

ASHESI UNIVERSITY COLLEGE

SCHOLARSHIP FUND MANAGEMENT SYSTEM

APPLIED PROJECT

B.Sc. Management Information Systems (MIS)

Ayishetu Seidu

2017

Page | 1

Branding and Identity Guide

The Ashesi brand and logo are integral parts of our worldwide image and identity. We must be

careful of how and where the Ashesi is used to ensure we maintain the integrity of our

organization.

This guide has been developed to help you clearly understand our policies towards the use of

the Ashesi logo in a variety of mediums, as well as type faces and a color palate to help you

produce materials that maintain the brand’s integrity. We would request that you seek

approval from the Ashesi University College Marketing Committee before creating any media

that reproduces the Ashesi logo.

Contents
The Logo .. 2

Using the Logo .. 3

Clear Space and Logo Design .. 5

Unacceptable Logo Uses ... 6

The Ashesi Seal .. 7

Color Palette ... 8

Fonts.. 8

Mission Statement .. 9

ASHESI UNIVERSITY COLLEGE

Scholarship Fund Management System

APPLIED PROJECT

Applied Project submitted to the Department of Computer Science,

Ashesi University College in partial fulfilment of the requirements for the

award of

Management Information Systems (MIS)

Ayishetu Seidu

April 2017

I

Declaration

I hereby declare that this Applied Project is the result of my own original work and that no

part of it has been presented for another degree in this university or elsewhere.

Candidate’s Signature…………………………………………………………………

Candidate’s Name……………………………………………

Date………………………..

I hereby declare that the preparation and presentation of the Applied Project Report were

supervised in accordance with the guidelines on supervision of Applied Projects laid down

by Ashesi University College.

Supervisor’s Signature……………………………………………………………………..

Supervisor’s Name…………………………………………….

Date…………………………………..

II

 Acknowledgements

I would like to give thanks to the almighty Allah for the gift of life he gave me to be able to

undertake this project. My profound appreciation also goes to my invaluable supervisor, Mr

Aelaf Dafla, whose guidance and supervision saw me through this project. I would also like

to thank Mma Asana (my mother), Baba Seidu (my father), Sister Amina, Issah, and all my

family members for their love and support throughout my stay in Ashesi. My gratitude also

goes to all my friends, especially, Moses Kasanga, Alvin Ofori (who helped me anytime I

got stuck with coding and my supervisor is not readily available), Kingsley Agyekum, David

Okyere, Natasha Mabuza, Freda Manu, and all those whose support and encouragement

made this project a success. My Final gratitude goes to the MasterCard Foundation, without

whose support I could not have made it this far.

May Allah richly bless you all

III

Abstract
This project seeks to improve an existing web based system used by a Non-Governmental

Organisation in Ghana to manage their scholarship application process. The NGO, which

sponsors High School students in Ghana, currently has a web based application that helps

them process their scholarship application and awarding process. The existing application

keeps record on applicants, generate points for applicants which are used as the basis for

awarding the scholarships, and generate scholarship offer letters for these awardees. Given

the current focus of the existing system, this project seeks to widen the scope of the system

by adding functionalities to track payments. Therefore, instead of just being a Scholarship

Application System, the system will be a Scholarship Management System (or a

Scholarship Fund Management System). At the end of this project, the NGO should be

able to use less time in processing payments, get a more transparent payment system,

generate reports from the system and reduce costs of operation.

IV

Contents
Declaration .. I

Acknowledgements .. II

Abstract ... III

List of Figures ... VI

List of Tables... VII

Chapter 1: Introduction ... 1

1.1 Background ... 1

1.2 Motivation. .. 2

1.3 Related work and Research ... 3

1.3 Related Work ... 3

1.4 Objectives .. 4

1.5: Outline of project ... 4

Chapter 2: Requirement Analysis ... 5

2.1: Definition of Users ... 5

2.1.1 Programme Officer/Manager .. 5

2.1.2: Learning Advisor ... 6

2.1.3: The Accountant .. 7

2.1.4: IT Personnel/Administrator ... 8

2.2: System Requirements ... 9

2.2.1: Functional Requirements ... 9

2.2.2: Non-Functional Requirements ... 10

Chapter 3: Architecture and Design .. 11

3.1: Overview of the Mode View Controller (MVC) Architecture 11

3.1.1: The Model .. 11

3.1.2: The View ... 14

3.1.2: The Controller .. 16

Chapter 4: Implementation .. 18

4.1: Overview of implementation .. 18

4.1.1: Libraries and Frameworks ... 18

4.2 Email Implementation ... 19

4.2.1: Scope of Work ... 19

4.2.2: Overview.. 19

4.3: PDF Report. .. 20

4.3.1: Scope of work .. 20

V

4.3.2: Implementation Overview. .. 21

4.4: Viewing Criteria for Generating Points.. 22

4.4.1: Scope of Work ... 22

4.4.2: Overview.. 22

4.5: Verifying Additions to Schools .. 24

4.5.1: Scope of Work ... 24

4.5.2: Overview.. 24

4.6: Disbursing Payment Requests. ... 25

4.6.1: Scope of Work ... 25

4.6.2: Overview of Implementation ... 26

Chapter 5: Testing ... 28

5.1: Unit Testing .. 28

5.2: Component Testing .. 30

5.3: Compatibility Testing ... 30

Chapter 6: Conclusion and Recommendations ... 31

6.1: Conclusion .. 31

6.2: Recommendations .. 31

References ... 33

Appendix ... 34

VI

List of Figures
Figure 2.1: Use case diagram for the programmes officer/manager 6

Figure 2.2: Use case diagram for the learning advisor.. 7

Figure 2.3: Use case diagram for the accountant .. 8

Figure 2.4: Use case diagram for the IT personnel or administrator 9

Figure 3.1: Entity-Relationship (ER) diagram for applicant details 12

Figure 3.2: Entity-Relationship (ER) diagram for payments .. 13

Figure 3.3: View of the home page ... 15

Figure 3.4: Interface for adding a new applicant .. 15

Figure 3.5: Interface for the list of applicants ... 16

Figure 3.6: High level architecture of the system ... 17

Figure 4.1: Email implementation result ... 20

Figure 4.2: PDF implementation result ... 21

Figure 4.3: Viewing point criteria implementation result ... 23

Figure 4.5: Results for verifying addition to school ... 25

Figure 4.6: Disbursing payment requests implementation result .. 27

Figure 4.7: Disbursing Payment Requests Implementation Result 1 27

Figure A.1 Implementation of PDF report generation .. 34

Figure A. 2: Code for sending mail using PHP mail() function and object obscuring

functions .. 34

Figure A.3 Login page for accounts .. 35

Figure A.4 All payment requests .. 35

Figure A.8 Result of unit test for verifying schools .. 41

Figure A.9 Results of unit test for getting all payment requests ... 41

Figure A.10 Unit test result for getting scholarship payment for a given payment

request…………………………………………………………………………………….41

VII

List of Tables
Table 5.1: Unit test for send email module ... 29

Table A.5: Unit test for view point criteria implementation ... 36

Table A.6: Unit test for PDF report .. 39

Table A.7 Unit Test for disbursing payments ... 40

Table A.11: Other functions under payments tested ... 42

1

Chapter 1: Introduction

A Non-Governmental Organization (NGO), located in Ghana, provides scholarship

for intelligent high school students from economically disadvantaged backgrounds. They

operate from Greater Accra Region of Ghana with their programme units in four regions,

namely, The Volta, Upper East, Eastern, and Central regions of Ghana. Like many

organisations, the NGO has moved from manual processes and information system to a web

based system. This existing system allows them to enter information on new applicants,

award scholarships and track students’ performance. This project therefore seeks to improve

the system by adding functionalities to make the it able to facilitate and track scholarship

payments, and provide reporting functionalities for the scholarship application process.

1.1 Background
The pace of globalisation in recent times requires businesses to come up with cost

effective operation strategies towards developing new products or services that meet

acceptable standards, and appeal to target customers to deal with competition. To achieve

this, businesses, whether for profit or not for profit, must constantly consider and improve

the way they do business and change their information systems to buttress evolving

processes. Business process automation is one way for businesses to effectively structure

information systems and deal with the current trends. Its benefits are countless, ranging from

cost saving to efficiency. A paper in the Proceedings of the 32nd Annual ACM SIGUCCS

Conference on User Services, discussed a new registration system used in London School

of Economics and its benefits compared to an old manual system. The new automated

system reduced the number of days used for registration from twelve (12) days to seven (7)

days. Again, the need for fifteen (15) IT support staff to facilitate the manual registration

2

was eliminated in the automated system, saving the school an amount of $15270.18 (Forbes-

Pitt, 2004).

Technologies like office automation systems, document management systems,

workflow systems, web technology, and robotic automation exist for businesses to take

advantage of, in automating their processes. Web Technology is lately gaining substantial

attention among business process experts because it is a flexible and low-cost solutions to

distributed collaborative work. With an available network, web technology allows

computers not only to share resources but also enables people to interact with processes and

users to achieve business goals (Takashi & Liang, 1997). Companies and institutions are

taking advantage of this technology to achieve efficiency and cut down costs. Ashesi

University, for example, uses an automated web based system for students’ course

registration and when registrations are open, in a less amount of time, they get more students

to register than it would have been if they used manual system. Non-Governmental

Organizations and non-profit-organizations are not an exception of these for-profit

companies. They many not seek to maximize their profit, but they need to be efficient to

maximize the use of the limited fund they have.

1.2 Motivation.
In view of the increasing number of applicants over the years, manually

collaborating and managing the data from different schools in the ten regions of Ghana can

be a tedious work for the NGO. Trivial jobs will have to be done by many people leading to

a huge part of their funds for scholarships being used to pay these employees. Again,

working manually takes time which the NGO could have used focus on more important

aspects of the organisation

Again, when dealing with financial and academic records, consistency and accuracy

are key to ensuring trust among stakeholders in the organisation. Their Donors need to be

3

sure that, financial statements and records are accurate and that monies they have donated

are being used for the intended purposes. Beneficiaries also need to be sure that, their

performances in their respective schools are exactly what is captured by the NGO. However,

errors and inconsistencies are hard to avoid when processes are manual.

Ghana Passports office pose a clear example of errors that happen when business

processes and Information Systems are made manual. People go to the Ghana passports

office and spend hours just to submit their passport application form and they are given a

day to come for their passport. The day arrives and when they go, they tell them they cannot

find their documents so they should start the whole process again (Painstil, 2015). The

money and time wasted in buying the form and waiting to submit the form respectively

could have been invested in something profitable.

One key feature of doing business is governance and monitoring which is difficult

if business processes are manual. From these motivations, this project seeks to help Plan

Ghana save time and money, have a more accountable system and be effective in their

processes.

1.3 Related work and Research

1.3 Related Work

Some companies have come up with software that allows for the management of any

kinds of fund. These applications are commercially off the shelf and are customizable for

companies that buy them. Some of these existing applications are listed below;

1.3.2.1: FluidReview

This is a fund management system developed by Survey Monkey, which allows

applicants to fill forms and submit every necessary document via a centralised portal. It

allows for internal coordination of work and automates selection of qualified applicants. it

4

comes with features like online application forms, applicant matching, email and phone

support, reporting, recommendation letter generation, and so on (Capterra, n.d.).

1.3.2.2: ICARIS Grant Management Software

This is also another grant management system, developed by ICRARIS LTD, which

uses SQL backend data structure for automating gift aid, grants processing, payments, and

beneficiary management. It comes with features for reporting and dashboards (ICARIS

LTD, n.d.).

1.4 Objectives

By the end of this project;

• The NGO should be able to save time and costs in their processes which can be

invested productively elsewhere.

• They should also be able to minimise errors which will promote trust among its

major stakeholders; their donors and beneficiaries.

• Monitoring, on the part of the management of NGO, should be easier to minimise

the tendency by their personnel to indulge in bad business practices like

embezzlement of funds and accepting applicants who do not qualify to be awarded

• The system should be able to capture payments to scholarship students

• Current users should find the application and its interface usable.

1.5: Outline of project
This paper has 6 chapters. Chapter 1, gave the background, related work, motivation and

objectives for the project. Chapter 2 outlines requirements analysis and chapter 3 gives

the architecture and design of the system. Chapter 4 describes the implementation;

methods, technologies and frameworks used in building the system. The remaining

chapters, 5 and 6 discuss Testing, Conclusions and Recommendation respectively.

5

Chapter 2: Requirement Analysis

To come up with requirements for this version of the system, the initial developer of

the system was interviewed to gain more insights about how the system works. The

interview threw light on four main users of the system. The various users, their roles,

scenarios, and use cases are elaborated below.

2.1: Definition of Users

2.1.1 Programme Officer/Manager

The programme officer is one of the key persons in the operation of the organisation,

regarding scholarships. He/she oversees a specific programme area, so he/she is more

like a branch manager. When applicants apply for scholarships using hard copy forms,

the programme officer enters the information on these applicants into the system, awards

and confirms applicants’ scholarships. When applicants are awarded scholarships, the

programmes officer ensures that manages these sponsor students. He/she also is

responsible for making payment requests on behalf of the scholars. The use case below

summarises how the programme officer interacts with the system

6

Figure 2.1: Use case diagram for the programmes officer/manager

2.1.2: Learning Advisor

The learning advisor’s main function is admissions. He/she is responsible for opening

and closing new admissions. The learning advisor is also responsible for setting the

criteria for awarding scholarships in each admission year. The use case diagram below

shows the learning advisor’s interaction with the system.

7

Figure 2.2: Use case diagram for the learning advisor

2.1.3: The Accountant

The accountant handles all the monetary aspects of the organisation. He/she is

responsible for disbursing payments requested by the programme officer after approving

these payments. The accountant again prepares budgets and financial reports

periodically for the NGO. The use case diagram below shows his/her typical interactions

with the system.

8

Figure 2.3: Use case diagram for the accountant

2.1.4: IT Personnel/Administrator

This is the overall user of the system. This person can do almost everything on the

system. He/she wants to be able to add users and delete users. He/she also want to be

able to give users permission and withdraw user permissions. He/she also want to be

able to manage support data like high schools and basic schools by adding and deleting

schools. The use case Diagram below summarises the administrator’s interactions with

the system

9

Figure 2.4: Use case diagram for the it personnel or administrator

2.2: System Requirements

From the above analysis, the requirements below were generated to be added to the

existing system.

2.2.1: Functional Requirements

 The programmes manager should be able to see how an applicant got the points

which is used as a basis for awarding the scholarship.

 The country director should be notified, by mail, the summary of the entries made

each week. This is to ensure that, offices in localities where the manager is not

present to supervise the usage of the system feed the system with information. This

will make monitoring and decision making easy for the programme’s manager.

 The Manager should be able to generate a pdf report on the summary of activities

on the system.

10

 When a data entry officer is adding a school to the list of schools, he should be able

to verify that, that name does not exist in the database to avoid duplication of school

names

 The accountant/accounts department should be able to:

➢ Login

➢ Show budget for the year

➢ Check payment requests and change and disburse them

➢ See how much is paid for a student (given a scholarship package ID)

➢ How much is paid this financial year for a school, and how much is left

2.2.2: Non-Functional Requirements

 The pages should be made faster and more interactive by reducing the number of

page switches when using the system

 The user interface should be appealing to encourage users to use the system.

 Requests should be made asynchronous to make sure the system catches up with

existing technology since synchronous requests are being wiped out from the new

technologies

After gathering these requirements, a meeting was set up again with the initial developer

to validate the requirements. This was to ensure that, the requirements are exactly what

they should be, and to reconcile any disagreements.

11

Chapter 3: Architecture and Design

 3.1: Overview of the Mode View Controller (MVC) Architecture

This project is building on an existing system which uses the Mode View Controller

(MVC) architecture. This system architecture divides a system into three components,

namely, the model, the view, and the controller. It is one of the mostly used architecture in

web based applications and it makes building of complex applications easy.

The model is the part of the application that implements the logic for the application’s data

management. This can be retrieving, updating, and storing data. The View represents that

part of the application represents the user interface with which the user interacts. This

includes all text boxes, buttons, dropdown menus, etc. which facilitates easy use. The

controller serves as the interface between the model and the view. It listens to user actions

and events and invoke changes to the model and the view.

3.1.1: The Model

 The model of this project is built using MySQL because it is free and mostly used

in web application developments. It allows you to create relational database and tables,

insert values, update, and delete these values and databases.

The model of the existing system has tables such as

• student_applicant- containing the data on applicants

• sponsored_students – containing data on awardees

• users – containing data on employees that use the system

• userlevels – contains the permissions of the users

• scholarship_package – contains data on each scholar and the details of the packages

awarded to them

• grant_packages – contains the various grants and their details

12

• scholarhip_payment – contains the details of a payment request on behalf of a

scholar

The diagrams below show data is arranged in the model

Figure 3.1: Entity-Relationship (ER) diagram for applicant details

13

Figure 3.2: Entity-Relationship (ER) diagram for payments

Although the above database/model serves its purpose, the design is not the best.

There are redundant relationships and tables which will make querying the database

inefficient due to the many joins that will need to be done, and take up server space. An

applicant, for example has information about his/her high school and programme area, but

scholarship payments table, which refers to the applicant again makes refence to the school

and programme area tables.

On redundant tables, status of an applicant could have been made an enumerator

instead of creating a table for it. The information in the scholarship package table could have

also been appended to the sponsored students’ table.

The applicant’s information is not also well normalised. For example, the school and

community category tables could have been linked to the school and community tables

respectively, instead of the direct link with the applicant table.

14

3.1.2: The View

This is built using Hypertext Mark-up Language (HTML) and Cascading Style Sheet

(CSS).

The entry officer has an interface, represented by applicants.php, where he/she can

enter information of new applicants using HTML forms. The applicants.js helps with

validation of inputs made. Programme officers also have an interface (applicantlist.php) that

helps them review applications and award scholarships. The system administrator also has

an interface where he/she can add new users or delete existing users.

This version of the application will provide an interface for managing payments. A

programme manager can make and liquidated payments in each active year for the scholars.

The accountant will also have an interface where he/she can review payment requests and

disburse them. There will also be an interface for the programme manager to generate report

on the activities on the system.

Below are pictures of the view of some pages in the existing application.

15

Figure 3.3: View of the home page

Figure 3.4: Interface for adding a new applicant

16

Figure 3.5: Interface for the list of applicants

3.1.2: The Controller

The controller of the application uses PHP (read from the back as Hypertext

Processor), facilitated by AJAX. PHP is a popular general-purpose scripting language that

is especially suited to web development. It is fast, flexible, and practical. These two will

make it easy to send and receive data from the model, that is MySQL and Apache Server,

and display these data on the view using HTML and the CSS.

The system has a class called applicant.php which contains all methods and

operations relating to applicants. It has functions that gets all applicants, get a specific

applicant’s details, counts applicants given a specific criterion and gets specific information

on an applicant (e.g, school, community, grade, etc.).

The class “programareas.php” also contains the various operations on the Program

Areas table in the model (database). At the NGO, a program area is a town or city whose

students the NGO sponsors. Again, the class payments.php contains functions the pertain

all or specific payments. Examples are getting payment requests (given a specific criterion),

submitting a payment requests. All these have their corresponding JavaScript files which

handle requests asynchronously in the background using AJAX.

17

The architecture of the system is shown in the diagram below:

Figure 3.6: High level architecture of the system

18

Chapter 4: Implementation

4.1: Overview of implementation

Building on an existing application, the system, together with the database was given

to be deployed and run for familiarisation. XAMPP and the database on MySQL server

which comes with XAMPP had to be installed for this. Apart from the familiarisation with

the interface, the code had to also be understood before changes or additions could be made

to it. This was challenging because people have different styles of programming so it is

difficult understanding the programming practices of another person.

4.1.1: Libraries and Frameworks

4.1.1.1: jQuery

“jQuery UI is a curated set of user interface interactions, effects, widgets, and themes

built on top of the jQuery JavaScript Library” (jQuery User Interface, n.d). Its main function

is to make it easier to use JavaScript on the website. This library was used be used to enhance

the user interactions on the system. This library was chosen out of the many JavaScript

Libraries because it is the most widely used and the most extendable.

4.1.1.2: Bootstrap Framework

Bootstrap is an open-source front end framework used for designing websites and

web applications. It was created at Twitter in 2010 and has become one of the most widely

used front-end frameworks (Bootstrap, n.d.). This library was chosen because it is widely

used and thus, has a wider community of people who can help in case of any problem.

Again, it has base styling for most of the html tags or elements and it supports JavaScript

plugins.

19

After all the above, the actual implementation of the requirements outlined in

Chapter 2 started. The remaining parts of this chapter outlines the implementation of the

individual requirements

4.2 Email Implementation

4.2.1: Scope of Work

The main aim is to report to the programme manager, by mail, every Friday on how

many new applicants have been entered in total over the week. The report will also include

how many entries were made at each programme area. This will ensure the system is used

at all the programme areas so that the programmes manager can have enough information

on the system to make informed decisions.

4.2.2: Overview

This requirement dealt with the student_applicant table in the database and the

applicant.php class. There is a function in the applicant class which returns a count of

records on applicants given a filter. This method then gets the all the records entered in a

week and a breakdown for the specific programme areas. Also, on getting the specifics from

the program areas,

To send the mail, PHP’s in built function called mail() was used. This function sends

a mail given the receivers’ address, subject, the message and the header. Also, to get entries

made in the past seven days, MySQL function called DATE_SUB() which subtracts a

criteria (either month, day or year) from a given date was used.

The main challenge was how to get the results from the query and add a message to

it to be sent as a mail. After thorough research, output obscuring functions provided by PHP

was discovered. These functions allow you to, instead of printing out a message from the

20

server side, store the message in a variable so that it can be used later. (See Appendix Figure

A.1 for snippet of code showing how the functions work)

After getting all these information, the php.ini file was configured to allow mails to

be sent from the localhost.

On every Friday, a mail should be sent to the given e-mail address giving records of

applicants who have been added since the last period. Since the NGO uses a Linux server,

they will use a Cron scheduler to trigger the mail every Friday. Cron is a system process,

usually on Linux and UNIX, which automatically performs tasks given a set schedule

(Computer Hope, n.d.).

The result of this implementation is shown in the screenshot below

Figure 4.1: Email implementation result

4.3: PDF Report.

4.3.1: Scope of work

The main objective of this implementation was to generate a pdf report on activities

that have been carried out on the system. These activities include entry of new applicants,

awarded applicants and many more.

21

4.3.2: Implementation Overview.

For this implementation, mPDF library was used. “mPDF is a PHP class which

generates PDF files from UTF-8 encoded HTML. It is based on FPDF and HTML2FPDF

with a number of enhancements” (mPDF, n.d). This was chosen because it has more

functionalities than the FPDF (a basic PHP PDF library) Library. Again, the existing

application already has a PDF functionality (pdf scholarship offer letter) which uses the

mPDF Library so consistency needed to be ensured. The library is included in the beginning

of the code so that instances of it can be created to access its functions. The data needed for

the report was gotten from the applicant, program area, and packages tables. The classes

needed for this implementation were the applicant.php and programarea.php

After this implementation, the manager is supposed to be able to generate pdf reports on

important system activities. The result of this implementation is shown in the picture below:

Figure 4.2: PDF implementation result

22

4.4: Viewing Criteria for Generating Points

4.4.1: Scope of Work

Each applicant is awarded points based on certain information, and the total of these

points for each applicant is what is used to award the scholarship. Applicants with high

points are given priority over those with lower points. This implementation therefore sought

to provide support data for programme manager to know how points awarded to each

applicant are generated.

4.4.2: Overview

The parameters that are used to generate the points are the type of work the guardian

does, the community the applicant comes from, the type of basic school applicant attended,

and the aggregate grade the applicant got in the Basic Education Certificate Examination

(BECE). The database that exists already have tables; “application_occupation”,

“community_category”, “applicant_school_category”, and “selection_grade_point”

respectively for this information.

There is a class, “occupation.php” that communicates with the

“application_occupation” table which has the occupation of the applicant’s guardian. It has

a function called “get_occupations” which returns all the occupations and the corresponding

points they carry.

23

However, there was no class that communicated directly with the applicants’ community,

school type, and grade. Classes; “applicant_community_category.php”,

“applicant_school_category.php”, and “applicant_grade.php” were then created to

communicate with the respective tables to get the details of each criteria.

After getting these details, a bootstrap template was used to format the tables to make

it responsive and give it a once view.

After this implementation, a table showing the criteria used in generating the points.

should be able to be generated. Below is a snapshot of the implementation above:

Figure 4.3: Viewing point criteria implementation result

24

4.5: Verifying Additions to Schools

4.5.1: Scope of Work

Because the list of high schools and basic schools are many, if the entry officer is

adding a new applicant does not easily identify a school name from the drop-down list there

is a tendency to just add that school as a new school.

The objective of this implementation is to ensure that, when the entry officer is

adding a new applicant, he or she does not add a school that already exist in the database.

This is to help prevent duplications and save server space

4.5.2: Overview

This implementation was done using JavaScript and jQuery. It was done with the

idea of a live search. A function was written to search and return all the names of the schools

in the database that match a given criteria. This function will be triggered, using ajax, when

a user starts typing the school’s name so that, all the school names that match the entered

values will be suggested to the user. With this, a user will only add schools that do not

already exist in the database. The snapshot below show how High School names are verified

when adding a new school. This implementation is the same for Basic Schools.

25

Figure 4.5: Results for verifying addition to school

4.6: Disbursing Payment Requests.

4.6.1: Scope of Work

At the NGO, the programme officer makes payment requests on behalf of scholars.

An accountant then reviews payment requests and disburse them if he/she is satisfied with

them. Disbursing means that, he/she is ready to sign a check for those payments to be

made to the respective scholars. This implementation is to enable the accountant to review

payment requests and disburse them or cancel disbursements

26

4.6.2: Overview of Implementation

A login feature was implemented, using a bootstrap template, for the accountant to

give him/her permission to access the payments before proceeding (see appendix Figure

A.3)

The entities involved in this implementation are the scholarship_package

(containing detailed information on each student’s scholarship), the program area, the high

school, the payment request, and the scholarship payment tables. A function was written to

get the payment requests currently in the system. Each payment request has several

scholarship payments connected to it so a function was written to return all the scholarship

payment given the payment requests ID. Again, another function was to change payment

status, because the accountant is only in charge of making or cancelling disbursements, the

function had to ensure that, the changes can be made if only it request status is either new

request or disbursed.

After implementing the above functions, a Bootstrap modal and AJAX were used

to enable the accountant to see the details of any payment request (without reloading the

pages) before deciding to disburse it or not. AJAX request was also used to communicate

with the server to disburse.

After this implementation, accountant, after logging in should see payment

requests and be able to view all the scholarship payments associated with each request.

The results of this implementation are shown in the images below.

27

Figure 4.6: Disbursing payment requests implementation result

Figure 4.7: Disbursing Payment Requests Implementation Result 1

28

Chapter 5: Testing

After implementation, the necessary tests were done to ensure the application or the module

does what it is expected to do. Testing also helps to see if there are any errors in the

implantation and helps check software compatibility with its environment. The tests carried

out on the system are Unit/Development Testing, Component Testing, and Compatibility

Testing.

It should be noted that testing was done in parallel with implementation even though

it is documented separately.

The requirements that were tested are listed below:

• Sending Mails to the Programmes Manager on entries made in the past week

• Generating PDF report on summary of system activities

• Viewing Criteria for Awarding points to scholars

• Verifying Additions to school

• Disbursing payment requests

5.1: Unit Testing

This test is done at the development stage. It involves testing the individual classes,

functions, and objects to see. To do this testing, the test plan which is shown below was

used.

29

Table 5.1: Unit test for Send Email Module

Function Unit Testing Point Testing Results

get_applicants_
count($filter)

SQL statement to get
applicant count of
applicants entered in the
last 7 days

Write SQL
statement with
test and run it
using
phpMyAdmin
Test input: none
Expected Results:
A message
confirming
successful
selection of data

0

 Get_applicant_
count($filter) method in
the applicant class

Create an object
of the applicant
class and call the
method to test
Inputs(s): a filter
Expected Output:
a number

0

get_program_areas() SQL statement to get the
program areas

Write SQL
statement with
test and run it
using
phpMyAdmin
Test input: none
Expected Results:
A message
confirming
successful
selection of data

Showing rows 0 - 5
(6 total, Query took
0.0318 seconds.)

 get_programareas()
method in the applicant
class

Create an object
of the
programareas
class and call the
method to test
Inputs(s): None
Expected Output:
a JSON array

Array (
[programarea_id] =>
1
[programarea_name]
=> Central) Array (
[programarea_id] =>
2
[programarea_name]
=> Eastern) Array (
[programarea_id] =>
3
[programarea_name]
=> Mankessim)
Array (
[programarea_id] =>
4
[programarea_name]
=> Volta) Array (
[programarea_id] =>
5
[programarea_name]
=> WA) Array (
[programarea_id] =>

30

6
[programarea_name]
=> Upper West)

The Unit Test for the various functional Requirements can be found in appendices (A.5 to

A.11)

5.2: Component Testing

After the various classes have been put together to create a model, the models or

functionalities were tested separately without integrating them into the bigger system. This

was to see how the various classes and objects interact with each other so that, errors and

conflicts can be resolved.

To do this, the URLs to the various components were entered in the browsers and

loaded to see if the results meet expectation. For example, with the View Point Criteria

implementation, if the URL to the PHP file is entered into the browser and loaded, it

expected to return a table outlining the various criteria and the points allocated to each value.

The results of this test can be found in the implementation of each requirement.

5.3: Compatibility Testing

This was done to see if the models will work in the external environments. These

environments include the operating systems, browsers and so on. Since frameworks were

also used in the implementation, the compatibility testing was also to see under which

conditions they function. The focus of this testing was on browsers since the application is

going to be used mostly on a web browser. All the modules and libraries worked perfectly

on Google Chrome and Microsoft Edge except the mPDF library, which was not compatible

with Microsoft Edge. Regarding Operating System, the application was tested on a

Windows 10 Machine and it worked perfectly

31

Chapter 6: Conclusion and Recommendations

6.1: Conclusion

The requirements implemented in this project can be used by the NGO to help

manage their payments to scholars. It will also help the organisation to easily generate

report on actives to facilitate easy monitoring and accountability.

The modules implemented in this project can be integrated into the NGO existing

system without any negative effects. Also, any company or institution whose processes are

in line the activities of the organization for which this was developed can use the system

with just a little modification.

6.2: Recommendations

It is recommended that, anyone who works on this project to focus designing a better

database for the system which the scope of this project as assigned did not permit. As already

mentioned in the third chapter, the database design has some redundancies in it, so a better

design will help ensure faster querying of the data. Beyond just managing scholarship

application and funds, scholars’ performances in their respective schools can be captured in

the system.

Donors can also be made part of the system where they can donate and track the

cause their monies are being used for.

Currently, applicants apply on paper before staff at the NGO enter the details onto

their system. It will therefore be recommended that, applicants be made part of the system’s

users. This can be done by creating a portal or an interface where scholars can apply online

from anywhere. This will reduce the workload on the programme managers. With the

prevalence of mobile phones, a mobile application of the system can be created, especially

for entering new applicant’s information.

32

33

References

Capterra. (n.d.). FluidReview. Retrieved November 1, 2016, from

http://www.capterra.com/grant-management-

software/spotlight/123374/FluidReview/SurveyMonkey

Computer Hope. (n.d.). Linux and Unix Crontab Command. Retrieved March 14, 2017,

from Computer Hope: www.computerhope.com/unix/ucrontab.htm

Forbes-Pitt, K. (2004). Getting Rid of Registration at LSE. 32nd Annual ACM SIGUCC

Conference on User Services (pp. 110-114). ACM.

ICARIS LTD. (n.d.). ICARIS GRANT MANAGEMENT MODULE. Retrieved November 1,

2016, from ICARIS: http://www.icaris.co.uk/grantmanagementsoftware.html

Takashi, K., & Liang, E. (1997). Analysis and design of Web-based information systems.

Computer Networks and ISDN Systems, 29, 1167-1180. Retrieved January 19,

2017

W3Schools. (n.d.). jQuery Introduction. Retrieved January 22, 2017, from W3Schools:

https://www.w3schools.com/jquery/jquery_intro.asp

34

Appendix

Figure A.1 Implementation of PDF report generation

Figure A. 2: Code for sending mail using PHP mail() function and object obscuring functions

35

Figure A.3 Login page for accounts

Figure A.4 All payment requests

36

Table A.5: Unit test for view point criteria implementation

Function Unit Testing Point Testing Results

get_community_ca
tegory()

SQL statement to get
community
categories and points
allocated to each
category

Write SQL statement
with test and run it
using phpMyAdmin
Test input: none
Expected Results: A
message confirming
successful selection
of data

Showing rows 0 - 1
(2 total, Query took
0.0546 seconds.)

 Get_community_cate
gory() method in
community_category
class

Write a code to
create object of the
class and call the
get_community_cate
gory() method Test
input: none
Expected Results: An
array of the details
selected

Array (
[community_categ
ory_id] => 1
[community_categ
ory_name] => rural
[community_categ
ory_app_point] =>
10) Array (
[community_categ
ory_id] => 2
[community_categ
ory_name] =>
urban
[community_categ
ory_app_point] =>
8)

 Write a php unit test
to test the code
Input: Diagnosis
Details
Output: true
Assert: assertEquals

get_applicant_sch
ool()

SQL statement to get
applicants’ school
categories and points
allocated to each
category

Write SQL statement
with test and run it
using phpMyAdmin
Test input: none
Expected Results: A
message confirming
successful selection
of data

Showing rows 0 - 1
(2 total, Query took
0.0651 seconds.)

37

 Get_applicant_catego
ry() method in
applicant_school_cat
egory class

Write a code to
create object of the
class and call the
get_applicant_school
() method Test input:
none
Expected Results: An
array of the details
selected

Array (
[applicant_school_c
ategory_id] => 1
[applicant_school_c
ategory_name] =>
public
[applicant_school_c
ategory_app_point]
=> 10) Array (
[applicant_school_c
ategory_id] => 2
[applicant_school_c
ategory_name] =>
private
[applicant_school_c
ategory_app_point]
=> 8)

get_applicant_gra
de()

SQL statement to get
applicants’ grade
categories and points
allocated to each it

Write SQL statement
with test and run it
using phpMyAdmin
Test input: none
Expected Results: A
message showing the
number of rows
selected and the
time the query took
to execute

Showing rows 0 - 3
(4 total, Query took
0.0469 seconds.)

 get_applicant_grade(
) method in
applicant_school_cat
egory class

Write a code to
create object of the
class and call the
get_applicant_grade(
) method Test input:
none
Expected Results: An
array of the details
selected

Array (
[selection_grade_p
oints_id] => 0
[grade_point] => 20
[min_grade] => 6
[max_grade] => 12
) Array (
[selection_grade_p
oints_id] => 2
[grade_point] => 15
[min_grade] => 13
[max_grade] => 18
) Array (
[selection_grade_p
oints_id] => 3
[grade_point] => 10
[min_grade] => 19
[max_grade] => 22
) Array (
[selection_grade_p
oints_id] => 4
[grade_point] => 5
[min_grade] => 23
[max_grade] => 30
)

38

Function Unit Testing Point Testing Results

get_grants() SQL statement to get
applicant count of
applicants entered in
the last 7 days

Write SQL statement
with test and run it
using phpMyAdmin
Test Input: None
Expected Results: A
message confirming
successful selection
of data

Showing rows 0 - 5 (6
total, Query took
0.0614 seconds.)

 Get_grants() method
in the grants class.

Create an object of
the grant class and
call the get_grants()
method
Test Input: None
Expected Results: An
array of the various
grant packages

Array (
[grant_package_id] =>
1 [name] => GAD GRA
0095 [code] => GAD
GRA 0115
[annual_amount] =>
300) Array (
[grant_package_id] =>
2 [name] => GAD GRA
0115 [code] => GAD
GRA 0115
[annual_amount] =>
300) Array (
[grant_package_id] =>
3 [name] => GAD GRA
0047 [code] => GAD
GRA 0047
[annual_amount] =>
300) Array (
[grant_package_id] =>
4 [name] => Honkook
[code] => GHA 0160
[annual_amount] =>
400) Array (
[grant_package_id] =>
5 [name] =>
Sponsorship Fund
[code] => SF
[annual_amount] =>
600)

39

Table A.6: Unit test for PDF report

Function Unit Testing Point Testing Results

get_grants() SQL statement to

get applicant count

of applicants

entered in the last 7

days

Write SQL

statement with test

and run it using

phpMyAdmin

Test Input: None

Expected Results:

A message

confirming

successful selection

of data

Showing rows 0 - 5

(6 total, Query took

0.0614 seconds.)

 Get_grants()

method in the

grants class.

Create an object of

the grant class and

call the get_grants()

method

Test Input: None

Expected Results:

An array of the

various grant

packages

Array (

[grant_package_id]

=> 1 [name] =>

GAD GRA 0095

[code] => GAD

GRA 0115

[annual_amount] =>

300) Array (

[grant_package_id]

=> 2 [name] =>

GAD GRA 0115

[code] => GAD

GRA 0115

[annual_amount] =>

300) Array (

[grant_package_id]

=> 3 [name] =>

GAD GRA 0047

[code] => GAD

GRA 0047

[annual_amount] =>

300) Array (

[grant_package_id]

=> 4 [name] =>

Honkook [code] =>

GHA 0160

[annual_amount] =>

400) Array (

[grant_package_id]

=> 5 [name] =>

Sponsorship Fund

[code] => SF

[annual_amount] =>

600)

40

Table A.7 Unit Test for disbursing payments

Function Unit Testing Point Testing Results

get_all_payment_requ

ests()

SQL statement to get

all payment requests

Write SQL

statement with test

and run it using

phpMyAdmin

Test Input: None

Expected Results:

A message

showing nuber of

rows returned

Showing rows 0

- 6 (7 total,

Query took

0.0281

seconds.)

get_all_payment_requ

ests() method in the

payments class.

Create an object of

the payments class

and call the

get_all_payment_r

equests() method

Test Input: None

Expected Results:

An array of all

payment requests

See Appednix

Figure A.9

get_payment_request_

students()

SQL statement to get

all students on a given

requests

 Write SQL

statement with test

and run it using

phpMyAdmin

Test Input: None

Expected Results:

A message

showing number of

records returned

Showing rows 0

- 0 (1 total,

Query took

0.0985

seconds.)

get_payment_request_

students() method in

the payments class

Create an object of

the payments class

and call the

get_all_payment_r

equests() method

Test Input:

payment request id

Expected Results:

An array of all

scholarship

payments on

relating to that

particular

payments request

See Appednix

Figure A.10

41

Figure A.8 Result of unit test for verifying schools

Figure A.9 Results of unit test for getting all payment requests

Figure A.10 Unit test result for getting scholarship payment for a given payment request

42

Table A.11: Other functions under payments tested

Function Role

user_is_verified($n, $p) Verifies if a user has access or not to

accounts and payments given a

username and a password

change_request_status(request_id) Changes the status of a given

payment request to either

"Disbursed" or "Requested" and

the corresponding scholarship

payments associated with it to

"Disbursed" or "New Request".

Only the accountant can invoke this

method

change_payment_status(payment_id) Changes the status of a given

scholarship payment given an ID to

either "Disbursed" or "New

Request". Only the accountant can

do this

liqudate_payment_request($payment_request_id) liquidates a given payment request

given an id. Modified to liquidate

all corresponding scholarship

payments

create_payment_request($finacial_year_id,

$programarea_id,$request_name,$owner_id=0)

Allows the programme manager to

add a new payment request given all

the details of a payment request

