
ASHESI UNIVERSITY COLLEGE

CLASSIFICATION AND QUANTIFICATION OF MALARIA
PARASITES USING CONVOLUTIONAL NEURAL NETWORKS

UNDERGRADUATE THESIS

B.Sc. Computer Science

Maxwell Mbabilla Aladago

2018

ASHESI UNIVERSITY COLLEGE

Classification and Quantification of Malaria Parasites Using
Convolutional Neural Networks

UNDERGRADUATE THESIS

Thesis submitted to the Department of Computer Science, Ashesi
University College in partial fulfillment of the requirements for the award of

Bachelor of Science degree in Computer Science

Maxwell Mbabilla Aladago

April 2018

DECLARATION

I hereby declare that this Undergraduate Thesis is the result of my own original work and
that no part of it has been presented for another degree in this university or elsewhere.

Candidate’s Signature:

Candidate’s Name:

Date:

I hereby declare that preparation and presentation of this Undergraduate Thesis were super-
vised in accordance with the guidelines on supervision of Undergraduate Thesis laid down
by Ashesi University College.

Supervisor’s Signature:

Supervisor’s Name

Date:

i

Acknowledgment

This thesis was completed through the selfless contributions of many people. As a result,

I cannot acknowledge everyone individually here. Nonetheless, I would like to recognize

with profound gratitude, some individuals for their specific contributions to the success of

this thesis.

Foremost, I would like to express my sincere gratitude to my advisor Dr. Elena V.

Rosca and to Dr. Lorenzo Torresani for supporting, motivating and providing constructive

criticism throughout this research. Dr. Rosca’s vast network in the research community

made it possible for me to obtain the much needed data for conducting this research, while

Dr. Torresani’s immense experience and knowledge in machine learning helped improved

the thesis phenomenally.

Further, I would like to thank Dr. Linda Amoah and the Noguchi Memorial Institute

for Medical Research for generously providing the data used in this research. I would also

like to sincerely thank Ms. Urmila Sampathkumar at the University of Missouri for freely

making available to me the tool used in annotating the images. I am also highly indebted to

Dr. Etoka-Beka Kosso Mandingha in Congo Brazzaville for selflessly dedicating her time

and expertise to annotate the images for me at no cost. Her knowledge in molecular biology

and applied immunology helped me make progress on this thesis. Finally, I want to thank

Dr. Stefan Jaeger at the US National Library of Medicine for introducing me to Ms. Urmila

Sampathkumar

ii

Abstract

Malaria is currently one of the most deadly diseases in the world. While there are differ-

ent treatment methods for the disease, the search for new drugs against malaria is still a

very important area of research. One of the main challenges in manufacturing drugs against

malaria is efficiently evaluating the performance of the drugs on the parasites since it re-

quires, amongst others, precise measurements of the parasite growth-stages as well as their

counts in blood smear images. The current gold-standard for making such detail diagno-

sis is manual microscopy which is tedious. This research showed that convolutional neural

networks can be used to identify the different growth-cycle stages of Plasmodium para-

sites, even in situations where there is little data. Employing a variety of data augmentation

techniques and transfer learning, a semantic segmentation model was built to discriminate

between trophozoites, gametocytes and normal red blood cells with an accuracy of 85.86%

in 353 Giemsa-stained thin blood smears. The results showed that it is possible to perform

dense predictions on Giemsa-stained thin blood smears using convolutional neural networks.

Keywords:

Convolutional neural networks; machine learning; malaria; Plasmodium parasites

iii

Table of Contents

DECLARATION . i

Acknowledgement . ii

Abstract . iii

Table of Contents . v

1 Chapter 1: Introduction And Background . 1

2 Chapter 2: Related Literature . 5

2.1 Malaria and Plasmodium Parasites . 5

2.2 Staining . 6

2.3 Machine Learning Algorithms for Automated Malaria Diagnosis 6

2.3.1 Convolutional Neural Networks for Malaria Diagnosis 11

2.4 Summary of Related Literature . 12

3 Chapter 3: Methodology . 14

3.1 Datasets . 14

3.2 Data Processing Tasks . 15

3.2.1 Image Annotations . 16

3.2.2 Grayscaling . 18

3.2.3 Data Augmentation . 19

3.3 Parasites Classification Algorithm: Convolutional Neural Networks 20

3.3.1 Layering in Convolutional Neural Networks 21

3.3.2 Activation functions . 23

3.3.3 Loss Function . 24

3.3.4 Optimization Method . 27

3.4 Dealing with Little Labeled Data . 28

3.4.1 Transfer Learning . 28

3.4.2 Context Encoding . 29

iv

3.5 Semantic Segmentation . 30

3.5.1 Masks Generation . 32

3.5.2 Downsampling . 33

3.5.3 Weighting of the Loss Function . 37

4 Chapter 4: Methodology 2 - Implementation 39

4.1 System Architecture . 39

4.2 Implementation Resources . 39

4.2.1 OpenCV . 39

4.2.2 Keras . 40

4.2.3 TensorFlow . 40

4.3 Training . 41

4.3.1 Binary Classification . 42

4.3.2 Growth-cycle Stages Classification 43

5 Chapter 5: Experiments and Results . 45

5.1 Results of Training . 45

5.2 Results of Testing . 52

6 Chapter 6: Conclusion and Future Work . 54

6.1 Summary . 54

6.2 Limitations . 54

6.3 Suggestions for Future Work . 56

References . 57

v

List of Tables

3.1 Datasets . 14

3.2 Number of annotations for growth-cycle stage classification 16

4.1 Composition of annotations in Training and Test datasets 44

4.2 Number of pixels per class in Training and Test datasets 44

4.3 Number of pixels per class in percentages 44

vi

List of Figures

2.1 Plasmodium parasites growth-cycle stages 6

2.2 Example images of Giemsa-stained blood smears 7

3.1 P.falciparum parasites in thin blood smear image 15

3.2 Crops of parasites growth-cycle stage annotations 17

3.3 RGB and grayscale images . 19

3.4 Fine-tuned VGG16 architecture . 29

3.5 Random crops and their inpaintings for unsupervised pre-training 30

3.6 Growth-cycle stages classification model architecture 32

3.7 A non-aligned annotation and its rotated equivalent 33

3.8 Illustrations of downsampling methods . 35

3.9 Ground-truth annotations, original resolution masks and downsampled masks 36

3.10 Activation map from unweighted loss . 38

4.1 System flowchart . 39

4.2 GPU properties . 42

5.1 Examples of positive and negative images from binary classification dataset 46

5.2 Binary classification training metrics . 46

5.3 Training and validation metrics of under-fitting model 49

5.4 Training and validation metrics of over-fitting model 49

5.5 Training and validation loss and accuracy: model A 50

5.6 Weighted loss and weighted accuracy training results: model B 50

5.7 Weighted loss and weighted accuracy training results: model C 51

5.8 Activation maps of trained model . 51

vii

Chapter 1: Introduction And Background

Nearly 50% of the world’s population is at risk of malaria, a dangerous infectious

disease caused by the Plasmodium parasite. Literally, a child under five years dies of malaria

every two minutes. About 429,000 people died from the disease in 2015; sub-Saharan Africa

alone accounted for 90% of all deaths (WHO, 2017). These are very shocking statistics,

considering that different treatment methods of the disease exist. Besides the loss of lives,

malaria creates other numerous economic and social problems to many countries, especially

to developing countries where the disease is endemic. As an example, Ghanaian businesses

suffered losses of up to US$6.58 million in 2014 to malaria (Nonvignon et al., 2016). Yet,

these statistics might just be a microcosm of the problems malaria poses to societies as a lot

more cases go unreported.

Malaria in human beings is caused by four main species of the Plasmodium para-

site: Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae and Plasmodium

ovale. Of these four major species, Plasmodium falciparum is the most prevalent parasite in

Africa. It is also the species responsible for the most severe form of malaria (WHO, 2017).

Like many other organisms, Plasmodium parasites have different growth stages. In humans

beings, the parasites have four major growth-cycle stages sporozoites, merozoites, tropho-

zoites and gametocytes (Srinivas, 2015). There are other stages of the parasites which occur

outside the human body.

As part of the measures to mitigate the impact of malaria on the progress of soci-

eties, the World Health Organization(WHO) directed an estimated US$2.7 billion in 2016 in

funding for malaria control and elimination research projects (WHO, 2017). WHO’s efforts

have mainly been in vector control which has yielded the greatest success in controlling

malaria so far (Karunamoorthi, 2011). However, while vector control measures are effec-

tive in reducing the transmission of the disease from infected people to uninfected people,

they are not effective at helping to eradicate the Plasmodium parasites. This is largely due

to vector resistance. The female Anopheles mosquito, the main vector of the disease, is

known for its ability to build resistance against control measures such as its resistance to in-

1

secticides in sub-Saharan Africa (WHO, 2017). Consequently, increasingly more complex

control measures are required to prevent the spread of the disease.

The limitations of vector control measures call for preventive measures as well as

control measures to fight the disease. In this regard, good anti-malarial drugs have been

identified as quintessential in the ultimate eradication of malaria (White, 2008). Research

and manufacture of effective anti-malarial drugs is therefore important, especially if WHO

is to achieve its target of reducing malaria deaths by at least 90% by 2030 (WHO, 2017).

However, the multiple incidences of drug resistance such as the Plasmodium parasites re-

sistance to chloroquine1 in the 1950s (Wellems & Plowe, 2001), make the research and

development of anti-malarial drugs a challenging task (Ojha & Roy, 2015). Nonetheless,

research for anti-malarial drugs can be conducted effectively with the right tools, such as

with automated systems, as discussed later in this paper.

The process of developing anti-malarial drugs can be described broadly as an iter-

ative assessment of the effectiveness of some chemicals at killing Plasmodium parasites.

That is, proposed anti-malarial drugs are applied to Plasmodium parasites and the number

of parasites that are killed by the drugs is assessed. In this process, counting the number

of parasites accurately is crucial in the assessment of the proposed drugs samples. Besides

assessing how the parasites react in general to anti-malarial drugs, it is equally important to

measure the impact of the drugs on the different growth-cycle stages. For instance, instead

of killing the parasites, partially effective drugs can increase the production of gametocytes,

the sexual stage of the parasite (White, 2008). Thus, accurately identifying the growth-cycle

stages of the parasites is also necessary for discriminating the performance of different pro-

posed anti-malaria drugs.

Yet, despite the salient importance of obtaining accurate results of the two assess-

ments above, the only currently available method for conducting them is manual microscopy

(Pollak, Houri-Yafin, & Salpeter, 2017). Sadly, manual microscopy, the benchmark method

for testing the presence of Plasmodium parasites in a stained image (Pollak et al., 2017),

encounters many problems from human errors in practice. Manual microscopy involves

1Chloroquine is a chemotherapeutic drug used for treating malaria. Developed in 1947, some species of
Plasmodium falciparum developed resistance against the drug after three years.

2

observing a slide of an appropriately stained image under a powerful microscope and then

determining whether there are Plasmodium parasites on the image or not. The image could

be prepared from a sample of blood or from cultured parasites in a laboratory. The rea-

son why microscopy works is that, Plasmodium parasites assume a different color from red

blood cells(RBCs) when a suitable stain is applied to a blood sample containing the para-

sites. The color differences and the shapes can then be used to distinguish the parasites from

the rest of the blood components. The shape of the parasite is especially important when

information of the growth-stage of the parasite is desired. The staining methods as well and

the parasite growth-cycle stages are covered in detail in chapter 2.

Estimating parasitaemia2 in microscopy is achieved by manually counting the num-

ber of parasites on different fields of the slide. The values from the various receptive fields

are then used to make a global estimate of parasite density in the blood sample. This pro-

cess is tedious and time consuming. Manual microscopy is also prone to errors because the

accuracy of the exercise is dependent on the expertise of the pathologist3 performing the

examination. Unsurprisingly, inaccurate diagnosis are quite frequent in manual microscopy

due to the inability of some pathologists to properly diagnose malaria. Kahama-Maro et al.

(2011) showed that the sensitivity of routine microscopy is about 71.4% whilst its specificity

is only 47.3%. Compared with expert microscopists, the accuracy of typical microscopists

is between 45% to 60% (Pollak et al., 2017). These statistics show that manual microscopy

is not an effective method for research purposes, especially in places where there are only

few expert pathologists.

In addition, Rapid Diagnostic Tests (RDTs) are other techniques for testing the pres-

ence of Plasmodium parasites in a blood sample. RDTs are relatively easy to perform and

produce results faster compared to microscopy (WHO, 2015). Despite these advantages over

microscopy, RDTs are not used for research purposes because they do not provide parasite

species and growth-cycle identification nor offer any estimates of parasitaemia level. As

such, RDTs are not discussed further in this paper.

2Parasitaemia is the ratio of the parasite infected RBCs to the total number of RBCs
3A pathologist is a specialist who perform disease diagnosis by often conducting tests in a medical labora-

tory

3

The downsides of manual microscopy as explained above make a case for a more

reliable, independent, fast and accurate method for identifying the growth-cycle stages of

Plasmodium parasites, as well as estimating the parasitaemia in blood smear. The impor-

tance of accurate results in terms of parasite count in the development of anti-malarial drugs

cannot be over emphasized as it gives an objective measure of the effectiveness of the new

drugs. Automated microscopy can offer not only accurate results but also consistent results

due to its independence from the expertise of the person conducting the test. Computer

vision methods are the means to intelligent malaria diagnosis systems.

Computer vision methods aimed at automating malaria diagnosis is currently an ac-

tive area of research (Roy, Sharmin, Mufiz Mukta, & Sen, 2018; Bibin, Nair, & Punitha,

2017; Pinkaew, Limpiti, & Trirat, 2015; Ghosh, Ghosh, & Kundu, 2014). However, so far,

the focus of automated malaria diagnosis has been on developing intelligent systems for use

in hospitals. There has been minimal efforts at developing machine learning methods for use

in Plasmodium parasites research laboratories. As a result, most of the methods are mostly

qualitative diagnosis. Although a few attempts have been made to identify parasite species,

as well as parasite growth-cycle stages (Nanoti, Jain, Gupta, & Vyas, 2016; Moon et al.,

2013), there has not been any attempt (to the best of my knowledge) to count the life-cycle

stages of parasites. This project aims to fill that gap by providing techniques to identify and

count the growth-cycle stages of Plasmodium parasites on digitized images.

The main objective of the research is to improve the efficiency of developing anti-

malarial drugs. To achieve this objective, the project employs convolutional neural networks

(CNNs), a variant of deep learning to classify and count growth-cycle stages of Plasmodium

falciparum parasites on Giemsa-stained images.

4

Chapter 2: Related Literature

2.1 Malaria and Plasmodium Parasites

This study involved only Plasmodium falciparum because it is the most prevalent

species of Plasmodium in Africa. Consequently, the brief review of Plasmodium parasites

as presented in this chapter is in the context of the species P.falciparum. In addition, in

this chapter and in the rest of paper, Plasmodium parasites can be used loosely to refer

to P. falciparum. Finally, for brevity, parasites is used in placed of Plasmodium parasites

whenever the meaning is unambiguous.

As discussed in chapter 1, there are four major stages of growth of Plasmodium

parasites in human beings. Sporozoites are the first stage of the parasites in humans. When

matured, they rapture releasing merozoites into the blood stream. Merozoites then invade

RBCs and produce trophozoites through asexual reproduction. The trophozoites develop

into schizonts which also burst and release merozoites and gametocytes. The merozoites

re-invade other RBCs while the gametocytes wait to be transfered into a mosquito during

a blood meal by the later (Srinivas, 2015). Although gametocytes do not cause malaria

infection directly, they aid in the transmission of the disease. Therefore, it is important for

new therapeutics to be able to target all the life stages of the parasite (Delves et al., 2012).

The ability to get an accurate count of each of the parasite life stages is essential in testing

these therapeutics.

The various stages of the parasite have different shapes and survival mechanisms

(Srinivas, 2015). Gametocytes have crescent shapes like a half-moon. Trophozoites have

circular shapes and are often located completely inside RBCs. The unique characteristics of

the different growth-cycle stages of the parasites can be revealed through staining. Images

of trophozoites and gametocytes are shown in Figure 2.1.

5

(a) The blue marking depicts a trophozoite,
one of the early life-cycle stages. As in the
picture, it is almost circular in shape.

(b) The red marking depicts a gameto-
cyte in its advanced stages. Gameto-
cytes generally have elongated shapes as
shown in the picture.

Figure 2.1: Plasmodium parasites growth-cycle stages

2.2 Staining

Staining is a technique which is often used to enhance visualization and identification

of Plasmodium parasites in manual microscopy. A correctly stained blood smear is crucial in

malaria diagnosis, especially when precise identification of growth-cycle stages is desired

(Gonzales, 2016). Although there are other staining substances and techniques such as

Leishman (Sathpathi et al., 2014) and DAPI (Moon et al., 2013), Giemsa is the standard

and most reliable stain for all forms of blood smears. Examples of Giemsa-stained images

(thin and thick blood smears) are shown in Figure 2.2 below. Thick blood smears can detect

a few parasites in a blood film. However, their preparation process destroys the RBCs.

Hence, thick smears are mostly used for Yes or No diagnoses. On the other hand, thin blood

smears as shown in Figure 2.2b preserve the structure of the RBCs and the parasites. This

property makes thin smears the suitable method for diagnosing malaria when the species or

the life-cycle of the parasites is needed. This project used thin blood smears for the parasites

growth-cycle stages detection.

2.3 Machine Learning Algorithms for Automated Malaria Diagnosis

Image processing and pattern recognition has been at the center of research in com-

puter vision with regards to improving the accuracy of identifying Plasmodium parasites in

6

(a) Thick blood smear - in the thick blood
smear, all the cells including the structure of
the parasites are destroyed. It is easy to pre-
pare thick smears compared to thin smears
but they cannot be used for very informative
diagnosis.

(b) Thin blood smear - in the thin blood
smear, all the red blood cells, as well as
the true form of the parasites are maintained.
Also, thin blood smears expose artifacts such
platelets and chemical compounds.

Figure 2.2: Example images of Giemsa-stained blood smears

digitized images (Bibin et al., 2017; Rosado, Correia, Elias, & Cardoso, 2016; Nanoti et

al., 2016; Park, Rinehart, Walzer, Ashley Chi, & Wax, 2016; Mehrjou, Abbasian, & Izadi,

2013). These algorithms work by learning patterns in mostly labeled data. They then use the

knowledge gathered to make informed predictions about the presence or absence of parasites

in datasets the algorithms have not seen before. These approaches yield consistent diagno-

sis and have been shown to even outperform human beings in some classification tasks (He,

Zhang, Ren, & Sun, 2015). Therefore, if applied properly, computer aided malaria diagnosis

can address the problems associated with manual microscopy.

One of the factors contributing to the success of computer vision applications is the

availability of large labeled data for training the algorithms (Brynjolfsson & Andrew, 2017).

However, achieving optimum performance of the algorithms on the data is not trivial. It

typically involves making many design choices about the algorithms as well as the format-

ting and presentation of the data. Data preprocessing is the first step in many approaches

with regards to data preparation tasks. Preprocessing tasks usually involve tasks such as data

cleaning and other transformations such as conversion to grayscale.

Preprocessing is important in computer vision applications for the identification and

counting of Plasmodium parasites on digitized stained images. This is because the images

7

usually contain other foreign objects such as platelets which are also stained during slide

preparation. Removing these artifacts before classification improves the accuracy of the

diagnosis. It is also crucial to perform other preprocessing functions such as luminance

normalizations (Díaz, González, & Romero, 2009) to reduce the impact of of illuminations

of the images on the performance of the algorithms. In research laboratories, however,

the problem of foreign objects on images is minimal since the data is often prepared from

cultured samples.

The color and morphological properties(shape) of the objects in the images are the

primary parameters of interest to the machine learning algorithms. Therefore, it is im-

portant to use good feature generation techniques to extract the relevant properties of the

data. However, this is only an important task when using traditional machine learning algo-

rithms4. Research in computer vision malaria diagnosis using traditional machine learning

algorithms also generally convert red green blue (RGB) images to grayscale (Rosado et

al., 2016; Mehrjou et al., 2013) to reduce the complexity of the images. Some of these

approaches in automated malaria diagnosis are reviewed in the succeeding paragraphs.

Due to the large number of studies in automated malaria diagnosis which have ap-

peared in the literature in the last ten years, it is impractical to conduct a detail review of

all the proposals. As such, this section presents only an overview of a few of the proposed

systems. However, a full review of intelligent malaria diagnosis systems can be found at

Poostchi et al. (2018).

Ghosh et al. (2014) developed a method for estimating parasitaemia in thin blood

smears using mainly statistical and mathematical techniques. This involved computing the

features of the images such as centroids, mean and variance of the different regions under the

assumption that the images were positive RGB images. They then fed these features to the

algorithm for classification. Although Gosh et al. did not include any performance metrics

in their paper, they demonstrated that parasitaemia in thin blood smears can be measured

automatically using computers. However, the performance of the algorithm relied on the

good engineering of the features. Thus, their method cannot be applied to images where

4Traditional machine learning algorithms are standard algorithms such as KNN, SVMs which are not part
of deep learning

8

it is difficult to construct the features manually. Finally, their approach cannot be used for

estimating parasitaemia in images which may not have parasites at all.

Unlike Gosh et al., Bibin et al. used deep belief networks pre-trained with Re-

stricted Boltzmann Machines (RBMs) to detect malaria parasites in digital blood smear

images. Their approach resulted in an F-score of 89.66% and a specificity of 97.60% on

a binary classification of images into parasites and non-parasites5. These scores are indi-

cations that deep networks can classify parasites in digitized images with high accuracies.

Support vector machines (SVMs) are by far the most used machine learning algorithms for

malaria diagnosis studies due to their simplicity (Rosado et al., 2016; Pinkaew et al., 2015;

Linder et al., 2014; Savkare, 2011). Like the method employed by Gosh et al., SVMs re-

quire explicit feature generation from the images. Pinkaew et al. for instance, extracted the

kurtosis, mean, standard deviation, skewness and entropy from four color channels of the

images which were then projected to the SVMs to classify between Plasmodium falciparum

and Plasmodium vivax species. Like DBNs, SVMs perform well on non-linear data due

to their ability to transform lower dimensional data into higher dimensions using kernels.

However, they are limited by the fact that they can typically only perform binary classifica-

tion tasks. Adapting SVMs for multi-class classification problems such as the classification

of the growth-cycle stages of Plasmodium parasites is time inefficient and prone to errors.

Moon et al. (2013) developed an approach to identify the various growth-cycle

stages of malaria parasites as well as discriminate between dead and active parasites in drug-

treated samples. Their algorithm used the intensity of DAPI-stained parasite nuclei spots

in fluorescence images to identify infected RBCs. The algorithm also detected and quan-

tized three different growth-cycle stages of the Plasmodium parasite(rings, trophozoites,

schizonts). The gametocyte stage was not considered in this study. In computing the total

number of RBCs per image field, the average area of isolated RBCs is first calculated. Af-

terwards, the number of RBCs in each cluster is estimated from the ratio of the area of the

cluster to the average area of each RBC. The combined total of the isolated RBCs and sum

5F-score is an average of the precision and recall values. Precision is the number of true positives divided
by the number of positives predicted by the classifier. Recall is a measure of the sensitivity of the classifier.
Specificity is a measure of the true negative rate. It denotes the percentage of true negatives were correctly
classified

9

of RBCs in all clustered regions is taken as the definitive RBCs count of the image field

under consideration. This approach saves a lot of time in estimating the RBCs count since

no work is done to untangle clustered RBCs. The diagnosis process involved identifying

infected RBCs and then estimating the parasite density. The proposed method achieved a

100% accuracy when tested on a dataset of nine images. However, the number of images

was too small to consider the performance of the algorithm conclusive.

A genetic programming algorithm has also been used for the classification of Plas-

modium parasites on thick-blood smear images (Purnama, Rahmanti, & Purnomo, 2013).

Purnama et al. provided a more complete model compared to the studies above. Their

system included functionality for identifying the species of the Plasmodium parasite (P. fal-

ciparum, P.vivax, P.ovale and P.malarae) responsible for a particular infection. The genetic

algorithm approach also identified the predominant life-cycle stage(schizonts and tropho-

zoites, gametocytes) present in the image at the time of diagnosis. Whilst their model had

different phases, it also required a lot of pre-processed features. Hence, even with a clas-

sification accuracy of 94.82%, it is still exposed to the same problems traditional machine

learning algorithms encounter at feature extraction.

Other machine learning algorithms which have been used in malaria diagnosis are

K-Nearest Neighbors classifiers(KNN) and linear discriminant classification (LDC) (Nanoti

et al., 2016). Nanoti et al. for instance, used a two stage KNN method to identify the growth-

cycle stages of the parasites with a 90.17% accuracy. Other researchers used more morpho-

logical techniques in the automated systems compared to those explored above (Linder et

al., 2014; Kareem, Kale, & Morling, 2012). In the case of Kareem et al. (2012), they used

morphological filtering to remove foreign objects from the images. Their main classification

of the images was also composed of both morphological approaches and properties of the

images such as color histogram and intensity. The system achieved an accuracy of 87% on

a qualitative diagnosis of Giemsa-stained Plasmodium falciparum parasites.

Chakrabortya (2015) used unsupervised machine learning algorithms to classify Plas-

modium vivax parasites in Jaswant Singh Battacharya (JSB)-stained thick blood smear im-

ages. Employing color based pixel discrimination methods for the classification process, the

10

system showed 94.5% accuracy and 0.10% false positive rate on 75 images. Unsupervised

machine learning techniques are particularly useful for dealing with small labeled training

datasets. Other techniques such as data augmentation and transfer learning have also been

proposed to deal with data sparsity.

2.3.1 Convolutional Neural Networks for Malaria Diagnosis

The challenge with using traditional machine learning algorithms such as those in

the literature discussed above is that they need hand-engineered features. Unfortunately,

constructing these features is not always easy. Hand-engineering might also result in the

lost of useful information to the classification task. Deep learning methods address this

problem by performing end-to-end learning. That is, they learn the features from the raw

data in addition to performing classification task. Convolutional neural networks (CNNs)

is a type of deep learning specialized for image analysis. In particular, CNNs preserve the

spatial structure of the images. This subsection discusses the literature in automated malaria

diagnosis using convolutional neural networks.

Since Alex Krizhevsky won the ImageNet challenge in 2012 (Krizhevsky, Sutskever,

& Geoffrey E., 2012) with the famous AlexNet, deep learning has been applied to a wide

range of problems including self-driving cars, speech recognition, natural language process-

ing and disease diagnosis. Quinn et al. (2016) proposed one of the first computer vision

malaria diagnosis systems using CNNs. Their approach involved annotating thick blood

smears captured using a custom-made microscope smart phone adapter. The annotations

were used as positive samples. They generated negative samples by randomly selecting re-

gions of the images not intersecting any annotation. Their method obtained a 1.00 true pos-

itive rate and 0.97 precision recall on receiver operator characteristics (ROC) curves. Like

most studies in malaria diagnosis, Quinn et al. investigated only the binary classification

problem using thick blood smears.

A CNN-based application capable of diagnosing P.falciparum in thick blood smears

at competency level 1 in the WHO external competency assessment was proposed in (Mehanian

et al., 2017). Through the use of novel computer vision tricks such as data augmentation,

11

global white balancing, adaptive non-linear grayscaling and local thresholding, the proto-

type application achieved acceptable accuracy in parasite quantization required for drug

resistance studies. Although the application used a variety of deep learning techniques and

was the first of its kind to use CNNs on large datasets(5,707,947 field-of-views), the CNNs

were used for feature extraction only. Using CNNs for only feature extraction increases

the complexity of the algorithm as separate models must be developed for the classification

and the quantification tasks. By using thick blood films, the application do not apply to the

multi-class task of parasite growth-cycle stages classification.

Gopakumar et al. (2017) proposed a completely automated system capable of per-

forming quantitative malaria diagnosis. The system uses CNNs on focus stack images ac-

quired from a US$1500 custom-built slide scanner. By processing patches of the images, the

CNNs eliminated the need for hand-engineered features. This yielded 97 .06% sensitivity

and 98.50% specificity accuracies for object detection in the binary classification setting.

One of the main contributions of Gopakumar et al. is that they showed CNNs can still attain

good performance by processing only patches of the image. However, conventional methods

such as SVMs were used in generating the suspected patches for the CNNs to operate on.

Thus the performance of the CNN was limited by the accuracy of the SVMs in generating

good patches.

With a dataset of 363 images, Penas et al. (2017) obtained a 92.4% for Plasmod-

ium parasite detection using CNNs. Their model also managed to discriminate between

P.falciparum and P.vivax species at 87.9% accuracy. Penas et al. showed that even with

small datasets CNNs can obtain good scores on malaria diagnosis tasks using data aug-

mentation and transfer learning,. Although they used thin blood smears they focus on only

binary classification. Nonetheless, they showed that CNNs can be effective on thin blood

smears.

2.4 Summary of Related Literature

Thus far, the literature shows that CNNs outperform conventional machine learning

algorithms such as KNN in automated malaria diagnosis. This is because CNNs generally

12

learn the features from the raw images which often result in effective classification. The

problem with using CNNs, however, is that they often require thousands of images for good

performance. Such large datasets are not commonly available especially in medical imaging.

Novel techniques such as transfer learning, data augmentation and context encoding are

often used for tasks where the datasets are small.

The literature also shows that using CNNs for malaria diagnosis has gained much

prominence in recent years[2015-2018]. However, like the conventional machine learning

algorithms, CNNs have mostly been applied to the binary classification task as far as malaria

diagnosis is concerned. Although a few models experimented discriminating between Plas-

modium species, no CNN-based method has been used for parasite growth-cycle identifica-

tion. This research (to the best of my knowledge) is the first to investigate using CNNs for

the classification and quantification of the growth-cycle stages of P.falciparum on thin blood

smears. The novelty of this approach is that it combines the advantages of data augmenta-

tion, unsupervised pre-training and transfer learning to perform a semantic segmentation on

thin blood smears given very little data. As far as I know, semantic segmentation is yet to be

applied to Plasmodium parasites detection.

13

Chapter 3: Methodology

The main hypothesis of this thesis was that CNNs can be used to identify and count

the growth-cycle stages of Plasmodium parasites with high accuracies. This section dis-

cusses the steps which were taken to evaluate the above proposition. Before discussing the

machine learning techniques used in the application, a broad overview of the datasets used

in the application will be described first.

3.1 Datasets

Three different datasets were used for this research. One of the datasets was used to

experiment the binary classification task (Yes or No diagnosis), another dataset for context

encoding and the third dataset was used for parasite growth-cycle classification. The datasets

for the binary classification and growth-cycle stages classification were obtained from the

Noguchi Memorial Institute for Medical Research. The images were taken by malaria re-

search specialists under laboratory conditions using a×100 magnification light microscope.

The dataset used for the context encoding was retrieved from (Quinn et al., 2016). Table 3.1

below shows a summary of the three different datasets.

Table 3.1: Datasets

Task Type Number of Images Positive Images Negative
Binary classification mixed 458 351 107
Context Encoding thick smears 2,703 2, 703 0

Growth-cycle classification thin smears 403 353 50

Of the 458 images for the binary classification, 351 images were positive samples

while 107 images were negative samples. The difference in sample sizes was compensated

for through data augmentation. The positive samples were Giemsa-stained thin blood smears

but the negative samples were from varied sources. The differences in contexts between

the two classes had severe implications on the performance of the model some of which

discussed extensively in Chapter 5.

14

All the four major growth-cycle stages were represented in the dataset for the par-

asite growth-cycle stage classification. However, only two of the stages(trophozoites and

gametocytes) were considered for classification. This was because the schizonts could not

be differentiated from trophozoites in some images due to poor image quality. This issue

was addressed by considering all schizonts as trophozoites. The details of the annotations

of the images for the classification is discussed later in this chapter. Some of the images for

the growth-stage classification are shown in Figure 3.1 below.

Figure 3.1: P.falciparum parasites in thin blood smear image

3.2 Data Processing Tasks

Automated malaria diagnosis systems usually start with preprocessing functions

such as foreign objects removal from the images. These cleaning tasks often result in im-

proved performance of the algorithms. I did not conduct such preprocessing tasks because

most of the images were prepared from cultured parasites. As such, the images do not con-

tain white blood cells, platelets or chemical substance as is often the case for images taken

in clinical settings. Also, the methods employed in this thesis work with only local regions

of the images. Thus, the presence of stains or debris at other regions of the images do not

15

affect the performance of the algorithm. Beyond basic data cleaning, however, advance

data processing functions were applied to the images. The techniques employed included

parasite annotations for the growth-cycle classification task and gray-scaling for the binary

classification task.

3.2.1 Image Annotations

A typical image in the dataset could contain more than one growth-cycle stage of the

parasite. For those images, assigning a label to them is ambiguous; it could take the label

of any of the growth-cycle stages present in it. Instead of assigning labels to the image,

labels were assigned to sections of the image. In particular, square bounding boxes were

drawn around parasites. Each bounding box was then assigned the ground truth label of the

growth-cycle stage in that region. Negatives patches were taken from random regions of the

images not intersecting any bounding box.

The annotations were performed by a malaria research expert using a tool called

DragonFly. The tool was generously provided by a researcher at the University of Missouri.

Trophozoites were annotated with blue bounding boxes and gametocytes were annotated

with brown bounding boxes. Figure 3.2 shows examples of the annotations.

A total of 1068 annotations were generated from 353 images. The other 50 images

for the growth-cycle stage classification were completely negative (did not contain any par-

asite). Of the 1068 annotations, 614 were for trophozoites. There were 454 annotations for

gametocytes. Table 3.2 shows the distribution of the annotations for the various classes.

Table 3.2: Number of annotations for growth-cycle stage classification

Annotations No._ Annotations Percentage of Total Annotations (%)
Trophozoites 614 57.491
Gametocytes 454 42.509

16

(a) A crop with only one tropho-
zoite

(b) A crop with only one ga-
metocyte

(c) Multiple trophozoites in one
image

(d) Multiple gametocytes in one
image.

(e) Multiple gametocytes and
trophozoites in one image.

(f) Trophozoites and
schizonts

Note: All annotations are treated independently.

Figure 3.2: Crops of parasites growth-cycle stage annotations

17

3.2.2 Grayscaling

Two separate experiments were conducted for the binary classification task, one us-

ing the red green blue (RGB) images and the other using grayscale images. This was nec-

essary because the background color of the negative samples was utterly different from the

background color of the positive samples. It therefore became trivial for the algorithm to

discriminate between the two classes using the color and other global statistics. This meant

that the algorithm was not learning any representation peculiar to Plasmodium parasites.

Gray-scaling was therefore introduced to reduce the influence of the color difference on the

classification. However, as discussed in Chapter 5, both methods attained similar perfor-

mance. This section describes the method which was used in the conversion from RGB to

grayscale.

Choosing an RGB-to-grayscale conversion method is not trivial because the conver-

sion method can impact the performance of the classification algorithm (Kanan & Cottrell,

2012). Some researchers adopt the Hue Saturation Value (HSV) color-to-grayscale conver-

sion method (Bibin et al., 2017; Penas, Rivera, & Naval.Jr, 2017) while others employ a

variant of the HSV method called the HSI method (Pinkaew et al., 2015). A third cate-

gory of researchers combine the two methods above as different features in the conversion

process (Purnama et al., 2013).

In the HSV method, the maximum value of the RGB channels is used as the grayscale

value. That is, YHSV = max(R,G,B). This preserves the maximum brightness of the im-

age in question. Unfortunately, preserving the maximum brightness makes HSV vulnerable

to changes in the image brightness (Kanan & Cottrell, 2012). This renders HSV an un-

suitable RBG-to-grayscale conversion method for problems where the images vary. The

brightness problem induced by HSV is resolved by averaging the gamma corrected R,G,B

values. That is, YGleam = 1
3
(R′, G′, B′) where R’, G’, B’ are the gamma corrected values.

This method is the best RGB-to-grayscale conversion method for most classification tasks

(Kanan & Cottrell, 2012). They used gleam for RGB-to-grayscale conversion because of

the advantages it has over HSV and the other conversion methods. An implementation of

18

Gleam was retrieved from OpenCV which used Eqn 1 in the implementation.

Y ← 0.229.R + 0.587.G+ 0.114.B (1)

Figure 3.3 shows an example of an image and its grayscale version

(a) RGB Image. As shown in the picture, the
background color of the RGB is so conspic-
uous that it can affect the classifier’s perfor-
mance.

(b) Grayscale version of (a). Although the
grayscale form has less background color, it
preserves the structure of the parasites which
is the important feature for classification

Figure 3.3: RGB and grayscale images

Unlike most studies in malaria diagnosis, no hand-engineered features were supplied

to the convolutional neural networks. However, a lot of techniques including data augmenta-

tion, transfer learning and context encoding have been employed to prevent the model from

over-fitting the data. These techniques are discussed in succeeding sections.

3.2.3 Data Augmentation

CNNs often require big datasets in oder to obtain good performance on new unseen

examples. Data augmentation is often used to increase the training datasets in cases where

the number of training examples is small (Penas et al., 2017). In data augmentation, new

samples are generated artificially using mostly transformation functions. Besides increasing

the size of the training set, data augmentation is used to balance the number of examples for

each class in the training set (Quinn et al., 2016). This is achieved by exerting a weighted

19

augmentation to each of the classes. Classes with large representations in the dataset are

augmented less compared to classes with small number of examples in the training set.

Balancing the training set usually improves the performance of the model.

Three artificial examples were generated for each of 1068 annotations as reported in

the subsection 3.2.1 above. Augmentation was achieved through the three methods below.

1. Horizontal flip: the new image is an instance of the original image reflected along its

horizontal axis.

2. Vertical flip: the new image is an instance of the original image reflected along its

vertical axis.

3. Rotation through 90◦: the new image is an instance of the original image rotated 90◦

clockwisely.

3.3 Parasites Classification Algorithm: Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are deep, feed forward Artificial Neural

Networks (ANNs) specialized for processing image data (Krizhevsky et al., 2012). ANNs

typically consist of several layers stacked together to collectively decode the properties of

the input data conditioned on some ground-truth labels associated with the input. Thus,

ANNs are largely used for supervised classification problems although they can be adapted

for unsupervised tasks as in (Pathak, Krahenbuhl, Donahue, Darrell, & Efros, 2016). This

covers only a general overview of CNNs, detail and comprehensive review of deep learning

and ANNs can be found at (Rawat & Wang, 2017).

In its most basic form, a CNN can consist of only three layers; an input layer, a hid-

den layer (convolutional layer) and an output layer. However, CNNs are not typically used

in this form because the more hidden layers a network has, the greater its capacity to learn

interesting patterns in very complex data. Since CNNs are tailored for analyzing spatial im-

age data, they usually have many more layers than the vanilla ANNs. Networks with many

layers are said to be deep networks. CNNs and other deep networks have become ubiqui-

tous following the remarkable performance of the AlexNet in ImageNet challenge in 2012

20

(Krizhevsky et al., 2012). The excitement around CNNs is mostly due to the recent triumphs

they have made in very difficult tasks such as autonomous driving. On the downside, CNNs

require large amounts of data and are computationally expensive to train.

3.3.1 Layering in Convolutional Neural Networks

As stated earlier, the structure of CNNs (true for all ANNs) are organized into layers.

Each layer contains many neurons in analogy with biological neurons. In reality however, a

neuron is simply a mathematical function of the form

y = f

(
n∑

i=1

θixi + b

)

= f
(
θTx+ b

) (2)

where

y = output, x ∈ Rn = input vector, θ ∈ Rn = weights or parameters and b = bias

f is the so called activation function. A specific instance of f is discussed below.

Generally, a layer in the network is simply a bunch of the function above. Specifically, Eqn

2 describes a neuron in a fully connected layer. The fully connected layers are responsible

for the classification task. Before the connected layers, CNNs normally implement other

hidden layers. These hidden layers are usually organized into blocks called convolutional

blocks. Each convolutional block contains convolutional layers and often pooling layers. A

convolutional block may also contain other layers such as dropout layers and normalization

layers. The two primary layers in a convolutional block are described next.

Convolutional layers are typically used as feature extractors. A convolutional layer

exploits the spatial properties of images by sliding a filter known as a kernel over the entire

image. The sliding of the kernel along the image is known as convolving. A complete

convolution over an image produces a feature (activation) map whose values are of the form

21

shown in Eqn 3. The computation of the output outputs is the same as the computation for

the fully connected layer performed over a smalled region of the image whilst preserving

the spatial structure of the image.

yi,j = f

(
m−1∑
q=0

m−1∑
r=0

θTq,rxi+q,j+r

)
(3)

where

yi,j is the value at position i, j in the activation map

θ is the kernel of size m×m, and x is an input neuron

f is an activation function

Convolving a kernel over an image produces an activation map. Although there are no math-

ematical theory behind choosing the size of a kernel, square kernels of smaller sizes(m < 9)

are common (Sathpathi et al., 2014; Krizhevsky et al., 2012). The number of pixels to skip

after each convolution is called a stride. Again, no mathematical theory exist for choosing a

stride but 2×2 strides are often used. Following the logic of convolutions, it can be deduced

that given an image of size N × N × d , the size of the activation map is N∗ × N∗ × k,

N∗ < N . However, the activation maps are often padded so that, N∗ = N,N∗ is given as

N∗ = ((N −m)/s) + 1 (4)

where

d = The depth of the input

k = the number of kernels, which becomes output depth

m = the kernel size

s = the stride

Usually after the convolutional layers are pooling layers. The purpose of pooling

layers is simply to reduce the dimensionality of the activation maps. This is important

22

because it prevents the network from over-fitting the data which helps in generalization

(Rawat & Wang, 2017). The structure of pooling layers are very similar to the convolutional

layers except that pooling layers do not learn new features of the data. Thus, pooling layers

have kernels and strides but no activation functions.

There are several methods for pooling. However, max pooling which is the method

used in this thesis is the most common (Rawat & Wang, 2017). Max pooling preserves the

maximum activation in a given local region as the activation for that region as expressed in

Eqn 5.

yi,j = max (xi:i+m,j:j+m)

where

yi,j = output matrix

m = kernel size

x = input matrix

(5)

Like convolutional layers, if given an input volume of N ×N ×D, a pooling layer produces

an output volume of N∗ ×N∗ ×D where N∗ is given by Eqn 4 above.

3.3.2 Activation functions

At the heart of CNNs are activation functions. Activation functions transform the

linear computations into non-linear outputs. This allows the network to learn interesting

properties of the data. The activation function used in this thesis is the Rectified Linear Unit

(ReLU) primarily because of its speed. The ReLU is a simple function which fires at only

positive inputs. The ReLU can be expressed mathematically as

f(x) = max(0, x) (6)

The simplicity of ReLU makes its implementation easy and it often results in reduced

training time. However, it is undesirable to use ReLU as the activation function for the

23

output layer. The reason is that the output layer should produce the probabilities for the

classes under consideration given the input. However, it is evident from Eqn 6 that the

ReLU can produce values outside the valid probability range [0 - 1]. Hence, a squashing

function called the Softmax is used in the output layer. Softmax squashes an input into the

range [0, 1]. The Softmax is a generalization of the Sigmoid function which is given by

g(z) =
1

1 + exp{−z}

=⇒ g(θTx) =
1

1 + exp{−θTx}

(7)

g(θTx) > 0.5 whenever θTx > 0. This property of the Sigmoid function is effective for bi-

nary classification problems. For multi-class classification problems, the normalized values

of the Sigmoid over all the classes is used. This function known as the Softmax is expressed

in Eqn 8.

S(θTx)i =
exp
{
θTi x

}∑K
k=1 exp{θTk x}

∀i = 1, ..., K, K > 2 (8)

WhereK is the number of classes. The Softmax produces probabilities of the various classes

given the input data. The class with the largest probability is taken as the predicted growth-

cycle stage.

3.3.3 Loss Function

A loss function is a mathematical construct which measures the divergence (or com-

patibility) between the label predicted by the model, ŷ and the ground-truth label, y. In its

simplest form, a loss function measures the average error between the model’s predictions

and the true labels. The model uses the loss to judge its performance on the given task and

update its parameters accordingly. This process, known as optimization is discussed in the

next subsection.

There are several loss functions but cross-entropy is the best loss function for clas-

sification problems (Li, Johnson, & Yeung, 2017). Cross-entropy is used for classification

problems because it measures performance where the outputs are probability values. The

higher the error between the ŷ and y, the higher the cross-entropy loss and vice-versa. This

24

project used categorical cross-entropy for the growth-cycle stages classification. Binary

cross-entropy was used as the loss function for predicting whether a given image contains a

Plasmodium parasite or not. These variants will be explained shortly. First, is a description

of the representation of the ground-truth labels and the form of the predicted labels.

For the growth-cycle stages classification, the following assignments were made

negative = 0, trophozoites = 1, and gametocytes = 2

The labels for the binary classification task were negative = 0 and positive = 1

Instead of feeding the model with the labels above, the model was fed with one-hot

encoded labels. The problem associated with using the labels above is that they introduce an

idea of ordering into the labels. That is, they make the model believe that if the true label is

gametocytes and it predicts trophozoites, it is doing a better job than if it predicts negative.

However, this is not true, the two cases are both wrong predictions and should be penalized

equally. One-hot encoding removes the concept of ordering by representing each label as

vector which has 0 everywhere except at the index of the true label which has 1. Given the

labeling above, the one-hot encoded label for each of the classes is given as:

negative = [1, 0, 0]

trophozoites = [0, 1, 0]

gametocytes = [0, 0, 1]

That is, y is a matrix of the form

y ∈ {0, 1}m×k (9)

where m is the number of examples and k is the number of classes.

The Softmax function introduced in the previous section produces a similar matrix as output

25

except that the entries are probabilities. That is, ŷ has the form

ŷ ∈ Rm×k, yi,j ∈ [0, 1] ∀i = 0, ...,m ∀j = 0, ..., k (10)

Having established the nature of the ground-truth labels and the predicted labels,

the formulation of the cross-entropy loss is considered next. Cross-entropy minimizes the

negative log likelihood of the parameters. Since cross-entropy is the function of interest,

the derivation of the log likelihood function is not covered here. It is worthy of note that

cross-entropy works under the assumption that samples are independent and identically dis-

tributed. This assumption is not always true but it enables the application of cross-entropy

to probabilistic models.

The log likelihood L of all K classes for all m examples is given by

L =
m∑
i=1

K∑
j=1

y
(i)
j log ŷ

(i)
j (11)

The bigger the value of L, the little error the model is making. That is, maximizing

L results in the best performance of the models. Instead of maximizing the log likelihood,

cross-entropy performs an equivalent function which is minimizing the negative log likeli-

hood. Therefore, the objective becomes the unconstrained optimization problem

min H

where H = −
m∑
i=1

K∑
j=1

y
(i)
j log ŷ

(i)
j

(12)

When the number of classes is greater than two (K > 2), Eqn 12 is called categorical

cross-entropy. The binary form is a simplification of Eqn 12 to the case where K = 2. The

binary cross-entropy has the simplified objective

26

min Hb

Hb = −
m∑
i=1

y(i) log ŷ(i) + (1− y(i)) log
(
1− ŷ(i)

) (13)

3.3.4 Optimization Method

The last aspect of the algorithm is the optimization method. An optimization method

is an algorithms which searches for the parameters that minimize the loss function. Adam

is the optimization method which was used in this research. Adam was chosen primar-

ily because of its computational efficiency and little memory requirements (Kingma & Ba,

2014). Furthermore, Adam does not usually require a lot of hyper-parameter tuning. Adam

optimizes stochastic objective functions by "computing adaptive learning rates for differ-

ent parameters from estimates of first and second moments of the gradients" (Kingma &

Ba, 2014). The gradients are computed once for each update step using back-propagation.

Adam uses the update rule

θt ← θt−1 − α.m̂t/(v̂
0.5
t + ε)

where

θt = All parameters at time t

α = The learning rate, a hyper-parameter set by the user

m̂t = The corrected first moments at time t

v̂t = The corrected second moments at time t

ε = A small constant to prevent numerical issues

(14)

The hyper-parameter α is fixed throughout the training. However, the first moments

estimates and the second moments estimates take different values at different times of the op-

timization which makes the overall update step adaptive. The values are computed from the

gradients and controlled by two other hyper-parameters β1 and β2. These hyper-parameters

and the optimization method in general are discussed extensively in (Kingma & Ba, 2014).

27

This paper used the values of β1 and β2 in the original paper but experimented with different

learning rates.

3.4 Dealing with Little Labeled Data

The main challenge with using CNNs is that they require large datasets. This project

did not have such a large dataset required by the model. The issues posed by the small dataset

were addressed through transfer learning and unsupervised pre-training. These methods

were use to generate good initialization weights for the classification tasks. This section

discusses these two techniques.

3.4.1 Transfer Learning

In many applications related to medical imaging, it is often impractical to obtain

large labeled datasets sufficient to train a CNN from scratch (Afridi, Ross, & Shapiro, 2018).

Transfer learning is often used to address the problem of limited labeled data. Transfer

learning is passing on the knowledge contained in a model pre-trained on a larger dataset

to the problem with limited data. Transfer learning has been used in many computer vision

malaria research studies resulting in improved performance (Sivaramakrishnan, Antani, &

Jaeger, 2017; Penas et al., 2017). In the context of CNNs, transfer learning is often used for

fine-tuning. This is the transplantation of the learned feature layers of a CNN trained on a

large dataset to initialize the CNN for the smaller dataset.

In order to obtain optimum performance using transfer learning, the source dataset

and the target dataset must have similar characteristics (Sivaramakrishnan et al., 2017;

Yosinski, Clune, Bengio, & Lipson, 2014). However, other studies suggest that transfer

learning can still yield improvement in performance even when the source task is superfi-

cially different from the target tasks (Afridi et al., 2018). This means that if there are no

pre-trained models in the target problem’s domain, a more general pre-trained model can

still be fine-tuned with the unrelated data.

Although more images were created through data augmentation, the total number of

samples was not still sufficient to train a CNN from scratch to obtain good performance.

28

Transfer learning was used to supplement the data augmentation to prevent over-fitting.

Ideally, the source CNN should have been pre-trained on Giemsa-stained images if not on

images of Plasmodium parasites. Unfortunately, such pre-trained models are currently not

available. The reason is that generally, Giemsa-stained images datasets are always small

to begin with. Since no ideal pre-trained model could be found, the VGG16 network

(Simonyan & Zisserman, 2014) pre-trained on ImageNet (Russakovsky et al., 2015) was

used as the source model.

Only the convolutional blocks of the VGG16 network were downloaded. However,

only the last three layers were trainable. The activations from the last convolutional layer

was fed to a custom-made fully connected layer before the output layer. The diagram below

shows the architecture of the pre-trained model. The VGG16 network was chosen for its

simplicity and speed. The focus of the experiment, however, was not on the details of the

specific network used. The architecture of the fine-tuned model is shown in Figure 3.4.

Figure 3.4: Fine-tuned VGG16 architecture

3.4.2 Context Encoding

Besides data-augmentation and transfer learning, context encoding has typically

been used to address the challenges introduced by the lack of large labeled data. Con-

text encoding is the process of training a CNN to generate the contents of an image region

based on its surroundings (Pathak et al., 2016). The context encoder can then be used as an

initialization to other tasks where there is no enough data.

A context encoder typically has two components: an encoder network and a decoder

model. The encoder learns the properties of the inpainted image based on the context.

The decoder reconstructs the original image from the output of the encoder. This project

29

used the context encoder used in (Pathak et al., 2016). Pathank et al. used AlexNet up to

layer 5 for the encoder. The decoder was implemented through rescaling and up-sampling.

Unlike Pathank et al., this project used only the L2 reconstruction loss in training the context

encoder.The implementation of the adversarial discriminator as in Pathank et al.was not

considered because of the large training time required for the adversarial loss.

Two-thousand seven hundred and three (2,703) Giemsa-stained thick blood smears

were used to train the context encoder. Arbitrarily selected region of each image was in-

painted (destroyed). That region of the image in addition to 35 pixels wide context around

it was feed to the encoder. The decoder was task to reproduce the contents of the images

which were destroyed. Examples of the inpainted images and the corresponding ground-

truth images are shown in Figure 3.5.

(a) 227 × 227 Random crops of the images. The context encoder is tasked to reproduce these crops
give the inpaints in (b)

(b) 153× 153 Inpaints of the crops in (a) above with 35× 35 context at all sides. These impaints are
the inputs to the context encoder. The crops in (a) are the targets

Figure 3.5: Random crops and their inpaintings for unsupervised pre-training

3.5 Semantic Segmentation

This subsection discusses the processes which were used to conduct the growth-cycle

stages classification. Each Giemsa-stained thin blood smear typically contains Plasmodium

parasites at different growth-cycles and normal RBCs. Therefore, different regions of a

given image should contain different labels in order to detect different growth-cycle stages.

Regions of the images containing parasites were identified through annotations as discussed

in subsection 3.2.1.

30

Given the annotations, one way to perform the growth-cycle stages classification is

to treat each annotation as an independent image (Quinn et al., 2016). In that approach,

negative samples are created by taking random crops of the images not covered by any an-

notation. This approach, known as the sliding-window approach poses several challenges.

The first challenge is that the annotations must have the same spatial dimensions. Secondly,

passing windows of the image through the network individually is computationally expen-

sive. Finally, the sliding-window approach is slow at test time since all patches(windows) of

the test image must be evaluated. These deficiencies render the sliding-window technique

ineffective.

Instead of creating labeled patches of the images, each pixel in the image can be

assigned a label. This approach is called semantic segmentation. Semantic segmentation is

a pixel-wise classification. Each pixel in the input image is classified into one of K possible

classes. Although semantic segmentation requires many predictions, it is computationally

efficient because all pixels in an image are passed through the network together. Different

CNN based semantic segmentation techniques have been proposed in the literature (Gupta,

Girshick, & Arbel, 2014; Cires & Giusti, 2012) but that of only Long, Shelhamer and Darrell

(2015) is discussed here.

Long et al. were the first to propose a fully convolutional neural networks(FCNs)

for semantic segmentation. Essentially, they replaced the fully connected layers typically

at the end of CNNs with convolutional layers. The low resolution outputs of the convolu-

tional layers are upsampled to the input resolutions for pixel wise predictions. FCNs have

since emerged as the method of choice for semantic segmentation tasks due to their ability

to achieve good performances on image segmentation. It is those same successes which mo-

tivated the use of FCNs in this research. The implementation involved adding convolutional

layers to a pre-trained VGG16 model as discussed in subsection 3.4.1 to provide initialize

parameters. Upsampling was achieved through transpose convolutions (Wojna et al., 2017).

Advanced methods such as skip connections were not included in the implementation. The

architecture of the semantic segmentation network used for growth-cycle stage classification

is shown in Figure 3.6.

31

The inputs of the Input Layer are the raw images and their labels. FCL=Fully Convolu-
tional Layer, Con Layer = Convolutional Layer. Each succeeding layer takes input from the
previous layer.

Figure 3.6: Growth-cycle stages classification model architecture

3.5.1 Masks Generation

In order to perform semantic segmentation, each pixel in the images had to be labeled

into one of three classes: negative(normal cell), trophozoites and gametocytes. These labels

for each image is known as the mask of the image. Each mask contained the same number of

pixels as the original images. However, unlike the original images which had three values for

each pixel, the masks had only one value for each pixel. Furthermore, each mask had only

three distinct values (0, 1, 2) indicating the labels of the pixels. That is, a 1 at index (x, y)

in a mask indicates that the pixel at index (x, y) in the corresponding ground-truth image

belongs to a trophozoite. Normal cells were labeled with 0 and 2 represented gametocytes.

The masks were generated using the ground truth annotations of the images some

of which are shown in Figure 3.2 . Each annotation in an image was associated with four

distinct coordinates representing the different vertice of that annotation and a label indicating

the growth-cycle stage of the parasite. The structure of an annotation was of the form:

filename-annotation index, label, comment, geometric shape, x1, y1, x2, y2, x3, y3, x4, y4,

x1, y1. Thus, each pixel can be labeled using the label of the annotation and the pixel

positions given by the coordinates.

In the ground-truth annotations, some of the annotations were not axis-aligned as the

example in Figure 3.2. This posed challenges when assigning the labels because it required

slicing matrices diagonally which is difficult. As a result, all annotations were rotated to

32

align with the axes of the images. In order to rotate an annotation, a tight bounding box

was drawn around the annotation such that the bounding box covered the area previously

occupied by the annotation. That is, the area of an annotation is a lower bound on the

area of the bounding box for that annotation. This ensured that no regions of the actual

parasites were lost to rotation. In consequence, more normal cells were labeled as either

belonging to trophozoites or gametocytes. The detail algorithm of how the bounding boxes

were generated is not covered here. The results of the rotations, however, is shown in Figure

3.7. The coordinates of the bounding boxes together with the corresponding labels were

then used to label all the pixels.

(a) Ground-truth annotation - as show in
the image, the square bounding boxes
is tilted at approximately 45◦ relative to
the axis of the image.

(b) Mask of ground-truth image with rotated annotation
- Unlike the ground-truth annotation, the bounding box
in the mask is axis aligned with the image.

Figure 3.7: A non-aligned annotation and its rotated equivalent

3.5.2 Downsampling

In CNNs, large mini-batch sizes enable the computation of good gradients which

improves learning (Radiuk, 2018). The size of mini-batches are limited by the resolution of

the images and the amount of available memory capacity. The higher the resolution of the

images, the more memory they require to train the models. Semantic segmentation mod-

els require a lot of memory to train because the labels(masks) are also large. (The masks

have the same dimensionality as the ground-truth images). This makes training high reso-

33

lution images very expensive. As a result, high resolution images are usually downsampled

to lower resolutions to reduce the amount of memory consumption. The amount of down-

sampling usually depend on the problem domain and the original resolution of the images.

That said, the downsampled images should remain meaningful to the problem. Thus, the

downsampled images should maintain the characteristics of the original images which are

relevant to the classification task.

The images for the growth-cycle stage classification had original resolutions of 1500×

2100× 3. At this resolution, the model could be trained on a mini-batch of only two images

on a 15GB Graphical Processing Unit(GPU). In order to train at much larger mini-batches,

the images were downsampled to 764× 1055× 3 resolution. Consequently, the masks gen-

erated at the higher resolutions (1500×2110) were also downsampled to 764×1055 pixels.

Both the images and the masks were downsampled using inverse mapping. With regards to

the interpolation methods, bi-linear interpolation was used for the images. The masks were

downsampled using nearest-neighbor interpolation.

In bi-linear interpolation, the value of a pixel in the downsampled image is a weighted

average of the values of all pixels in the original image which map to that pixel. This makes

the low resolution images look visually similar to the high resolution images. In nearest-

neighbor interpolation, a pixel in the low resolution image is assigned the intensity of the

pixel closest to it in the high resolution image determined by some algorithm. Nearest-

neighbor is particularly good for downsampling the masks because it preserves the integer

labels. Illustrations of these downsampling methods are shown in Figure 3.8. The masks at

the original masks and downsampled masks are also shown in Figure 3.9.

34

(a) Bi-linear interpolation. The output intensity is an average of the surrounding
intensities.

(b) Nearest-neighbor interpolation. The output intensity is the intensity of the
closest pixel determine by some algorithm

Figure 3.8: Illustrations of downsampling methods

35

(a) Ground-truth annotations

(b) Masks at original resolution - Unlike the ground-truth annotations, the masks are up-right bound-
ing boxes. Nonetheless, the relative sizes and positions of annotations are preserved. In the masks,
all regions of the image not annotated are labeled as negative (gray)

(c) Masks at downsampled resolution - Although the downsampled images are smaller than the orig-
inal images in terms of size, the relative ordering of the masks are maintained.

Figure 3.9: Ground-truth annotations, original resolution masks and downsampled masks

36

3.5.3 Weighting of the Loss Function

As noted in the Methodology, all the models use categorical cross entropy as the

loss function. In its pure form, categorical cross entropy treats predictions on all the classes

equally. As a result, it penalizes all wrong predictions with the same magnitude. This feature

of the loss function is undesirable when the training set is unbalanced. This is because when

using an unbalanced training dataset with a level-plain loss function, the model will always

try to predict the class with the largest proportion. The reason is that by always predicting

that class, the model is assured of making correct predictions most of the time. For instance,

if the training set comprises of 1000 examples belong to class A and 10 examples belonging

to class B, the model is guaranteed ≈ 99% accuracy by always predicting class A.

The training dataset for the semantic segmentation model is extremely unbalance

as shown in Table 4.2. This means that using categorical cross-entropy as discussed in

the Methodology will induce the model to always classify every pixel as belonging to the

negative class. This is undesirable because the model will never learn the characteristics

of trophozoites and gametocytes which distinguish them from each other and from normal

cells. However, if the model model is made to pay an extra penalty for making wrong

predictions on the least represented classes, it will be encouraged to learn the properties of

the different classes. Conversely, correct predictions on the least represented classes lead to

a low total loss value. The weighted loss function expressed in Eqn 15 was used to resolve

the problem of trivial predictions due to the unbalanced training set.

H =
∑
c

N

Yc + ε
Hyc

where

H = overall weighted loss

N = A normalization constant. N is set to to the total number of pixels

ε = 10−8, A small positive constant to prevent division by zero

Yc = The number of pixels in ground-truth labels belonging to class c

Hyc = The categorical cross entropy loss of the predictions on class c

(15)

37

Using the above formula, predictions on the negative class are treated with less importance

because the denominator is large. Conversely, the predictions on gametocytes is treated

with high importance because the loss contributed by wrong predictions on gametocytes is

penalized heavily.

To verify that a weighted loss function was actually required, the model was trained

using an unweighted categorical cross-entropy. As expected, the model predicted every pixel

as negative as shown in Figure 3.10.

(a) Ground-truth label of an image the model
had not seen before. Tasked with producing
this image, it produced the image in (b) be-
cause the number of pixels labeled as negative
out-number the other categories

(b) Final activation map - without penalizing
errors on wrong predictions of the parasites,
the predicts all cells as negative because it
will generally be correct. In this test exam-
ple, the model predicted all pixels as nega-
tive. Those predictions resulted in 98.74%
accuracy

Figure 3.10: Activation map from unweighted loss

38

Chapter 4: Methodology 2 - Implementation

4.1 System Architecture

The application had two major components: a training module and testing module.

As should be expected, the application behaves differently for the two components. A flow

chart diagram of the application is shown in Figure 4.1 below. The details of the training

and testing modules are discussed in section 4.3 and section 5.2 respectively.

Figure 4.1: System flowchart

4.2 Implementation Resources

The model was developed using three main packages in python: OpenCV, Keras

and TensorFlow. These packages provide highly optimized implementations of the machine

learning algorithms which used in this project. Adopting these packages reduced the amount

of boiler-plate code required for testing the algorithms. Also, since many researchers use

those libraries, adopting them makes it easier for other people to verify the results.

4.2.1 OpenCV

OpenCV (Open Source Computer Vision Library) is a BSD-licensed open-source

computer vision and machine learning library. OpenCV was mainly used for image prepro-

cessing tasks such as conversion from RGB images to grayscale, images downsampling and

39

rescaling. Since OpenCV was built to take advantage of multi-core processor systems, the

functions are highly optimized for matrix operations. OpenCV thus offered faster imple-

mentations of the image processing tasks used in this implementation.

4.2.2 Keras

"Keras is a high-level neural networks API, written in Python and capable of running

on top of TensorFlow, CNTK, or Theano. It was developed with a focus on enabling fast

experimentation" (Keras, 2018).

The extract above, taken from Keras documentation, summarizes the main reasons

why Keras has emerged as the default library for computer vision research. Keras works

on both GPU and CPU, has many different optimization and loss functions and provides

mechanisms for saving the model at various checkpoints. The context-encoder and the main

classification models were developed using the Keras API. Keras also provided the pre-

trained model as well as the data augmentation functions used in this research.

TensorFlow was the back-end library for Keras. Although no code was written di-

rectly in TensorFlow, all the Keras computations were executed in TensorFlow. Thus, the

next subsection discusses the motivation why TensorFlow was chosen as the back-end li-

brary.

4.2.3 TensorFlow

TensorFlow is a machine learning software library which was developed by Google

Brain Team for research in Google. Since becoming an open-sourced library in 2015 under

Apache License 2.0., many researchers and software companies have adopted TensorFlow

for their intelligence research. TensorFlow uses data flow graphs for all its computations.

Mathematical operations are represented as nodes while data is represented as edges(tensors)

which designed to handle multidimensional data. This makes TensorFlow well suited for

image processing applications since images are generally processed in their spatial form.

Finally, TensorFlow provides seamless transition between CPU and GPU, which Keras ex-

ploits to speed up training.

40

4.3 Training

All the models were trained using the Google Compute Engine Application Pro-

gramming Interface (API). This became necessary because the models could not be trained

fast enough on CPUs because they contained many parameters. One of the models ex-

perimented for the semantic segmentation task for instance was had 31,095,763 trainable

parameters. It takes a long time to train such models on CPUs since CPUs often execute

instructions sequentially. An interesting observation, however, is that most of the operations

in CNNs are computations on matrices. Since matrix operations are mostly element-wise

operations, they can be executed in parallel. Graphical Processing Units(GPUs), designed

for processing spatial data have the ability to execute many instructions in parallel. Hence,

training on a GPU can reduce training time from days to hours.

For comparison purposes, the binary classification model was experimented on both

the GPU and on an i-3 Intel CPU with a 4GB RAM. For twenty epochs, it took the GPU

only six(6) minutes to finish training the model while it took the CPU almost three days to

train the model. Additionally, the CPU could train on only a mini-batch size of 1 whilst the

GPU trained on a mini-batch of 42 images.

Besides the number of parameters, the input features had very high resolution (764

× 1055 × 3). The high dimensionality of the data combined with the large number of

parameters meant that training the models required large Random Access Memory(RAM).

Personal computers, being largely general purpose machines, are not equipped with pow-

erful GPUs and often have relatively smaller RAM compared to that which the models

needed. Fortunately, the computational power required for training CNNs is accessible

through Google Cloud’s API. All the models experimented in this research were trained

on a virtual machine6 provided through the Compute Engine API. The virtual machine was

equipped with a NVIDIA Tesla P100 GPU running on Compute Unified Device Architec-

ture(CUDA) Toolkit 9.0 from NVIDIA. Additionally, CuDNN 7.0.5 was installed to enable

Keras and TensorFlow execute instructions on the GPU. The machine had a 16 cores CPU

with a 30 GB RAM. Finally, the virtual machine ran on the Ubuntu 16.04 LTS operating sys-

6Virtual machines on on Google Cloud are referred to as instances.

41

tem.The CUDA Toolkit required only a registration to use but the virtual machine charged

$0.872 per hour of usage. The architecture was setup in us-east1-b7. The details of the

virtual machine’s GPU are shown in Figure 4.2.

The GPU has a total of 16GB internal memory and a compute capability of 6

Figure 4.2: GPU properties

4.3.1 Binary Classification

The binary classification model was trained on 323 images and validated on 168

images. In order to avoid loading load all the images into memory at once, the model was

implemented to read the data from disk on demand. Data augmentation techniques were

applied to both the training and validation datasets. That is, new images belonging to the

two datasets were generated infinitely for training the model and evaluating the model. The

binary classification model used a VGG16 pre-trained model for parameter initialization.

All the layers of the pre-trained model except the last three were frozen. That is, only the

last three layers were fine-tuned. The pre-trained model was extended by stacking two fully

connected layers and an output layer on top of it. The model was regularized using one

dropout layer immediately before the output layer. The model had a total of 22,087,682

parameters with only 12,092,610 of them being trainable. The input resolution was 500 ×

500× 3 pixels.

7Google groups its virtual instances clusters into regions which are subdivided into zones. Some resources
are not accessible in some zones. The pricing also vary across different zones. As of the time this research was
conducted, there was no region in Africa, much less a zone.

42

The model was trained for 100 epochs using a learning rate of 10−5. The data was

supplied in mini-batches of 32 images for training and 10 images for validation making a

combined total of 42 images per mini-batch. The GPU took ≈ 18 seconds for each epoch.

Thus, it took 30 minutes to train the model.

4.3.2 Growth-cycle Stages Classification

The growth-cycle stage classification problem was modeled as a semantic segmen-

tation problem as discussed in the Methodology above. The model was initialized using

unsupervised pre-training and transfer learning to compensate for the little dataset. This

section discusses how the model was trained. First, however, is an overview of the dataset

which was used to trained the model.

Three hundred and fifty-three (353) images in total contained at least one parasite.

Ninety percent of the 353 images representing 318 images were used to train and validate

the model. The other 10% of the dataset was reserved for testing the model at the end of

training. The model was evaluated once on the test data. The details of the training and

test datasets in terms of annotations and in terms of pixel counts are provided in Table 4.1

and in Table 4.2 respectively. The reported number of pixels are for the low resolution

images which were used for training. The number of pixels between the true parasites were

approximately equally distributed as the shown through the percentage representations in

Table 4.3.

Besides dividing the data into training and test datasets, a subsection of the training

dataset was used for validation. Validation is the testing of the model on some data which is

not used in computing the gradients. Although, 63 images representing 20% of the training

data were used for validation, the composition of the validation set changed across different

training jobs. That is, in each training job, the parameters were updated on the gradients

of only 255 original images selected randomly from 318 images; with the other 63 images

preserved for validation. In addition to these ground-truth images, both the training and

validation sets were artificially boosted through data augmentation.

43

Table 4.1: Composition of annotations in Training and Test datasets

Dataset Total No._ Images No._ Trophozoites No._ Gametocytes Total Annotations
Training Data 318 571(58.44%) 406(41.56%) 977

Test Data 35 43(47.25%) 48(52.75%) 91

Table 4.2: Number of pixels per class in Training and Test datasets

Dataset Total No._ of Pixels Negative Pixels Trophozoites Pixels Gametocytes Pixels
Training Data 256, 314, 360 249, 747, 634 2, 874, 959 3, 598, 047

Test Data 28, 210,700 27, 462, 705 245, 912 492, 827

Table 4.3: Number of pixels per class in percentages

Dataset Total No._ of Pixels Negative (%) Trophozoites(%) Gametocytes(%)
Training Data 256, 314, 360 97.43 1.12 1.45

Test Data 28, 210,700 97.35 0.90 1.75

Training the model

Several models were experimented in this research. However, this section discusses

only the model which was eventually used on the test data. That model was trained for

200 epochs using an adaptive learning rate with α0 = 10−4 on a GPU. The GPU could

only load up to 19 images due to memory constraints. As a result, 17 images were used

for training and two images for validation in each training epoch. The number of training

steps and validation steps were computed by diving the size of dataset with the mini-batch

sizes. This resulted in 25 training steps and 31 validation steps. It took the GPU ≈ 53

seconds on average to execute each epoch. Thus, it took 2 hours 57 minutes to train the

model completely8.

8These values are for the model which was used to evaluate the test data. Other training jobs took about
5hrs to complete. Different runs had slighted different training statistics.

44

Chapter 5: Experiments and Results

This Chapter discusses the experiments were which conducted to enhance the per-

formance of the models and the results of those experiments. It is worth indicating that this

Chapter covers only the experiments which informed the final model and the findings of this

research.

5.1 Results of Training

The main concern during training was how the trained model would fair on unseen

data. This meant that choices about hyper-parameters values, model size and degree of

regularization were based largely on the validation accuracy and validation loss. The training

accuracy and training loss were also monitored in addition to the validation metrics.

Binary Classification Results

After the 20th training epoch, the model seemed to have reached an optimal point as

the training accuracy reached 99.70% and the validation accuracy reached 98.78%. In addi-

tion, the validation loss and training losses both decayed towards zero as the plot of the loss

in 5.2a show. This meant that the model was not over-fitting the data. This profound ease of

discriminating between the two classes after only 20 iterations was baffling. It turned out,

however, that in principle the model was not discriminating between the two classes based

on the presence or absence of Plasmodium parasites. It used trivial properties of the images

such as differences in contexts to classify them. From the plot of samples belonging to the

two classes shown in Figure 5.1, it is evident that the images could indeed be classified

trivially. Methods such as grayscaling were applied to the images to reduce the contextual

differences between the two classes. However, all of them proved futile in producing im-

ages which could force the model to learn the characteristics of the Plasmodium parasites.

Advance techniques such as Generative Adversarial Networks (GANs) (Goodfellow et al.,

2014) could have produced better performance but there was little time to explore such tech-

niques. Plots of the training and validation metrics of the model are shown in Figure 5.2.

45

(a) Positive image (b) Negative image

(c) Another positive image - The positive
images are a mixture of Giemsa-thin and
thick blood smears of Plasmodium para-
sites.However, they are unlike the negative
images.

(d) Another negative image - The negative
images do not look like anything produced
from stained blood smears. Even within the
negative images, they are large variations
with regards to background and generate se-
mantic properties. This apparent difference
between positive and negative images makes
the classification extremely easy for the net-
work.

Figure 5.1: Examples of positive and negative images from binary classification dataset

(a) Training and validation losses (b) Training and validation accuracies

Figure 5.2: Binary classification training metrics

46

Growth-cycle Stage Classification Results

The growth-cycle stage classification model achieved final training and validation

accuracies of 91.25% after several training iterations. The model exhibited several char-

acteristics which made training difficult. The first generation of the model had 4,962,051

trainable parameters. Training at a learning rate of 10−5, the training and validation metrics

showed that the model was too simple to properly describe the data as shown in the plots in

Figure 5.3. This triggered a revision of the model’s architecture to 31,095,763 parameters in

an attempt to address the observed under-fitting. The revision process included fine-tuning

the last three layers of the pre-trained model and convolving to a resolution of 17×26 pixels

before upsampling. The learning rate was also increased to 10−4. Unfortunately, the model

became too powerful that it exhibited strong over-fitting as shown in Figure 5.4. It was evi-

dent the model was over-fitting the data because both the training and validation unweighted

accuracies kept increasing steadily towards 100%. However, unlike the weighted training

loss which kept decreasing, the weighted validation loss increased as training progressed.

This meant that the model became worse and worse at classifying unseen samples. To ver-

ify that the trend was indeed increasing continuously, the number of training epochs was

increased to 250. This resulted in the plots shown in Figure 5.5. At about the 250th epoch,

both the training and validation unweighted accuracies reached 91% but the validation loss

skyrocketed too, a confirmation that the model was over-fitting. Despite the observed over-

fitting, this model was kept for evaluation at test time whilst revisions were made for better

architectures. This model was labeled as model A.

To prevent the unconventional scenarios where both validation loss and accuracy

moved in the same direction, the accuracies were also weighted to be on the same scale as

47

the loss. The accuracies where weighted using the formula

Accweighted ←
1

N

N∑
i

K∑
c

1
{
y(i) = ŷ(i) ∧ y(i) = c

} Yc
N

Where

K = The number of classes

Yc = The number of pixels belonging to class c

N = The total number of pixels in the mini-batch

(16)

Using Eqn 16 as the new accuracy metric, adaptive learning rate, advanced regularization

and more architecture search, the model was reconstructed to 5,122,307 parameters. The

reconstructed model showed evidence of tangible learning after 200 training epochs. This

can be seen in the plots shown in Figure 5.6. Additionally, plots of the activation maps of

the model on unseen data as displayed in Figure 5.8 indicated strong learning. This became

model B. Motivated by the promise of these observations, a similar model, model C, was

developed with 6,761,091 learnable parameters through the addition of two fully convolu-

tional layers and changes in the number of filters. Using the same hyper-parameters as the

previous model, the new model converged to a local minimum after 130 epochs as shown in

Figure 5.7. The test data was then evaluated independently on these three models9. It turned

out the over-fitting model whose training statistics are shown in Figure 5.5 performed better

the other two models on the test images.

9This case reminiscent of model ensembles where different models are trained and the best performing one
chosen

48

(a) Training and validation loss - Although
the training loss and validation are both
weighted, the same normalization constant
is applied to both. This is the cause of the
relatively high validation loss compared to
the training loss. The same normalization
constant for the two cases scales the valida-
tion loss more because the validation data is
smaller than the training data

(b) Unweighted training and validation ac-
curacies - After 100 epochs, the training
and validation accuracies began to converge.
However, unlike the training accuracy, the
validation accuracy oscillated widely and was
generally worst than the training accuracy.
Since both accuracies are quite low, it can be
safely assumed that the model is under-fitting
the data.

Figure 5.3: Training and validation metrics of under-fitting model

(a) Training and validation losses - Unlike the
training loss which decreases, the validation
loss increases. This is an indication that the
model is memorizing the training data that it
finds it difficult to classify unseen examples
correctly

(b) Unweighted training and validation accu-
racy - Again, the unweighted accuracies are
rising sharply towards perfection although
the validation loss increases as well

Figure 5.4: Training and validation metrics of over-fitting model

49

(a) Training and validation losses - Increas-
ing validation loss is a clear evidence of over-
fitting

(b) Training and validation accuracies - Due
to the extreme over-fitting, both valida-
tion and training accuracies continued rising
reaching over 90% after 250 epochs

Figure 5.5: Training and validation loss and accuracy: model A

(a) Training and validation losses - Using the
weighted accuracy and a revision of the loss
function, the model began to behave to expec-
tation. Particularly, the validation accuracy
shown in (b) decreased relative to the train-
ing accuracy which fits with the observations
in this picture.

(b) Training and validation weighted accura-
cies - The plots of the weighted accuracies
give a much better indication of nature of the
model compared to the unweighted accura-
cies. At this point, the model is showing signs
of convergence after the 100th epoch.

Figure 5.6: Weighted loss and weighted accuracy training results: model B

50

(a) Training and validation losses - Both
losses appear to have converged to some min-
imum.

(b) Training and validation accuracies - Like
the loss values, the weighted accuracies show
clearly that model converged to a minimum
after ≈ 130 epochs. The most interesting ob-
servation however is that, the model explains
both seen and unseen data with near equal ac-
curacies.

Figure 5.7: Weighted loss and weighted accuracy training results: model C

(a) Ground-truth labels - Given this masks as labels and the ground-truth images, the model produced
the activations shown in (b)

(b) Final layer activations - the final activation maps are showing that the even at 43% training
accuracy, the model is constructing the masks of unseen examples with modest accuracy. More
importantly,unlike the square bounding boxes, the model is constructing regions which have similar
geometric properties as the parasites

Figure 5.8: Activation maps of trained model

51

5.2 Results of Testing

Binary Classification Test Results

Hundred images from the growth-cycle stage classification dataset were used to eval-

uate the binary classification model. Fifty percent of the test data were positive images while

the other 50% contained no parasites. Using the images from growth-cycle data to evaluate

the binary classification model was motivated by the following main reasons:

1. There was a need to evaluate the model on a test set with similar global statistics be-

tween the two classes. This eliminated the influence of background and the context

in the evaluation of the model. Since both datasets were Giemsa-thin blood smear

images, the model was expected to produce accurate results if it indeed learned the

characteristics of Plasmodium parasites when trained on dataset for binary classifi-

cation. On the other hand, if it learned only the global statistics, it was expected to

classify every image from the growth-cycle dataset as positive. The dataset for the

growth-cycle stage classification task had the desired properties, hence the decision to

use some for those images for testing.

2. There was no independent dataset for testing the binary classification model.

As anticipated, the model classified all the 100 images as positive although 50% of

the images were negative. To ensure that the model’s poor performance was not due to

errors in the evaluation process, 100 images from the binary classification training dataset

(50 positive and 50 negative images) were also used to evaluate the model. This time round,

the model classified all the images perfectly into the two classes. This confirmed that the

model’s training performance was indeed based on global statistics of the images. The GPU

took ≈ 54 seconds to evaluate the 100 images.

Grow-cycle Stages Classification Test Results

The growth-cycle stages classification model was tested on 35 images none of the

which the model had seen prior to testing. Like the training dataset, the masks were con-

52

structed for the test images using their annotations. However, unlike the masks of the train-

ing data, the masks of the test data were generated purposely for measuring the accuracy of

the predictions and not for gradient computations.

The three most promising models labeled A, B and C as discussed above were eval-

uated independently on the test data. The best model, model A, was able to predict the class

of every pixel in the 35 images with a weighted accuracy of 85.86%10 . Model B obtained a

weighted accuracy of 51.19% while model C achieved an an accuracy of 44.63%. The archi-

tecture of best model, model A is shown in Figure 3.6. Given that semantic segmentation is

generally a difficult task, it can be concluded that the results though relatively low compared

to many categorizations tasks, were modest given the size of the dataset. More importantly,

the model achieved similar performance on both training and testing. This indicates that it

will perform well when applied to other Giemsa-stained thin blood smears.

10This model also achieved an unweighted accuracy of 90.10% on the test set

53

Chapter 6: Conclusion and Future Work

6.1 Summary

This research explored the application of convolutional neural networks in the de-

tection Plasmodium parasites. In particular, a semantic segmentation model was built to

classify the different growth-cycle stages of Plasmodium parasites. Through the use of

techniques such as transfer learning and regularization methods, the model classified pixels

belonging to normal cells, trophozoites or gametocytes with weighted accuracy of 85.86%.

A binary classification model was also built to classify Giemsa-stained thin blood smear im-

ages into positive and negative classes. That model achieved an accuracy of 98.78% during

training but performed poorly at test time because of large variations in the training data.

This empirical results from the experiments on the dense predictions are consistent

with the literature that convolutional neural networks can be used to automate microscopy

especially for the case of malaria diagnosis. In attempt to classify the different growth-cycle

stages, this research became the first of its kind (to the best of my knowledge) to perform

dense predictions on Giemsa-stained thin blood images. This provides a good foundation

for complete segmentations of Plasmodium parasites from stained images. Also, the ability

to identify different growth-cycle stages of Plasmodium parasites at the pixel level can help

reveal some properties of the parasites which cannot be accessed otherwise.

6.2 Limitations

This section discusses the aspects of the research which had the potential to adversely

affect the accuracy of the classification algorithms. The following were constraints on the

performance of the models.

1. The VGG16 pre-trained model which was used to initialize the models was not in the

problem domain. As stated in the Methodology, the VGG16 model was pre-trained

on the ImageNet dataset which do not contain medical image data. The ImageNet

pre-trained model was used because no pre-trained model in malaria diagnosis was

found. Since transfer learning works well when the source model and the target model

54

are in the same domain, applying a model trained on cats and dogs to a model on

Plasmodium parasites could have impacted the performance of the model negatively.

To reduce the impact of the differences in the problem domain, the last three layers

of the VGG16 model were re-trained. In addition, a fully convolutional layer was

put on top of the the pre-trained model before upsampling. Since the first layers of

CNNs typically learn general features such as curves, fine-tuning only the last layers

improved the model’s performance.

2. The dataset employed in the study was very small. It is a well established fact that

CNNs perform very well when they are trained on large datasets. In fact, the recent

successes of deep learning have been attribute mainly to advancements in archiving

massive datasets (Brynjolfsson & Andrew, 2017). CNNs normally tend to over-fit

small datasets which subsequently leads to poor performance at test time. As dis-

cussed above, several methods were employed to prevent over-fitting but they do not

rule out the fact that the project could have benefited from more data.

3. Some of the parasite annotations were ill-constructed. The images were annotated

using square bounding boxes because they required less time to construct. In using

square bounding boxes, however, the annotations deviated from the true morphologies

of the parasites. A gametocyte being crescent in shape cannot be segmented exactly

with a square bounding box. Furthermore, there were slight variations in the mount

of background the annotations added to infected cells. Finally, some annotations were

not axis-aligned and had to be rotated. The rotations had the potential of increasing

the area of the infected cells. This meant that some normal pixels could be wrongly

labeled as belonging to one of the two growth-cycle stages. To address these problems,

the model was built to a very low resolution of 17 × 26 pixels before upsampling.

Nonetheless, some of the bounding boxes still had the potential to misrepresent the

true content of the images.

4. The final limitation of the study is that the images had large resolutions. At the origi-

nal resolution, only two images could be supplied to the model in a mini-batch. Both

55

the images and the masks were subsequently downsampled by a factor of two in order

to feed the model with more images in a mini-batch. (At the downsampled resolu-

tions, 17 images could be supplied to the model in a mini-batch). Although good

downsampling techniques were used, the downsampling was still a potential source

of error in the performance of the model.

6.3 Suggestions for Future Work

This section offers suggested extensions to this study. Besides employing measures

to addressed the limitations above, the findings of this study can become widely applicable

if the following extensions are explored.

1. A refinement of the algorithm to count the number of the different growth-cycle stages

of the parasites per image. This feature will make it possible to estimate the density

of the parasites on the images. This information is useful to health practitioners and

researchers since it enables them to estimate the severity of the infection.

2. An improvement of the model to include all the four major growth-cycle stages of

the Plasmodium parasite. This study considered only trophozoites and gametocytes

in addition to normal cells due to constraints on image quality. Future extensions of

this project should source data good enough to discriminate between all the different-

growth cycle stages. The importance of classifying all life-cycle stages cannot be

overstated.

56

References

Afridi, M. J., Ross, A., & Shapiro, E. M. (2018). On automated source selection for

transfer learning in convolutional neural networks. Pattern Recognition, 73, 65–75.

Retrieved from http://dx.doi.org/10.1016/j.patcog.2017.07.019

doi: 10.1016/j.patcog.2017.07.019

Bibin, D., Nair, M. S., & Punitha, P. (2017). Malaria parasite detection from peripheral

blood smear images using deep belief networks. IEEE Access, 5, 9099–9108. doi:

10.1109/ACCESS.2017.2705642

Brynjolfsson, E., & Andrew, M. (2017). What’s driving the machine learning explo-

sion? Retrieved from https://hbr.org/2017/07/whats-driving-the

-machine-learning-explosion

Chakrabortya, K. (2015). A combined algorithm for malaria detection from thick smear

blood slides. Journal of Health & Medical Informatics, 06(01), 1–6. doi: 10.4172/

2157-7420.1000179

Chollet, F., et al. (2015). Keras. Retrieved from https://keras.io

Cires, D. C., & Giusti, A. (2012). Deep Neural Networks Segment Neuronal Membranes in

Electron Microscopy Images. NIPS, 2852–2860.

Delves, M., Plouffe, D., Scheurer, C., Meister, S., Wittlin, S., Elizabeth, A., . . . Leroy,

D. (2012). The activities of current antimalarial drugs on the life cycle stages of

plasmodium : a comparative study with human and rodent parasites. PLoS Med, 9(2),

e1001169. doi: 10.1371/journal.pmed.1001169

Díaz, G., González, F. A., & Romero, E. (2009). A semi-automatic method for quan-

tification and classification of erythrocytes infected with malaria parasites in mi-

croscopic images. Journal of Biomedical Informatics, 42(2), 296–307. Retrieved

from http://dx.doi.org/10.1016/j.jbi.2008.11.005 doi: 10.1016/

j.jbi.2008.11.005

Ghosh, S., Ghosh, A., & Kundu, S. (2014). Estimating malaria parasitaemia in images of

thin smear of human blood. CSI Transactions on ICT , 2(1), 43–48. Retrieved from

57

http://link.springer.com/10.1007/s40012-014-0043-7 doi: 10

.1007/s40012-014-0043-7

Gonzales, G. (2016). Giemsa staining of malaria blood films (Tech. Rep.). World Health

Organization.

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., . . .

Bengio, Y. (2014). Generative Adversarial Networks. , 1–9. Retrieved from http://

arxiv.org/abs/1406.2661 doi: 10.1001/jamainternmed.2016.8245

Gopakumar, G. P., Swetha, M., Sai Siva, G., & Sai Subrahmanyam, G. R. (2017). Convolu-

tional neural network-based malaria diagnosis from focus stack of blood smear images

acquired using custom-built slide scanner. Journal of Biophotonics, 11(January 2017),

e201700003. doi: 10.1002/jbio.201700003

Gupta, S., Girshick, R., & Arbel, P. (2014). Learning Rich Features from RGB-D Images for

Object Detection and Segmentation. CoRR, abs/1407.5. Retrieved from http://

arxiv.org/abs/1407.5736

He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving Deep into Rectifiers : surpassing

human-level performance on ImageNet classification. CoRR, abs/1502.0. Retrieved

from http://arxiv.org/abs/1502.01852

Kahama-Maro, J., D ’acremont, V., Mtasiwa, D., Genton, B., & Lengeler, C. (2011).

Low quality of routine microscopy for malaria at different levels of the health

system in Dar es Salaam. Malaria Journal, 10. Retrieved from http://www

.malariajournal.com/content/10/1/332 doi: 10.1186/1475-2875-10

-332

Kanan, C., & Cottrell, G. W. (2012). Color-to-grayscale: does the method matter in image

recognition? PLoS ONE, 7(1), e29740. doi: 10.1371/journal.pone.0029740

Kareem, S., Kale, I., & Morling, R. C. S. (2012). Automated malaria parasite detection in

thin blood films:-A hybrid illumination and color constancy insensitive, morpholog-

ical approach. In Ieee asia-pacific conference on circuits and systems, proceedings,

apccas (pp. 240–243). IEEE. doi: 10.1109/APCCAS.2012.6419016

Karunamoorthi, K. (2011). Vector control: A cornerstone in the malaria elimination cam-

58

paign. Clinical Microbiology and Infection, 17(11), 1608–1616. Retrieved from

http://dx.doi.org/10.1111/j.1469-0691.2011.03664.x doi: 10

.1111/j.1469-0691.2011.03664.x

Kingma, D. P., & Ba, J. L. (2014). Adam: a method for stochastic optimization. CoRR,

abs/1412.6, 1–15. Retrieved from http://arxiv.org/abs/1412.6980

Krizhevsky, A., Sutskever, I., & Geoffrey E., H. (2012). ImageNet classification with Deep

Convolutional Neural Networks. Advances in Neural Information Processing Systems

25 (NIPS2012), 1097–1105. doi: 10.1109/5.726791

Li, F.-F., Johnson, J., & Yeung, S. (2017). CS231n: Convolutional Neural Networks for

Visual Recognition 2017. Retrieved from http://cs231n.stanford.edu/

Linder, N., Turkki, R., Walliander, M., Martensson, A., Diwan, V., Rahtu, E., . . . Lundin,

J. (2014). A malaria diagnostic tool based on computer vision screening and visu-

alization of Plasmodium falciparum candidate areas in digitized blood smears. PLoS

ONE, 9(8). doi: 10.1371/journal.pone.0104855

Long, J., Shelhamer, E., & Darrell, T. (2015). Fully Convolutional Networks for Semantic

Segmentation. In 2015 ieee conference on computer vision and pattern recognition

(cvpr) (pp. 3431–3440). doi: 10.1109/CVPR.2015.7298965

Mehanian, C., Jaiswal, M., Delahunt, C., Thompson, C., Horning, M., Hu, L., . . . Bell, D.

(2017). Computer-automated malaria diagnosis and quantitation Using Convolutional

Neural Networks. IEEE International Conference on Computer Vision Workshops

Computer-Automated, 116–125. doi: 10.1109/ICCVW.2017.22

Mehrjou, A., Abbasian, T., & Izadi, M. (2013). Automatic malaria diagnosis system. In

International conference on robotics and mechatronics, icrom 2013 (pp. 205–211).

doi: 10.1109/ICRoM.2013.6510106

Moon, S., Lee, S., Kim, H., Freitas-Junior, L. H., Kang, M., Ayong, L., & Hansen, M. A.

(2013). An image analysis algorithm for malaria parasite stage classification and

viability quantification. PLoS ONE, 8(4), 1–12. doi: 10.1371/journal.pone.0061812

Nanoti, A., Jain, S., Gupta, C., & Vyas, G. (2016). Detection of malaria parasite species and

life cycle stages using microscopic images of thin blood smear. In 2016 international

59

conference on inventive computation technologies (icict), coimbatore, 2016 (pp. 1–6).

doi: 10.1109/INVENTIVE.2016.7823258

Nonvignon, J., Aryeetey, G. C., Malm, K. L., Agyemang, S. A., Aubyn, V. N. A., Peprah,

N. Y., . . . Aikins, M. (2016). Economic burden of malaria on businesses in Ghana: a

case for private sector investment in malaria control. Malaria Journal, 15(454). doi:

10.1186/s12936-016-1506-0

Ojha, P. K., & Roy, K. (2015). The Current status of antimalarial drug research with

special Reference to application of QSAR models. Combinatorial Chemistry & High

Throughput Screening, 18(2). doi: 10.2174/1386207318666141229125527

Park, H. S., Rinehart, M. T., Walzer, K. A., Ashley Chi, J. T., & Wax, A. (2016). Automated

Detection of P. falciparum using machine learning algorithms with quantitative phase

images of unstained cells. PLoS ONE, 11(9). doi: 10.1371/journal.pone.0163045

Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., & Efros, A. A. (2016). Context

Encoders: Feature Learning by Inpainting. CoRR, abs/1604.0. Retrieved from

http://arxiv.org/abs/1604.07379 doi: 10.1109/CVPR.2016.278

Penas, E. K., Rivera, T. P., & Naval.Jr, C. P. (2017). Malaria parasite detection and species

identification on thin blood smears using a convolutional neural network. In (pp. 1–5).

doi: 10.1109/CHASE.2017.51

Pinkaew, A., Limpiti, T., & Trirat, A. (2015). Automated classification of malaria parasite

species on thick blood film using support vector machine. In Biomedical engineering

international conference (bmeicon-2015) (pp. 1–5).

Pollak, J. J., Houri-Yafin, A., & Salpeter, S. J. (2017). Computer vision malaria diagnostic

systems—progress and prospects. Frontiers in Public Health, 5(219), 1–5. doi: 10

.3389/fpubh.2017.00219

Poostchi, M., Silamut, K., Maude, R. J., Jaeger, S., & Thoma, G. (2018). Image analysis

and machine learning for detecting malaria. Translational Research, 194, 36–55.

Retrieved from https://doi.org/10.1016/j.trsl.2017.12.004 doi:

10.1016/j.trsl.2017.12.004

Purnama, I. K. E., Rahmanti, F. Z., & Purnomo, M. H. (2013). Malaria parasite identifica-

60

tion on thick blood film using genetic programming. In 3rd international conference

on instrumentation, communications, information technology, and biomedical engi-

neering (pp. 194–198).

Quinn, J. A., Nakasi, R., Mugagga, P. K., B., Byanyima, P., Lubega, W., & Andama, A.

(2016). Deep Convolutional Neural Networks for microscopy-based point of care di-

agnostics. In Proceedings of international conference on machine learning for health

care 2016 (Vol. 56).

Radiuk, P. M. (2018). Impact of Training Set Batch Size on the Performance of Convolu-

tional Neural Networks for Diverse Datasets. Information Technology and Manage-

ment Science,, 20(1), 20–24. Retrieved from https://www.degruyter.com/

view/j/itms doi: 10.1515/itms-2017-0003

Rawat, W., & Wang, Z. (2017). Deep Convolutional Neural Networks for image classifi-

cation: A comprehensive review. Neural Computation, 29(9), 2352–2449. Retrieved

from http://arxiv.org/abs/1706.02451 doi: 10.1162/NECO

Rosado, L., Correia, M., Elias, D., & Cardoso, J. S. (2016). Automated detection of malaria

parasites on thick blood smears via mobile devices. Procedia Computer Science,

90(2016), 138–144. doi: 10.1016/j.procs.2016.07.024

Roy, K., Sharmin, S., Mufiz Mukta, R. B., & Sen, A. (2018). Detection of malaria

parasite in giemsa blood sample using image processing. International Journal

of Computer Science and Information Technology, 10(1), 55–65. Retrieved from

http://aircconline.com/ijcsit/V10N1/10118ijcsit05.pdf doi:

10.5121/ijcsit.2018.10105

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., . . . Fei-Fei, L. (2015).

ImageNet Large Scale Visual Recognition Challenge. International Journal of Com-

puter Vision, 115(3), 211–252. doi: 10.1007/s11263-015-0816-y

Sathpathi, S., Mohanty, A. K., Satpathi, P., Mishra, S. K., Behera, P. K., Patel, G., & Don-

dorp, A. M. (2014). Comparing Leishman and Giemsa staining for the assessment

of peripheral blood smear preparations in a malaria-endemic region in India. Malaria

Journal, 13(1), 512. doi: 10.1186/1475-2875-13-512

61

Savkare, S. S. (2011). Automatic detection of malaria parasites for estimating parasitemia.

International Journal of Computer Science and Security (IJCSS), 5(3), 310–315.

Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-

scale image recognition. CoRR, abs/1409.1, 1–14. Retrieved from http://

arxiv.org/abs/1409.1556 doi: 10.1016/j.infsof.2008.09.005

Sivaramakrishnan, R., Antani, S., & Jaeger, S. (2017). Visualizing Deep Learning Activa-

tions for Improved Malaria Cell Classification. First Workshop Medical Informatics

and Healthcare (MIH 2017), PMLR(October), 40–47.

Srinivas. (2015). Life cycle of Plasmodium parasite. Retrieved from https://www

.malariasite.com/life-cycle/

Wellems, T. E., & Plowe, C. V. (2001). Chloroquine-Resistant Malaria. The Journal of

Infectious Diseases, 184(6), 770–776.

White, N. J. (2008). The role of anti-malarial drugs in eliminating malaria. Malaria Journal,

7(1), 1–6. doi: 10.1186/1475-2875-7-S1-S8

WHO. (2015). How malaria RDTs work. Retrieved from http://www.who.int/

malaria/areas/diagnosis/rapid-diagnostic-tests/about

-rdt/en/

WHO. (2017). Malaria. Retrieved from http://www.who.int/mediacentre/

factsheets/fs094/en/

Wojna, Z., Ferrari, V., Guadarrama, S., Silberman, N., Chen, L., Fathi, A., & Uijlings,

J. R. R. (2017). The Devil is in the Decoder. CoRR, abs/1707.0. Retrieved from

http://arxiv.org/abs/1707.05847

Yosinski, J., Clune, J., Bengio, Y., & Lipson, H. (2014). How transferable are fea-

tures in deep neural networks? In Advances in Neural Information Processing

Systems, 27(NIPS ’14), 3320–3328. Retrieved from http://arxiv.org/abs/

1411.1792

Yuheng, S., & Hao, Y. (2017). Image segmentation algorithms overview. CoRR, abs/1707.0.

Retrieved from http://arxiv.org/abs/1707.02051

62

