vehicle Frame Design

Figure 3.4: The AGV robot frame SolidWorks 3D design

The AGV would have a platform for mounting sensors in front and a lifting mechanism on

top as shown in the figure above. The robot will be very close to the ground for stability and

for increased sensor accuracy.

3.4.1 The First AGV Prototype

Figure 3.5: Images showing the arrangement of sensors on the first prototype AGV

Shown in the images above is the automatic ground vehicle prototype made with

acrylic and 3D printed ABS material. The AGV is controlled using the ESP32

microcontroller. The ultrasonic sensor is installed in front together with infrared (IR) sensors

below. The RFID reader is also very close to the front but below the robot. Three infrared

sensors were used. The centre IR sensor should stay on the black line while the left and right

IR sensors should always be on white, this way the robot will always follow the black line.

RFID Card Reader Ultrasonic Sensor IR Sensors

20

Figure 3.5: Block diagram showing how components relate

 The block diagram below shows the connection of the AGV hardware. The

major components are the ESP 32 microcontroller board, RFID sensors, and the IR sensors.

The ESP32 controller will receive a command from a webserver, plan the path and use the

IR sensors, RFID and motor drivers for navigation. The battery level sensor will always be

checking battery capacity when it is below threshold the robot will stop receiving commands

and drive to the nearest charging spot and wait to be recharged. The AVG will notify the

database of its status – low battery. Shown below is the electrical circuit of the system.

Figure 3.8: Circuit diagram showing all electrical connections between components

ESP 32

Microcontroller

RFID Sensor

LCD + LEDs (3)

Batteries

Motors (4) + Drivers(2)

IR Sensors (3)

Web Server

21

3.4.2. The Second AGV Prototype

Figure 3.7: Images showing the microcontrollers and LCD on the second AGV prototype

The second AGV prototype is controlled using an ESP8266 and the Arduino Uno. This

development was necessary because the RFID reader was not working with the ESP32

microntroller. In the second prototype the ESP8266 which has fewer input/output pins was

used for wireless communication, localization and obstacle avoidance. The Arduino Uno

was used for navigation; thus, it was used to control the motors. The ESP8266 and the

Arduino Uno communicate using serial communication. The prototype 2 AGV also has a

button which allows the user to calibrate the sensors using a white and black surface when

the system boots. An LCD has also been added for the user or observer to understand how

the robot is acting. The block diagram below shows the configuration of the system.

ESP8266

Arduino Uno

LCD

22

Figure 3.9: Block diagram showing the configuration of components on the second

prototype

3.5 The Robot Working Environment

The working environment of the robot should be clearly defined with a model for

simplification. An occupational grid will be used to make a map for the warehouse which

the robot can easily interpret. The AGV mainly needs to know its position and areas where

there are obstacles. Given this information the robot can know which areas it can safely

move and which ones to avoid. Each coordinate on the grid represents nodes which can

either be free or occupied. The software program which runs of the robot represents

occupied nodes with 1s and free nodes with 0s.

ESP 8266

Microcontroller

(1)

ESP 8266

Microcontroller

(2)

Cloud Server

PC

(Python +

Arduino)

Arduino Uno Motor Driver

Path

Location

Path

Path

Speed +

 Direction

Path

Location

Location

23

Figure 3.10: A typical grid which will be used for occupancy

3.6 The Path Planning and Navigation Algorithm

The AGV will implement the wavefront algorithm to navigate the warehouse work space.

According to Ashesi Robotics the wavefront algorithm is a cell-decomposition path

planning method in which the workspace is divided into equal polygons [16]. Each polygon

is assigned (x, y) coordinates and the working space would be labelled with 0’s and 1’s

where they represent free and occupied spaces respectively. A typical wavefront matrix is

shown in figure [Figure XYZ] below:

Figure 3.11: An example of a wavefront grid map

24

Given a workspace like the one in the diagram above, each square would be allocated a

number. The start coordinate is the goal coordinate is allocated the value 2 and neighbouring

cells will be numbered incrementally beginning at 3 until the start position has been labelled.

These numbers represent the number of steps required to move from the start to goal

position. Therefore, the shortest possible path will be the one with decreasing values from

start to goal as in the figure below.

Figure 3.12: Wavefront grid showing the shortest path from start to goal

In this project the wavefront path planning algorithm will be implemented using Python.

The path will be sent to the ESP8266 via serial communication and finally to the robot

through the webserver.

25

Chapter 4: Methodology

4.1 Sensors and Motor Control

The robot will navigate the warehouse working space based on sensor values. Tests will be

performed for line following, obstacle avoidance and localization. These tests are explained in the

following subsections.

4.1.1 Line Following Test

The IR sensors output high voltage values when they reflect light on dark (black) surfaces,

they also return low values for light (white) surfaces. These values will be mapped to either

1 or 0 respectively. Motors will be controlled based on these IR values in order for the robot

to follow the black line. The table below summarizes how the robot would behave based on

the IR sensor values.

Left IR Sensor Centre IR Sensor Right IR Sensor Interpretation

1 1 1 Black Surface (Coordinate)

1 1 0 Turn Left to Align

1 0 1 Not Possible (Stop robot)

1 0 0 Turn Left to Align

0 1 1 Turn Right to Align

0 1 0 Forward (Robot on black line)

0 0 1 Turn Right to Align

0 0 0 White Surface (Coordinate + RFID)

Table 4.1: Table: Table showing expected robot behaviour based on IR sensor values

4.1.2 Obstacle Avoidance Test

The robot should be able to maintain a minimum distance of 0.2m from obstacles. Readings

will be taken using the ultrasonic sensor and obstacles will be placed in front of the robot to

observe how it reacts.

4.1.3 Localization Test

 During navigation the robot should also be able to detect RFID tags placed at specific

coordinates of the working space.

4.2 Communication Test

Paths for the robot will be computed on the PC and sent to the robot using a webserver. The

information will be sent in the form of a string of commands. Communication between the ESP8266

26

(connected to the PC) and the webserver will be tested. Another test will be conducted for retrieving

the path from the webserver by the ESP8266 on the robot.

4.3 Navigation Test

Once the ESP8266 on the robot receives the commands from the webserver it should begin

navigation. The AGV will be tested in an environment set up as shown in Fig. 8 below. The

commands from the webserver will instruct the actions of the robot. The commands will instruct the

robot to navigate a path. Tests will be done for paths A (at the origin) to point B (shelf 2 at shelf

row 2) and from B to point C (the Counter). The oberver will observe the robot navigate each od

these two paths 10 times and record whether it reached the destination or not. A one value statistics

T-Test will be conducted to anaylyse the results statistically.

Figure 4.1: Occupancy grid with key points used to test the robot

The robot will have to navigate from its initial location to the chosen goal location. The observer

will record whether the robot succeeded or failed to reach a specified goal. Several tests will be

carried out for different start point and shelves coordinates.

RFID

Card
Coordinate

A

B

C

27

Chapter 5: Results and Analysis

Table 4.1: Images showing the robot during line following tests

The robot was tested using the methodology explained in chapter 4. The results will be

analysed on the followiing sections.

5.1 Line Following Results

The robot successfully followed the black lines. The AGV behaviour ws as expected, it

would turn into the right direction when sensor values chnaged during navigation. Shown

below are images from the test.

Figure 5.2: Images showing the robot taking decisions based on IR sensor values

28

5.2 Obstacle Avoidance Results

The AGV is able to avoid obstacles with a stopping distance. The table below summarises

the values on the AGV’s stopping distance when approaching obstacles.

Test Desired Stopping Distance Observed Stopping Distance

1 0.2m 0.23

2 0.2m 0.19

3 0.2m 0.18

4 0.2m 0.20

5 0.2m 0.22

Table 5.1: Results from the obstacle avoidance test

5.3 Localization Results

The robot ESP8266 is able to read the RFID information at a maximum range of 0.02m.

Figure 5.3: Example results from the RFID test

5.4 Communication Results

Communication between the ESP8266 on the PC and the webserver as well as between the

ESP8266 on the robot and the server has been implememnted successfully. The path was

sent and received as was expected. Ultrasonic sensor and RFID information has also be

successfully sent between the the robot ESP8266 and the Arduino Uno.

5.5 Navigation Results

The navigation test could not be performed because it has been observed that the wheels of

the robot are not turning 90 and 360 degrees because of insufficient friction between the

29

wheels and the robot. Initially it was assumed it was a power problem, it has taken long to

realise this challenge. There is need for a solution to the friction problem.

30

Chapter 6: Conclusion

6.1 Discussion

The communication, sensing and path planning have been successfully implemented.

However, the project could not yield expected results because of unforeseen challenges.

There is need for a rougher surface or rough wheels to increase the friction between the two

surfaces. Given the tests conducted with the communication, sensing and path planning the

robot is working theoretically or in the sense of a simulation. There is need however to make

it work in practice.

6.2 Limitations

There are a number of challenges involved with this project. It is very easy to design

a system theoretically, but its implementation is usually limited with physical elements.

Varying levels of intensity significantly affect how the robot differentiates between black

and white using IR sensors because the threshold would have shifted. Another challenge has

been with the barcode scanner which was available was not compatible with the

microcontroller. Using RFID would not be as efficient because they have a very short and

limited detection range. Furthermore, the ESP32 microcontroller which would be needed

for connecting the barcode scanner or RFID reader had all its input/output ports exhausted.

Friction has been the major challenge which has hindered progress of this project.

6.3 Future Work

There is need to seek a solution to the friction problem with this the robot can be

tested conveniently. In order to minimise the number of microcontrollers used sufficient

knowledge in required in C data structures with this path planning can be done locally on

the robot which would receive commands directly from the webserver. A barcode scanner

compatible with the ESP32, ESP8266 or Arduino would make it easier for the robot to

identify shelves. Furthermore, this technology is common already in shops and would be

31

cheap for them to implement. A Raspberry-Pi could also be used for more reliability and

compatibility with the number of sensors and processing required.

32

References

[1] C. Guillot, “4 types of autonomous mobile robots, and their warehouse use cases”,

Supply Chain Drive, 2018, [Online], Available:

https://www.supplychaindive.com/news/4-types-of-autonomous-mobile-robots-and-their-

warehouse-use-cases/529548/

[2] Business Insider, “Kiva Robots Save Money for Amazon, 2016, [Online], Available:

https://www.businessinsider.com/kiva-robots-save-money-for-amazon-2016-6?IR=T

[3] Daily Mail UK, “Wifi-equipped robots triple work efficiency at the warehouse of the

world's largest online retailer”, 2017, [Online], Available:

https://www.dailymail.co.uk/news/article-4754078/China-s-largest-smart-warehouse-

manned-60-robots.html

[4] Business Insider, “Inside Alibaba Smart Warehouse Robots Do 70 Percent of the

Work”, Logistics Technology, 2017, [Online], Available:

https://www.businessinsider.com/inside-alibaba-smart-warehouse-robots-70-per-cent-

work-technology-logistics-2017-9?IR=T

[5] World Economic Forum, “How Ecommerce is Booming in Africa”, 2015, [Online],

Available:

https://www.weforum.org/agenda/2015/08/how-e-commerce-is-booming-in-africa/

[6] Small Starter, “The biggest players in Africa’s Fast Growing Ecommerce Market”, n.d,

[Online], Available:

http://www.smallstarter.com/know-the-basics/the-biggest-players-in-africas-fast-growing-

e-commerce-market/

[7] M. M. Oliveira, J. P. M. Galdames, K. T. Vivaldini, D. V. Magalhães and M. Becker,

"Battery state estimation for applications in intelligent warehouses," 2011 IEEE

International Conference on Robotics and Automation, Shanghai, 2011, pp. 5511-5516.

doi: 10.1109/ICRA.2011.5980548

[8] S. Teller et al., "A voice-commandable robotic forklift working alongside humans in

minimally-prepared outdoor environments," 2010 IEEE International Conference on

Robotics and Automation, Anchorage, AK, 2010, pp. 526-533.

doi: 10.1109/ROBOT.2010.5509238

 [9] H. M. Barbera, J. P. C. Quinonero, M. A. Z. Izquierdo and A. G. Skarmeta, "i-Fork: a

flexible AGV system using topological and grid maps," 2003 IEEE International

Conference on Robotics and Automation (Cat. No.03CH37422), Taipei, Taiwan, 2003, pp.

2147-2152 vol.2.

[10] F. Oleari, M. Magnani, D. Ronzoni and L. Sabattini, "Industrial AGVs: Toward a

pervasive diffusion in modern factory warehouses," 2014 IEEE 10th International

Conference on Intelligent Computer Communication and Processing (ICCP), Cluj Napoca,

2014, pp. 233-238.doi: 10.1109/ICCP.2014.6937002

https://www.supplychaindive.com/news/4-types-of-autonomous-mobile-robots-and-their-warehouse-use-cases/529548/
https://www.supplychaindive.com/news/4-types-of-autonomous-mobile-robots-and-their-warehouse-use-cases/529548/
https://www.businessinsider.com/kiva-robots-save-money-for-amazon-2016-6?IR=T
https://www.dailymail.co.uk/news/article-4754078/China-s-largest-smart-warehouse-manned-60-robots.html
https://www.dailymail.co.uk/news/article-4754078/China-s-largest-smart-warehouse-manned-60-robots.html
https://www.businessinsider.com/inside-alibaba-smart-warehouse-robots-70-per-cent-work-technology-logistics-2017-9?IR=T
https://www.businessinsider.com/inside-alibaba-smart-warehouse-robots-70-per-cent-work-technology-logistics-2017-9?IR=T
https://www.weforum.org/agenda/2015/08/how-e-commerce-is-booming-in-africa/
http://www.smallstarter.com/know-the-basics/the-biggest-players-in-africas-fast-growing-e-commerce-market/
http://www.smallstarter.com/know-the-basics/the-biggest-players-in-africas-fast-growing-e-commerce-market/

33

[11] Naiqi Wu and MengChu Zhou, "AGV routing for conflict resolution in AGV

systems," 2003 IEEE International Conference on Robotics and Automation (Cat.

No.03CH37422), Taipei, Taiwan, 2003, pp. 1428-1433 vol.1. doi:

10.1109/ROBOT.2003.1241792

[12] S. Prombanpong, W. Kiattiphatthananukul, A. Songsanan and A. Sukin, "NThe

design of an AGV in the manufacturing cell," 2012 IEEE International Conference on

Industrial Engineering and Engineering Management, Hong Kong, 2012, pp. 1006-1009.

doi: 10.1109/IEEM.2012.6837892

[13] A. Krnjak, I. Draganjac, S. Bogdan, T. Petrović, D. Miklić and Z. Kovačić,

"Decentralized control of free ranging AGVs in warehouse environments," 2015 IEEE

International Conference on Robotics and Automation (ICRA), Seattle, WA, 2015, pp.

2034-2041.doi: 10.1109/ICRA.2015.7139465

[14] S. Liawatimena, B. T. Felix, A. Nugraha and R. Evans, "A mini forklift robot," The

2nd International Conference on Next Generation Information Technology, Gyeongju,

2011, pp. 127-131. doi: 10.1109/ROBOT.2003.1241911

[15] B. Y. Qi, Q. L. Yang and Y. Y. Zhou, "Application of AGV in intelligent logistics

system," Fifth Asia International Symposium on Mechatronics (AISM 2015), Guilin, 2015,

pp. 1-5.

doi: 10.1049/cp.2015.1527

[16] Eddem Diaba and Abdelrahman Barakat, " Path Planning: Wavefront Algorithm"

Ashesi Robotics, Ashesi University, Ghana, 2012, [Online], Available:

https://ashesirobotics.wordpress.com/2012/12/28/wavefront-planning-task-4/

https://ashesirobotics.wordpress.com/2012/12/28/wavefront-planning-task-4/

34

Appendix

A.1 Arduino Navigation Code

1. #include <Wire.h>
2. #include <LiquidCrystal_I2C.h>
3.
4. #include<SoftwareSerial.h> //Included SoftwareSerial Library
5. //Started SoftwareSerial at RX and TX pin of ESP8266/NodeMCU
6. //SoftwareSerial s(8,9);
7.
8. LiquidCrystal_I2C lcd(0x27,20,4);
9.
10. //IR Sensor Pins
11. int leftIR = A1;
12. int rightIR = A0;
13. int centerIR = A2;
14.
15. //IR Sensor Values
16. int leftValue;
17. int rightValue;
18. int centerValue;
19.
20. //IR Sensor Threshhold for B/W
21. int threshHold;
22.
23. //FRFFFRFFFT
24. String path = "FFLFRFT"; //Initialized variable to store recieved data
25. String action;
26.
27. //Motors
28. int motorA1 = 5; //IN1
29. int motorA2 = 6; //IN2
30. int motorB1 = 10; //IN4
31. int motorB2 = 11; //IN3
32.
33. //Motor Control
34. int enable = 3;
35. int turn_delay = 500;
36. int turn_speed = 225;
37. int vSpeed = 120;
38.
39. //US Sensor
40. int echoPin = 8;
41. int trigPin = 2;
42. long duration;
43. int distance;
44.
45. //button pin
46. int button = A3;
47. int buttonValue;
48.
49. //white and black averages
50. float blackAvg = 0;
51. float whiteAvg = 0;
52.
53. //path index
54. int Idx = 0;
55. int test = 0;
56.
57. void setup() {
58. //Serial communication
59. Serial.begin(9600);
60. //s.begin(9600);
61.

35

62. //IR sensors
63. pinMode(leftIR, INPUT);
64. pinMode(rightIR, INPUT);
65. pinMode(centerIR, INPUT);
66.
67. //US sensors
68. pinMode(trigPin, OUTPUT); // Sets the trigPin as an Output
69. pinMode(echoPin, INPUT); // Sets the echoPin as an Input
70.
71. //Motors
72. pinMode(motorA1, OUTPUT);
73. pinMode(motorA2, OUTPUT);
74. pinMode(motorB1, OUTPUT);
75. pinMode(motorB2, OUTPUT);
76.
77. //Speed
78. pinMode(enable, OUTPUT);
79.
80. //LCD
81. lcd.init(); // initialize the lcd
82. lcd.init();
83. lcd.backlight();
84.
85. //Calibrating Black Value
86.
87. lcd.setCursor(0,0);
88. lcd.print("Put Sensors on Black");
89.
90. lcd.setCursor(0,2);
91. lcd.print("Then press OK button");
92.
93. buttonValue = analogRead(button);
94. Serial.print("buttonValue");
95. Serial.println(buttonValue);
96.
97. Serial.print("Put IR Sensors on Black");
98. Serial.println("And press the okay button");
99.
100. while (buttonValue != 0){
101.
102. leftValue = analogRead(leftIR);
103. rightValue = analogRead(rightIR);
104. centerValue = analogRead(centerIR);
105.
106. delay(1000);
107.
108. blackAvg = (leftValue + rightValue + centerValue)/3;
109. buttonValue = analogRead(button);
110. delay(1000);
111. }
112.
113. lcd.clear();
114.
115. lcd.setCursor(0,0);
116. lcd.print("Average Black Value ");
117. Serial.print(" Average Black Value:");
118.
119. lcd.setCursor(9,2);
120. lcd.print(blackAvg);
121. Serial.println(blackAvg);
122.
123. delay(2500);
124.
125. //Calibarting white value
126.
127. lcd.clear();

36

128. lcd.setCursor(0,0);
129. lcd.print("Put Sensors on White");
130.
131. lcd.setCursor(0,2);
132. lcd.print("Then press OK button");
133.
134. buttonValue = analogRead(button);
135.
136. Serial.print("Put IR Sensors on White");
137. Serial.println(" And press the okay button");
138.
139. while (buttonValue != 0){
140.
141. leftValue = analogRead(leftIR);
142. rightValue = analogRead(rightIR);
143. centerValue = analogRead(centerIR);
144. delay(1000);
145.
146. whiteAvg = (leftValue + rightValue + centerValue)/3;
147. buttonValue = analogRead(button);
148.
149. }
150.
151. lcd.clear();
152.
153. lcd.setCursor(0,0);
154. lcd.print("Average White Value");
155. Serial.print("Average White Value:");
156.
157. lcd.setCursor(9,2);
158. lcd.print(whiteAvg);
159. Serial.println(whiteAvg);
160.
161. delay(2500);
162.
163. //Displaying threshold
164.
165. threshHold = (whiteAvg+blackAvg)/2;
166.
167. lcd.clear();
168. lcd.setCursor(0,0);
169. lcd.print("Threshhold Value");
170. Serial.print("Threshhold Value: ");
171.
172. lcd.setCursor(9,2);
173. lcd.print(threshHold);
174. Serial.println(threshHold);
175. delay(2000);
176.
177. //Initializing System
178. lcd.clear();
179. lcd.setCursor(2,0);
180. lcd.print("SWIFTRON SYSTEM");
181.
182. lcd.setCursor(4,2);
183. lcd.print("INITIALIZED");
184.
185. Serial.println("SWIFTRON SYSTEM INITIALIZED");
186. delay(2000);
187. }
188.
189.
190. void loop() {
191. pathFollower();
192. stopMotors();
193. }

37

194.
195.
196. void pathFollower(){
197.
198. test = 0;
199.
200. action = path[Idx];
201.
202. Serial.println(action);
203.
204. //display to LCD and Serial
205. screen();
206.
207. lcd.setCursor(0,3);
208.
209. if (action == "F"){ //+ while idx
210.
211. while (test == 0){
212.
213. //Read from sensors
214. leftValue = analogRead(leftIR);
215. rightValue = analogRead(rightIR);
216. centerValue = analogRead(centerIR);
217.
218. screen();
219. lcd.setCursor(9,3);
220.
221. //Forward
222. if ((leftValue < threshHold) && (centerValue > threshHold) && (ri

ghtValue < threshHold)){ //(ir3 > threshHold) &&
223. forward(vSpeed);
224. Serial.print("Forward");
225. lcd.print("Forward");
226. }
227.
228. //Left, leftIR on black
229. else if((leftValue > threshHold) && (rightValue < threshHold)){
230. spinLeft(turn_speed,turn_delay);
231. Serial.print("SpinLeft");
232. lcd.print("SpinLeft");
233. }
234.
235. //Right, rightIR on black
236. else if((leftValue < threshHold) && (rightValue > threshHold)){
237. spinRight(turn_speed,turn_delay);
238. Serial.print("SpinRight");
239. lcd.print("SpinRight");
240. }
241.
242. //All sensors on black
243. else if((leftValue > threshHold) && (centerValue > threshHold) &&

(rightValue > threshHold)){
244. Serial.print("Black");
245. lcd.print("Black");
246. //exit;
247. test = 1;
248.
249. forward(vSpeed);
250. delay(150);
251. stopMotors();
252. ++Idx;
253. }
254.
255. //All sesnsors on white
256. else if((leftValue < threshHold) && (centerValue < threshHold) &

& (rightValue < threshHold)){//(centerIR < threshHold) &&

38

257. Serial.print("White");
258. lcd.print("White");
259. //exit;
260. test = 1;
261.
262. forward(vSpeed);
263. delay(150);
264. stopMotors();
265. ++Idx;
266.
267. //look for RFID, if not found stop
268.
269. if (s.available()>0) {
270.
271. //s.listen();
272. RFID = s.readString(); //Read the serial data and stor

e it
273. Serial.println(RFID);
274. lcd.clear();
275. lcd.setCursor(3,0);
276. lcd.print("RFID DETECTED");
277.
278. lcd.setCursor(0,1);
279. lcd.print("ID: ");
280.
281. lcd.setCursor(3,1);
282. lcd.print(RFID);
283.
284. lcd.setCursor(0,3);
285. lcd.print("Swiftron Relocalized");
286.
287.
288. }
289. }
290.
291. else{
292. stopMotors();
293. Serial.print("Unknown");
294.
295. lcd.setCursor(0,3);
296. lcd.print("Error: Robot Stopped");
297. }
298.
299. delay(200);
300. }
301.
302. }
303.
304.
305. else if(action == "L"){
306.
307. spinLeft(turn_speed,1250);
308. lcd.print("Turning Left: 90");
309. Serial.println("Turning Left: 90");
310. ++Idx;
311.
312. }
313.
314. else if(action == "R"){
315.
316. spinRight(turn_speed,1250);
317. lcd.print("Turning Right: 90");
318. Serial.println("Turning Right: 90");
319. ++Idx;
320.
321. }

39

322.
323. else if(action == "T"){
324.
325. spinRight(turn_speed,2500);
326. lcd.print("Turning 360");
327. Serial.println("Turning 360");
328. ++Idx;
329.
330. }
331.
332. else{
333.
334. stopMotors();
335. delay(2500);
336. lcd.print("MISSION COMPLETE");
337. Serial.println("MISSION COMPLETE");
338.
339. }
340.
341. delay(3500);
342.
343. }
344.
345. void screen(){
346. lcd.clear();
347. lcd.setCursor(3,0);
348. lcd.print("SWIFTRON ROBOT");
349.
350. //Read from sensors
351. leftValue = analogRead(leftIR);
352. rightValue = analogRead(rightIR);
353. centerValue = analogRead(centerIR);
354.
355. //IR Values Display on LCD
356. lcd.setCursor(2,1);
357. lcd.print(leftValue);
358.
359. lcd.setCursor(9,1);
360. lcd.print(centerValue);
361.
362. lcd.setCursor(16,1);
363. lcd.print(rightValue);
364.
365. lcd.setCursor(3,2);
366. lcd.print("ThreshHold: ");
367.
368. lcd.setCursor(15,2);
369. lcd.print(threshHold);
370.
371. Serial.println(threshHold);
372.
373. //IR Values Display on PC
374. Serial.print("Left: ");
375. Serial.println(leftValue);
376.
377. Serial.print("Right: ");
378. Serial.println(rightValue);
379.
380. Serial.print("Center: ");
381. Serial.println(centerValue);
382.
383. Serial.print("");
384. Serial.println("");
385.
386. }
387.

40

388. void forward(int Speed){
389.
390. Serial.println("[] SWIFTRON going forward");
391. digitalWrite (motorA1,LOW);
392. digitalWrite(motorA2,HIGH);
393. digitalWrite (motorB1,LOW);
394. digitalWrite(motorB2,HIGH);
395.
396. analogWrite(enable, Speed);
397. }
398.
399. void reverse(){
400. Serial.println("[] SWIFTRON reversing");
401. digitalWrite (motorA1,HIGH);
402. digitalWrite(motorA2,LOW);
403. digitalWrite (motorB1,HIGH);
404. digitalWrite(motorB2,LOW);
405.
406. analogWrite(enable, turn_speed);
407. }
408.
409. void stopMotors(){
410. Serial.println("[] Motors Stopped");
411. digitalWrite (motorA1,LOW);
412. digitalWrite(motorA2,LOW);
413. digitalWrite (motorB1,LOW);
414. digitalWrite(motorB2,LOW);
415. }
416.
417. void spinLeft(int Speed, int Delay){
418. Serial.println("[] SWIFTRON turning LEFT");
419. digitalWrite(motorA2, LOW); // GET /H turns the LED on

420. digitalWrite(motorA1, HIGH);
421.
422. digitalWrite(motorB2, HIGH);
423. digitalWrite(motorB1, LOW);
424.
425. analogWrite(enable, Speed);
426. delay(Delay);
427. stopMotors();
428. }
429.
430. void spinRight(int Speed, int Delay){
431. Serial.println("[] SWIFTRON turning RIGHT");
432.
433. digitalWrite(motorA2, HIGH); // GET /H turns the LED o

n
434. digitalWrite(motorA1, LOW);
435.
436. digitalWrite(motorB2, LOW);
437. digitalWrite(motorB1, HIGH);
438.
439. analogWrite(enable, Speed);
440. delay(Delay);
441. stopMotors();
442. }
443.

