

ASHESI UNIVERSITY

HEALTH MANAGEMENT SYSTEM

APPLIED PROJECT

B.Sc. Computer Science

Frederick Peter Apatu Plange

2019

ASHESI UNIVERSITY

Health Management System

APPLIED PROJECT

Applied Project submitted to the Department of Computer Science,

Ashesi University in partial fulfillment of the requirements for the award of

Bachelor of Science degree in Computer Science

Frederick Peter Apatu Plange

April 2019

i

DECLARATION

I hereby declare that this applied project is the result of my own original work and that no part of

it has been presented for another degree in this university or elsewhere.

Candidate’s Signature

………………………………………………………………………………………………………

Candidate’s Name

………………………………………………………………………………………………………

Date:

………………………………………………………………………………………………………

I hereby declare that preparation and presentation of this applied project were supervised in

accordance with the guidelines on supervision of applied project laid down by Ashesi University

Supervisor’s Signature

………………………………………………………………………………………………………

Supervisor’s Name

………………………………………………………………………………………………………

Date:

………………………………………………………………………………………………………

ii

Acknowledgment

I want to thank my supervisor, Mr. David Sampah, who guided me throughout the project. I would

also like to thank my friends Wuyeh Jobe & Faith Mueni for their support and encouragement.

iii

Abstract

Hospitals in Ghana still operate with the file-based system approach due to the absence of a health

management system. While this approach works, it is an ineffective way to store and manage

health records. Hospitals consume large amounts of paper in preparing medical records, lab

reports, and prescriptions. With information scattered all over the place, it becomes difficult to

manage and keep track of.

In this paper, a solution proposed is a health management system whereby various hospital

personnel log in and digitally perform their duties. The aim is to enhance medical treatment quality,

facilitate with distance communication, data sharing, and improve internal communication. A key

functionality comes in the form of report generation, which seeks to automate the process of

creating reports which follow the format of reports submitted to higher authorities such as the

district health ministry.

iv

Table of Contents
DECLARATION.. i

Acknowledgment ..ii

Abstract .. iii

List of Figures ... vii

Chapter 1: Introduction ... 1

1.1 Introduction ... 1

1.2 Background .. 2

1.3 Motivation .. 4

1.4 Significance .. 4

1.4.1 Reducing Medical Error and Improving the Quality of Medical Care 4

1.4.2 Reducing Costs and Raising Efficiency .. 5

1.4.3 Improving the Quality of Service .. 5

1.5 Related Work ... 5

1.5.1 Problems with Current e-health Implementations .. 5

1.5.2 Cloud Computing ... 6

Chapter 2: Requirements ... 8

2.1 Overview .. 8

2.2 Requirements Gathering & Analysis .. 8

2.3 User Identification ... 9

2.5 Functional Requirements ... 10

2.6 Non-Functional Requirements ... 18

Chapter 3: Architecture & Design .. 19

3.1 Project Domain .. 19

3.2 High-Level Architecture ... 20

3.3 Overview of the Model View Controller (MVC) Architecture 20

3.3.1 The Model .. 21

3.3.2 The View .. 23

3.3.3 The Controller... 23

3.4 Technologies & Frameworks.. 24

3.5 Security & Backup .. 25

v

3.5.1 Views .. 25

3.5.2 Separating Web Server from the Database Server ... 25

3.5.3 Encryption of Files.. 25

3.5.4 Backup ... 25

3.5.5 Limiting Data Use and Access ... 26

3.5.6 Encrypted Passwords ... 26

Chapter 4: Implementation .. 27

4.1 Overview of Implementation .. 27

4.2 Structure of Root Folder... 27

4.3 User Interface Design & Key Functionalities ... 28

4.3.1 Login .. 29

4.3.2 Registering Users .. 31

4.3.3 Check-in Patients .. 33

4.3.4 Add Vitals .. 35

4.3.5 Doctor Visit ... 37

4.3.6 Lab tests ... 39

4.3.7 Booking Appointments ... 40

4.3.8 Deleting Records (vitals, doctor consultation, lab tests) ... 42

4.3.9 Checking Out .. 44

4.3.10 Outbreak Reporting ... 45

Chapter 5: Testing .. 47

5.1 Overview .. 47

5.2 Developmental Testing .. 47

5.2.1 Unit Testing ... 47

5.2.2 Component Testing... 47

5.2.3 System Testing .. 49

5.2.4 Compatibility Testing ... 49

5.3 User Testing ... 50

5.3.1 Receptionist Component Testing .. 51

5.3.2 Nurse Component Testing ... 51

5.3.3 Doctor Component Testing .. 52

vi

5.3.4 Pharmacist Component Testing .. 53

Chapter 6: Conclusion .. 54

6.1 Overview .. 54

6.2 Challenges .. 54

6.3 Future Work .. 54

6.4 Conclusion .. 56

References .. 57

vii

List of Figures

Figure 1: Admin use case diagram .. 11

Figure 2: Receptionist use case diagram ... 12

Figure 3: Nurse use case diagram.. 13

Figure 4: Doctor use case diagram .. 14

Figure 5: Pharmacist use case diagram .. 16

Figure 6: Lab technician use case diagram .. 17

Figure 7: High-level architecture .. 20

Figure 8: MVC architecture .. 21

Figure 9: EER diagram .. 22

Figure 10: Root folder structure .. 27

Figure 11: Login Page ... 29

Figure 12: Login Sequence Diagram ... 29

Figure 13: Query for login ... 30

Figure 14: Login function from LoginController page ... 30

Figure 15: Sequence diagram for registering users ... 31

Figure 16: Add nurse page ... 31

Figure 17: Query to add nurse ... 32

Figure 18: addNurse function in adminController page ... 32

Figure 19: Sequence diagram for checking-in a patient.. 33

Figure 20: Patient check-in page ... 33

Figure 21: Query to check-in a patient ... 34

Figure 22: checkInUser function in nurseController page ... 34

https://aucampus-my.sharepoint.com/personal/dsampah_ashesi_edu_gh/Documents/Capstone/2019/Frederick%20Plange/Final%20Draft.docx#_Toc6952278
https://aucampus-my.sharepoint.com/personal/dsampah_ashesi_edu_gh/Documents/Capstone/2019/Frederick%20Plange/Final%20Draft.docx#_Toc6952279
https://aucampus-my.sharepoint.com/personal/dsampah_ashesi_edu_gh/Documents/Capstone/2019/Frederick%20Plange/Final%20Draft.docx#_Toc6952280
https://aucampus-my.sharepoint.com/personal/dsampah_ashesi_edu_gh/Documents/Capstone/2019/Frederick%20Plange/Final%20Draft.docx#_Toc6952281
https://aucampus-my.sharepoint.com/personal/dsampah_ashesi_edu_gh/Documents/Capstone/2019/Frederick%20Plange/Final%20Draft.docx#_Toc6952284
https://aucampus-my.sharepoint.com/personal/dsampah_ashesi_edu_gh/Documents/Capstone/2019/Frederick%20Plange/Final%20Draft.docx#_Toc6952285

viii

Figure 23: Sequence diagram for adding vitals ... 35

Figure 24: Today's patient- visit page ... 35

Figure 25: Add vitals page ... 36

Figure 26: Query to add vitals ... 36

Figure 27: addVitals function in the nurseController page .. 36

Figure 28: Doctor consultation page ... 37

Figure 29: Query to add doctor consultation result .. 38

Figure 30: addGp function in doctorController page ... 38

Figure 31: Lab tests page ... 39

Figure 32: updateLab function .. 40

Figure 33: Booking doctor-patient appointment page .. 40

Figure 34: Query to insert an appointment .. 41

Figure 35: Query to check for appointment clashes .. 41

Figure 36: insertAppointment function receptionistController page 41

Figure 37: Progress table.. 42

Figure 38: Query to archive a patient record ... 43

Figure 39: deleteDetails function in doctorController page ... 43

Figure 40: Check-out patient page .. 44

Figure 41: Query to check a patient out ... 44

Figure 42: checkOutUser function in pharmacistController page... 44

Figure 43: Outbreak report page .. 45

Figure 44: Query to select outbreak details .. 45

Figure 45: Page to create report of outbreak ... 46

https://aucampus-my.sharepoint.com/personal/dsampah_ashesi_edu_gh/Documents/Capstone/2019/Frederick%20Plange/Final%20Draft.docx#_Toc6952294
https://aucampus-my.sharepoint.com/personal/dsampah_ashesi_edu_gh/Documents/Capstone/2019/Frederick%20Plange/Final%20Draft.docx#_Toc6952301
https://aucampus-my.sharepoint.com/personal/dsampah_ashesi_edu_gh/Documents/Capstone/2019/Frederick%20Plange/Final%20Draft.docx#_Toc6952302

ix

Figure 46: Registering a new patient .. 48

Figure 47: Updating patient information ... 48

1

Chapter 1: Introduction

1.1 Introduction

In Ghana today, hospitals still maintain the usage of excel spreadsheets and hard copy

medical records as opposed to digital form, and this is mostly due to the absence of information

management systems. Information management systems are typically expensive; hence, they are

difficult to maintain. Very often we visit hospitals and are obliged to fill out forms and observe

hospital personnel busy filling out forms, and this becomes a problem when dealing with numerous

records which may lead to human lapses and inefficiencies. Hospitals need to store these records

safely in case of any future use, also records needs need to be retrieved efficiently which further

allows for quick and concurrent access.

The main idea of this paper is to promote the use of a digital hospital information

management system. Such a system would also aim to enhance medical treatment quality, facilitate

with distance communication and data sharing, improve internal communication, and bring about

a sense of structure and organization. Moreover, while the solution addresses a hospital’s internal

operations, it also serves to centralize all hospitals and allow each hospital to generate specific

reports that are formatted with the typical daily, weekly and monthly reports expected by higher

bodies such as the health ministry. In doing so, the confidentiality and security of patient’s records

will be of the highest priority in the system. Also, measures will be adopted to prevent any issue

from arising. With such a dedicated system in place, hospitals can build a good relationship with

their patients, increasing their satisfaction rate, and provide an easier means for a higher body to

operate.

2

As such this paper will discuss the transition from the paper-based file records along with

the use of excel spreadsheets to a dedicated digital management system.

1.2 Background

A health management information system (HMIS) is a data collection system in which

health data of patients are recorded, stored and processed for planning, implementation and general

use for the future [12]. The HMISs in most developing countries are inefficient; the Taiwan

University Hospital, for example, had a healthcare information system built over 25 years ago, and

at that time it provided a stable, high performance and reliable features to handle patient data.

However, the built-in technologies have now become obsolete. The expenses of maintaining the

system have also become somewhat of a financial burden. Furthermore, healthcare regulations are

changing rapidly, and the system is unable to reflect the modifications and enhancements [1].

Health management information systems in developing countries are significantly affected

by the unreliability of data resulting from underreporting. It was reported that vital health decisions

in sub-Saharan Africa are made based on rough estimates of disease and treatment burdens. The

findings indicate that underreporting remains a significant theme and stems from a lack of

knowledge and practice among health workers characterized by insufficient analysis skills and

lack of training [6]

One of the significant problems with the attempted health management information

systems in developing nations is the fact that they are isolated from other e-health activities in the

country. E-health activities involve health care practices which are supported by electronic

processes [11]. Due to the isolation, it is challenging to integrate into the country’s healthcare

development. As a result, these efforts are often discontinued and never integrated for use. Sri

3

Lanka made attempts to integrate health management information systems with following e-health

activities, but due to lack of support, operations were terminated and discontinued [5]. Meanwhile,

in recent years, about 17 thousand hospitals in China have put in tremendous and continuous efforts

in establishing hospital information systems; however, the outcome has not been pleasing [3].

In Tanzania, the first health management information system was launched in 1993 while

the second was launched in 1998. The first was entirely in English, and upon testing, they identified

that users had limited commands in the language. Therefore, it was later changed to Kiswahili.

The latest system covers all health programs and health care services and requires all health

facilities to adopt and use this system, and report to the district health authority regularly. The

system was intended to optimize the performance of health services at all levels of administration

through the timely provision of all the necessary information needed by health practitioners to

monitor, evaluate and plan their activities. However, to achieve these goals, the system needs to

be highly integrated, fully functional, reliable and consistent [6].

These concerns provide an excellent opportunity for the development of a fully functional

and reliable health management information system that serves as a standard for all hospitals. By

building such a dedicated web application for hospitals, the developer aims to enable hospitals to

carry out their daily activities in a more efficient manner, improve their relationships with their

patients through constant communication, as well as provide a quality health service due to

information and patient records being readily available.

4

1.3 Motivation

We live in a world where technology has advanced significantly and has become a

significant part of our everyday life. Computers can process millions of information and store large

amounts of data, therefore why not use computers to do what they are best at while leaving humans

to focus on the critical activities that they carry out? Technology can be used to do all the

processing work and provide what the user needs to make the best decision. Adopting such a

system would not only allow doctors to focus on critical things, but it will directly prevent

unnecessary deaths that seem to occasionally occur due to minor errors such as the improper

management of medical prescriptions. Hence these medical errors can be significantly eliminated

with the adoption of a health management system.

1.4 Significance

1.4.1 Reducing Medical Error and Improving the Quality of Medical Care

The quality of medical care should correspond to the level of technological and scientific

development at a given period. However, that is not the case in some of the developed nations such

as the US. It was reported that there were approximately 522,000 cases of severe medical error,

causing the death of about 44,000-98,000 persons in the US. Currently, the level of medical

treatment varies from country to hospital, and doctor. Nonetheless, establishing a health

management information system is a very effective and practical way to improve the quality of

medical treatments [3].

5

1.4.2 Reducing Costs and Raising Efficiency

A health management system will aid in dramatically reducing costs. One way it achieves

this is by reducing the consumption of paper. Typically, hospitals consume large amounts of paper

in preparing medical records, prescriptions, and test reports, and all these can be eliminated with

the use of a digital system. Moreover, it can reduce indirect costs. For example, a reduction of

paperwork would also lead to a reduction in the number of staffs required for managing medical

records, prescriptions and test reports [3].

1.4.3 Improving the Quality of Service

The integration of a health management information system focuses on the automation of

specific patient information. Currently, similar information is scattered on papers, which makes it

very difficult to organize, identify, monitor and update such information. This becomes an issue

for those suffering from chronic illnesses who require regular monitoring and assistance [3].

1.5 Related Work

1.5.1 Problems with Current e-health Implementations

 Much has been written about the problems with the current and tested e-health

implementations. The cost of maintaining such a system was a crucial problem in Taiwan

University Hospital, and this makes sense because they were using a legacy system, which is

considered an old method of going about things. As healthcare regulations were changing, the

management information system failed to reflect the modifications and could not cope with the

advancement in technologies such as wireless connections, user-friendly web interface, etc. [1].

Moreover, it is said that health management information systems in developing countries are

inefficient and are greatly affected by the unreliability of data resulting from underreporting.

6

Findings from the sub-Saharan region showed that the problem of underreporting is linked to lack

of knowledge and practice among health workers characterized by insufficient analytic skills,

training and lack of initiative for using information [6]. Also, there have been significant advances

to establish hospital management systems in China; however, despite all the effort, not even a

single hospital has become completely digitized [3]. The main issue remains the fact that hospitals

lack standards and consistency; therefore the digitization of hospitals must deal with challenging

issues regarding the policies adopted in the hospital. Moreover, due to the lack of models and

experience, it’s difficult to establish management systems; there are lots of factors to consider

including the work style of the clinical doctors, institutions, and patients [3].

1.5.2 Cloud Computing

According to Microsoft Azure, cloud computing “is the delivery of computing services—

servers, storage, databases, networking, software, analytics, intelligence and more—over the

Internet (“the cloud”) to offer faster innovation, flexible resources, and economies of scale. You

typically pay only for cloud services you use, helping lower your operating costs, run your

infrastructure more efficiently and scale as your business needs change” [7,8]

Users of these services only need an internet connection and a browser to use all the resources in

the cloud [8]. Cloud computing has several benefits:

• Scalability and Performance: Resources are delivered per-use on the cloud; therefore,

systems that make use of cloud technologies can handle high usage and still maintain good

performance [8,9].

• Decreased costs: resources are paid for per-use, instead of paying for the whole

infrastructure [8,9].

7

• Loose coupling: In a cloud-based architecture, software components can interact through

well-defined interfaces, such as Web Services and API interfaces [8,9].

• Broad connectivity: Users of the systems will always have access to the system through

any device and an internet connection [8,9].

• Fewer maintenance problems: Since the hardware infrastructure is not owned, there are

fewer maintenance problems [8,9].

8

Chapter 2: Requirements

2.1 Overview

 This chapter gives a thorough analysis of the functionalities the system would offer to

health institutions in Ghana. As introduced earlier, this project entails a health management

information system that hospitals can use to make more informed decisions. As such, the

requirements this project seeks to meet would come directly from its potential users.

According to Tan, it is critical to achieving a good grasp of the essential functions of a

health information system. Health management information systems are typically built upon the

conceptualization of 3 central phases: data input, data management, and data output. As such, the

findings from this study will form the foundation of the requirement specification, while the more

intricate features will be abstracted directly from the potential users [10].

2.2 Requirements Gathering & Analysis

 The requirement gathering process was carried out through the means of interviews with

various hospital personnel. Consequently, the functional and non-functional requirements were

defined as a result of the responses provided.

Based on the data collected, the key point noted was to separate functionalities between the

users. Therefore, the system needs to be built in a manner that allows a user access to only specific

functionalities and features. Moreover, the system should speed up the process of retrieving

records and automate the process of generating reports.

9

2.3 User Identification

This health management information system is intended to be used by Hospitals in Ghana

and generally any health institutions looking to switch to a digital way of operations. The system

is presented as a web application; therefore, its users are required to have a computer with an

internet connection to access the application. Furthermore, users should have some basic

understanding of computers and the internet.

The various user roles include admin, receptionist, doctor, nurse, pharmacist, and lab

technician. Each of these users would be able to log in and have a different view of the system.

2.4 Scenarios

Following is scenario one to offer further insight into how the application may be used:

A patient has been feeling ill for the past two days, so today the patient has decided to walk

into the hospital to meet the receptionist. The receptionist uses the system to check whether the

individual is already registered in the system. If the patient is new, the patient is registered into the

system by the receptionist. Consequently, the receptionist can check-in the patient. The record of

the patient is then made available to the nurse. The patient then heads to the nurse who checks the

patient vital signs such as blood pressure, height, and weight. The system stores this record and is

made available to the doctor. During the consultation, the doctor records the patient’s vital signs,

symptoms, diagnosis, etc. If lab tests need to be carried out, the doctor submits the tests, which

can then be accessed by a lab technician. If no tests are required, the doctor submits medicine

prescriptions. The pharmacists upon receiving the patient record can provide the drugs to the

patient.

10

Following is scenario two to offer further insight into how the application may be used:

An outbreak of malaria has been discovered in an area, and all hospitals are required to

submit an outbreak report containing patient records, reporting malaria during a specific

timeframe. The admin can log in to the system and use the side navigation to navigate to the reports

section. He can then type the outbreak condition (in this case, malaria), pick a timeframe and click

a button to generate a report that will download automatically.

2.5 Functional Requirements

General requirements:

❖ Various users within a hospital should be able to log in.

❖ The system should redirect users to an appropriate page when they log in.

❖ The system should backup all transactions.

Admin:

The hospital administrator can use the admin account.

11

Figure 1: Admin use case diagram

❖ An admin must be able to create departments.

❖ An admin must be able to register the various users of the system (doctors, lab technicians,

receptionists, nurses, and pharmacists).

❖ An admin can send messages to the various users registered at the hospital

❖ An admin should be able to add events to a private calendar

❖ An admin must be able to generate medical reports based on medical records.

❖ An admin must be able to manage his/her profile

Receptionist:

12

Figure 2: Receptionist use case diagram

❖ A receptionist must be able to register a new patient.

❖ A receptionist must be able to update patient details.

❖ A receptionist must be able to view a list of all other users registered to the hospital.

❖ A receptionist must be able to check in patients.

❖ A receptionist must be able to add beds.

❖ A receptionist must be able to send messages to the various users within the hospital.

❖ A receptionist must be able to set appointments between doctors and patients.

❖ A receptionist must be able to add events to a private calendar.

❖ A receptionist must be able to manage bed allotments.

❖ A receptionist must be able to view all the patients who visited today.

❖ A receptionist must be able to view a list of all patient visits.

13

❖ A receptionist must be able to view a progress table showing the patient’s visit progress.

❖ A receptionist must be able to check-out a patient.

❖ A receptionist must be able to manage his/her profile.

Nurse:

Figure 3: Nurse use case diagram

❖ A nurse must be able to register a new patient.

❖ A nurse must be able to update patient details.

❖ A nurse must be able to view a list of all other users registered to the hospital.

❖ A nurse must be able to check-in patients

❖ A nurse must be able to add beds.

❖ A nurse must be able to view all the patients who visited today.

❖ A nurse must be able to view a list of all patient visits.

❖ A nurse must be able to send messages to the various users within the hospital.

14

❖ A nurse must be able to enter and update patient vitals (height, weight, blood pressure, etc.)

❖ A nurse must be able to archive only patient vital sign records.

❖ A nurse must be able to view a progress table showing the patient’s visit progress.

❖ A nurse must be able to manage bed allotments.

❖ A nurse must be able to add events to a private calendar.

❖ A nurse must be able to manage his/her profile.

Doctors:

Figure 4: Doctor use case diagram

15

❖ A doctor must be able to view a list of all other users registered to the hospital.

❖ A doctor must be able to view all the patients who visited today.

❖ A doctor must be able to view a list of all patient visits.

❖ A doctor must be able to enter and update patient vitals (height, weight, blood pressure,

etc.)

❖ A doctor must be able to enter prescriptions for patients.

❖ A doctor must be able to enter patient symptoms and diagnosis.

❖ A doctor must be able to send prescribed tests to a lab technician.

❖ A doctor must be able to see the lab results for a patient’s lab tests.

❖ A doctor must be able to archive patient records.

❖ A doctor must be able to view a progress table showing the patient’s visit progress.

❖ A doctor must be able to send messages to the various users within the hospital.

❖ A doctor must be able to set events on his/her calendar.

❖ A doctor must be able to set appointments with a patient.

❖ A doctor must be able to manage his/her profile.

❖ A doctor must be able to view a list of in-patients.

❖ A doctor must be able to check-out a patient.

16

Pharmacist:

Figure 5: Pharmacist use case diagram

❖ A pharmacist must be able to view a list of all other users registered to the hospital.

❖ A pharmacist must be able to manage the medicine inventory.

❖ A pharmacist must be able to store supplier details

❖ A pharmacist must be able to view all the patients who visited today.

❖ A pharmacist must be able to view a list of all patient visits.

❖ A pharmacist must be able to see medicine prescriptions.

❖ A pharmacist must be able to confirm that patients have picked up the prescriptions.

❖ A pharmacist must be able to view a progress table showing the patient’s visit progress.

❖ A pharmacist must be able to send messages to the various users within the hospital.

❖ A pharmacist must be able to set events on his/her calendar.

17

❖ A pharmacist must be able to manage his/her profile.

❖ A pharmacist must be able to check-out a patient.

Lab technician:

Figure 6: Lab technician use case diagram

❖ A lab technician must be able to view a list of all other users registered to the hospital.

❖ A lab technician must be able to view all the patients who visited today.

❖ A lab technician must be able to view a list of all patient visits.

❖ A lab technician must be able to view tests that have been prescribed by a doctor.

❖ A lab technician must be able to enter lab results for a patient.

❖ A lab technician must be able to archive lab test records.

❖ A lab technician must be able to view a progress table showing the patient’s visit progress.

❖ A lab technician must be able to send messages to the various users within the hospital.

❖ A lab technician must be able to set events on his/her calendar.

❖ A lab technician must be able to manage his/her profile.

18

2.6 Non-Functional Requirements

❖ The system should be fast and reliable

❖ The system should allow for concurrent usage

❖ The database of the system should support the storage of a large amount of data

❖ The system should be available 24 / 7

❖ The system should secure both patient and user details

19

Chapter 3: Architecture & Design

3.1 Project Domain

The project will be in the form of a web application. The application will be available for

use 27/4. However, there are specific hardware and software requirements. As a PHP application,

it’s essential to host the application on a provider that is compatible with PHP & MySQL.

Furthermore, for optimal performance, it's recommended to host the application on a dedicated

server where more resources can be allocated to the system. “Dedicated hosting is an Internet

hosting option in which an organization leases an entire server, which is often housed in a data

center. The host not only provides the server equipment but may also provide administration and

other services” [25]. However, shared hosting can be considered as well. Shared hosting is a

hosting service that allows multiple websites to the physical and its resources [26]. The minimum

specification of the server is at least 32GB RAM with 200GB storage size.

20

3.2 High-Level Architecture

Figure 7: High-level architecture

3.3 Overview of the Model View Controller (MVC) Architecture

This project would be developed using the Model View Controller (MVC) architecture.

“The MVC is an architectural pattern that separates an application into three main logical

components: the model, the view, and the controller” [27]. It is the most primarily used

architectural patterns in web applications because it makes building complex applications easy. It

achieves this by allowing each component to handle specific development aspects of an

application.

21

Figure 8: MVC architecture

3.3.1 The Model

The Model component corresponds to all the data-related logic; as such, the model of this

project will be built using MySQL. MySQL is a free, fast, reliable and stable open source database

management system. Using MySQL, we would be able to create a relational database consisting

of tables and records.

The system is implemented in a manner where each hospital registered on the system has its own

set of tables; therefore, the following are some of the key tables:

• users – contains data on all registered users

• medicine – contains data on the medicine inventory

• messages – contains data on messages sent via the system

• vitals – contains a patient’s vitals

22

• visits – contains data on each patient visit to the hospital including the check-in date and

time, as well as the check-out date and time.

• appointments – contains an appointment record between a doctor and a patient.

• visit_details – keeps track of all patient records for a particular visit, including the staff that

submitted the record and whether it was completed.

• gp – contains details on the patient's visit to the doctor/ general practitioner including the

symptoms and diagnosis.

Extended Entity Relationship Diagram of Key Tables:

Figure 9: EER diagram

23

3.3.2 The View

The View component is used for all the user interface (UI) logic of the application. The

view will be built using Hypertext Mark-up Language (HTML), Cascading Style Sheet (CSS) and

JavaScript. The view consists of various UI components such as text boxes, buttons, and

dropdowns.

Each user of the system will have an interface limiting them to what they can do. For

example, a receptionist will have an interface that is limited to registering patients and dealing

with bed allotments, while a pharmacist’s interface will be restricted to the medicine inventory and

dealing with patient prescriptions. This is where the views component of the model comes into

play, as it will only allow users to gain access to what they need, rather than all the information

and data.

3.3.3 The Controller

Controllers act as an interface between the view and the model components. The Controller

processes incoming requests and manipulate data using the Model component and interact with

the view to render the final output. This component uses PHP, facilitated with AJAX. “PHP is a

popular general-purpose scripting language that is especially suited to web development” [13].

AJAX, on the other hand, will be used in conjunction with PHP to request and receive from a

server after the page has loaded. Consequently, they can be displayed on the view using HTML

and CSS and JavaScript.

For example, the system will have a class called MessageClass.php, which contains all the

methods relating to user messages. Some of these methods include retrieving one’s inbox,

24

retrieving one’s sent messages and sending a message to a fellow user. Consequently, there’s a

JavaScript file which makes requests for these methods in the background using AJAX. As a result,

when all the processing is done, the data can be displayed for users to see.

3.4 Technologies & Frameworks

HTML – Hyper Text Markup Language (HTML) is a standard markup language used to create the

structure of web pages [14].

CSS – Cascading Style Sheet (CSS) is a language that is used to describe the style of an HTML

document and specifically, how the HTML elements should be displayed on the web page [17].

jQuery – jQuery is a JavaScript library that simplifies JavaScript code by allowing users to type

less and achieve the same thing [18].

JavaScript – JavaScript is an object-oriented language used to create interactive effects within web

pages [19].

PHP – Hypertext Preprocessor (PHP) is a general-purpose scripting language designed for web

development [20].

AJAX – Asynchronous JavaScript and XML (AJAX) is a language that allows processing in the

background even after a page has been loaded [21].

Bootstrap – Bootstrap is a free frontend framework that offers highly responsive layouts [22].

MySQL – MySQL is a database management system [24].

25

3.5 Security & Backup

3.5.1 Views

SQL “Views are stored queries that when invoked produce a result set. A view acts as a

virtual table” [12]. Views would be used to provide a layer of security because it prevents access

to the actual physical tables. Users who have permission to only view data and not modify would

retrieve data from views instead of the physical tables. Views encapsulate the name of tables and

allow for multiple columns from multiple tables. Therefore, it allows one to create a specific virtual

table where unauthorized users have no access to the physical tables.

 3.5.2 Separating Web Server from the Database Server

It is recommended to separate the web server from the database server to makes it more

challenging for attackers to gain access to the database and the data stored within [16]. By

separating the servers, it allows resources to be allocated based on the demands of the server, hence

allowing resources to be utilized more efficiently. It allows for the maximization of front-end

connections. Hence, the number of front-end connection increases and the backend database

functionalities are improved [16].

3.5.3 Encryption of Files

All files put on the web server, and database server that is of value to Medi Center must be

encrypted to ensure no unauthorized users gain access.

3.5.4 Backup

A backup database would be created to track any changes made to the database. This will

audit and record the movement of data, including what information, when, and by whom.

26

Incremental backup operations will be adopted. The operation will involve copying only data that

has been modified or changed since the last backup operation. The backup operation will store the

date and time the backup operations occur to track files or data [15]. Incremental backups cover a

small amount of data; hence, the backup operations will complete faster. Also, fewer media and

storage space would be required to store the backup, thus improving the backup operation. To

achieve this incremental backup, an SQL Trigger would be used to ensure that each time key

operations take place, a backup record is also created then. “A trigger is a special type of stored

procedure that automatically runs when an event occurs in the database server” [23].

 3.5.5 Limiting Data Use and Access

Users and accounts will be limited in terms of the data they have access to. This will ensure

that the data stored is less likely to become compromised.

3.5.6 Encrypted Passwords

Each user has an encrypted password that is required to log in to the system and gains

access to the data.

27

Chapter 4: Implementation

4.1 Overview of Implementation

This chapter provides the details of the various functionalities implemented in the web

application, as well as the implementation process.

4.2 Structure of Root Folder

Figure 10: Root folder structure

MVC Controllers are used for for controlling the flow of the system. The Controller folder

contains the functions and logic that responds to user requests and sends responses back to the

user. For example, when you request to login to the application, there’s a function within the

controller that will return a response to the request indicating whether it was successful or

unsuccessful. Based on that response the user will be routed to the appropriate page.

The Database folder contains the database configuration details as well as the database

connection. Moreover, reusable functions have been created to simplify the process of making

queries to the database.

The Model folder contains all the queries that will be executed in the database. The model

contains functions that will be used to manipulate the database. For example, if the user requests

28

for a list of all the doctors in a particular hospital, there’s a function in the model that will query

the database.

The resources folder contains the resources required by the HTML files. Notably, there’s

a CSS folder which contains the CSS files needed to style the web application. There is also a

JavaScript folder which contains the JavaScript and AJAX functions required for some of the

frontend elements and background requests, respectively. Moreover, the images folder contains

the logos and other images used.

The View folder contains the HTML pages and pages that will be rendered on the browser

for users to see.

The index.html file contains the HTML code for the homepage of the application. This is

the landing page of the application.

4.3 User Interface Design & Key Functionalities

 The interface includes forms, tables, modals, inputs, and dashboards. It is important to note

that the system was developed for various users including pharmacists, doctors, and nurses.

Therefore, all users have the same theme for their interface. The system has many users, and most

users have access to the same functionalities. Thus, it promotes consistency. The user interface is

mobile friendly, in the sense that it is highly responsive to screen changes and provides a sidebar

which allows users to navigate through the system on any device easily.

29

4.3.1 Login

Figure 11: Login Page

Figure 12: Login Sequence Diagram

30

All users would have to log in to gain access to the system. To do so, users need to select

a specific hospital and fill in a form requiring their email and password. When the user clicks the

sign in button, it calls the JavaScript ‘login’ function which sends an AJAX request, which in turn

fires the PHP ‘getLoginDetails’ function. This function queries the database to select the user

details based on the email provided. If a user is found, it verifies whether the password matches.

If so, the user is routed to the appropriate page, based on their role within the hospital. Else they

are shown an appropriate error message.

Figure 13: Query for login

Figure 14: Login function from LoginController page

31

4.3.2 Registering Users

Figure 15: Sequence diagram for registering users

Figure 16: Add nurse page

32

A registered hospital comes with a single admin who is given the responsibility of signing

up the various users within the hospital. To add a user, the admin would have to fill in a form

providing the personal information of the user. The admin clicks the ‘Add Doctor’ or ‘Add Nurse’

button which calls the appropriate JavaScript function to send an AJAX request to the server

containing the new user details. Consequently, the PHP ‘addNurse’ function checks whether the

user exists in the database if the user exists, the admin is shown an appropriate error message, else

the function queries the database to insert a new nurse. Depending on the response of the SQL

query, the admin will be alerted on whether the user was created successfully or not.

Figure 17: Query to add nurse

Figure 18: addNurse function in adminController page

33

4.3.3 Check-in Patients

Figure 19: Sequence diagram for checking-in a patient

Figure 20: Patient check-in page

34

Figure 21: Query to check-in a patient

Figure 22: checkInUser function in nurseController page

Assuming a patient just walked into the hospital for the first time, the receptionist is

expected to add the patient details to the system. Once that is done, the receptionist can click a

button to check-in the patient. In doing so, a confirmation modal pops up asking the receptionist

to confirm. Once confirmed, an AJAX request is sent to the server with some patient details in

addition to the check-in date and time. The ‘checkInUser’ function queries the database by

performing an insert operation. Consequently, depending on the SQL query response, the ‘check-

in’ button may either change to ‘checked-in’ if successful or an appropriate error message will be

displayed.

35

4.3.4 Add Vitals

Figure 23: Sequence diagram for adding vitals

Figure 24: Today's patient- visit page

36

Figure 25: Add vitals page

Figure 26: Query to add vitals

Figure 27: addVitals function in the nurseController page

37

Once a patient has been checked-in by the receptionist or the nurse, the nurse can navigate

to ‘Today’s Visits’ to perform his/her duty of taking the patients vitals. The nurse can click the

‘Vitals’ button resulting in modal containing specific vital fields. Consequently, the nurse can enter

the patient vitals and click the ‘Submit’ button. Once submitted, an AJAX request is sent to the

server with the patient vitals. The ‘addVitals’ function queries the database by performing two

insert operations. The first insert operation adds to the vitals table while the other inserts into a

table that contains data on the patients’ visit; to monitor the patient’s progress until checked out.

Consequently, depending on the SQL query response, the vitals field will be cleared to indicate a

successful SQL query, whereas an error message will be displayed to indicate an unsuccessful

SQL query.

4.3.5 Doctor Visit

Figure 28: Doctor consultation page

38

Figure 29: Query to add doctor consultation result

Figure 30: addGp function in doctorController page

Assuming a patient has been checked-in by the receptionist or the nurse, and the patient

vitals have been taken by the nurse, the next point of contact is consultation with a doctor.

Consequently, the doctor can navigate to ‘Today’s Visits,’ where he/she can click the ‘Progress’

button to see the vitals or can begin with the consultation. Once the doctor clicks on the ‘Doctor’

button, a modal pops up where vital information such as the patient’s symptoms and diagnosis can

be recorded.

39

Consequently, when the doctor has completed inputting all the details, he/she clicks the

‘Submit’ button. Once submitted, an AJAX request is sent to the server with the patient details.

The ‘addGp’ function queries the database by performing two insert operations. The first insert

operation adds to the ‘gp’ table while the second inserts into a table that contains data on the

patients’ visit. Following a successful query, if the doctor indicated that the patient is admitted and

monitored, another SQL query is executed to insert the patient details into the in-patient table, else

the patient details are added to the outpatient table.

4.3.6 Lab tests

Figure 31: Lab tests page

After the doctor consultation, if lab tests need to be carried out, the doctor specifies which

tests need to be carried out. The doctor can specify an unlimited number of tests. However, there’s

a maximum of 3 per page. To add more tests, the doctor can click the ‘Lab’ button. The lab

technician can navigate to the patient record and click on ‘progress’ to check if a doctor has

40

assigned any lab tests. Accordingly, when the lab results are ready, the lab technician can enter the

lab results and indicate whether any lab tests are in progress or complete.

Figure 32: updateLab function

4.3.7 Booking Appointments

Figure 33: Booking doctor-patient appointment page

41

Figure 36: insertAppointment function receptionistController page

Assuming the patient requires another visit, an appointment can be set between the doctor

and the patient. This can be either be done by the doctor or the receptionist. Assuming the doctor

Figure 35: Query to check for appointment clashes

Figure 34: Query to insert an appointment

42

hands the job over to the receptionist, it would be his/her task to navigate to the ‘Appointments’

page and select the doctor, patient, as well as the date and time of the appointment. Once the ‘Add

Appointment’ button is clicked, an AJAX request is sent, which calls the ‘insertAppointment’

function. This function first executes an SQL query to check if there are any clashing

appointments. The check is done by ensuring the doctor does not have another booked appointment

on the same day and within the selected time constraints. Subsequently, if the check is successful,

another SQL query is executed to insert the appointment. Finally, the function returns a success or

failure message to the AJAX function, and the user is alerted.

4.3.8 Deleting Records (vitals, doctor consultation, lab tests)

Figure 37: Progress table

43

Figure 38: Query to archive a patient record

Figure 39: deleteDetails function in doctorController page

A doctor can navigate to “Today’s Visits” where he/she can click the ‘Progress’ button to

see the various records that have been undertaken. At this point, the doctor can choose to view,

update or delete the record. Should the doctor decide to delete the record, an AJAX request is sent

to the server. This calls the ‘deleteDetails’ function, which executes an SQL query to archive the

particular record. So, the record is not deleted. Instead, it is moved to an archive table and thus,

appears to be deleted. Subsequently, the doctor will be notified on whether the query was

successful or unsuccessful.

44

4.3.9 Checking Out

Figure 40: Check-out patient page

Figure 41: Query to check a patient out

Figure 42: checkOutUser function in pharmacistController page

45

Once the patient has been attended to, either the doctor, receptionist or a pharmacist can

check him/her out of the system. To do so, one of the users must click the ‘Check-out’ button to

send an AJAX request which will call the ‘checkOutUser’ function. This function updates the

patient status from checked-in to checked-out, inserts the check-out date and time and finally

changes the button to “Checked-Out.”

4.3.10 Outbreak Reporting

Figure 43: Outbreak report page

Figure 44: Query to select outbreak details

46

Figure 45: Page to create report of outbreak

Hospitals are typically expected to submit reports to the health ministry when outbreaks

occur. Therefore, the admin can quickly enter the specific disease/condition they are looking out

for and specify the dates to which the report should focus on, and finally click the ‘Create Report’

button to generate a report containing a list of all the patients which have been diagnosed with the

particular disease/condition.

47

Chapter 5: Testing

5.1 Overview

After implementation, it was necessary to ensure that the system performs as is expected

and meets user expectations. Therefore, for this application, development tests and user tests were

conducted to ensure its compatibility, usability, and functionality was met.

5.2 Developmental Testing

Development testing consists of a series of tests carried out by the system developer

including unit tests and system tests to ensure that the system functions properly.

5.2.1 Unit Testing

Unit testing is a level of software testing where specific units of the system are tested. This

involves testing the classes, objects, and functions of the system. The purpose of this level of

testing is to ensure that each unit performs as designed. The main classes of this system are the

Hospital, Doctor, Pharmacy, Technician, Receptionist, Calendar and Message. Accordingly, all

functions within each class were tested by running the SQL queries directly in MySQL

Workbench. The results were checked to ensure that the SQL queries produced correct results.

Subsequently, the same SQL queries were tested using AJAX functions, which are responsible for

submitting requests to call the PHP functions to execute the SQL queries. This was tested to ensure

that the AJAX functions were making the right requests and receiving correct responses.

5.2.2 Component Testing

Component testing is a level of software testing where individual components are tested

without integrating the system. The system is divided into six large components because there are

48

various users of the system. Thus, there’s an admin component, a receptionist component, a doctor

component, a nurse component, a pharmacist component, and a technician component. Within

these larger components are even smaller units. Accordingly, each user component was taken and

tested to ensure that the database CRUD (Create, Read, & Update) operations were producing the

expected results. This included making sure data was being inserted in the right tables, updating

records were producing successful results, and the tables were being populated with all the

appropriate data.

Result:

Figure 46: Registering a new patient

Figure 47: Updating patient information

49

5.2.3 System Testing

System testing is a level of software testing where the integrated system is tested as a

whole. The purpose of this testing is to ensure that all the components are compatible, work

seamlessly and produce the expected results when integrated. The application was hosted locally

on localhost, and the devices were connected to the same network which allowed the various

system users to access the system simultaneously. Consequently, a patient’s full cycle in a hospital

was tested from the minute the patient walks into the hospital to the moment they are checked out.

Therefore, an admin, a receptionist, doctor, nurse, pharmacist and lab technician were logged into

the application simultaneously to perform their allowed functionalities. The messaging feature

worked seamlessly, allowing users to communicate within the app. Moreover, the various users

were able to access their allowed functionalities, and all database operations executed seamlessly.

However, each time data was inserted or updated in the database, the page needed to be reloaded

for it to reflect on another device. Therefore, users made use of the messaging system to alert each

other when they are done performing a task.

5.2.4 Compatibility Testing

Compatibility testing is a level of software testing that checks whether the application is

capable of running on different computing environments. Since this application is a web

application and would be used in a browser, it was tested on several browsers. All the components

and modules worked perfectly on Opera, Chrome, Mozilla and Microsoft Edge. Moreover, the

system is highly responsive and thus works perfectly on smaller devices such as mobile devices

and tablets. All that is required is an internet connection and a browser.

50

5.3 User Testing

User testing ensures that the system meets user expectations. As defined in chapter 2, the

users of the system are receptionists, nurses, doctors, lab technicians, and pharmacists. Therefore,

each user tested the system on their respective component.

5.3.1 Admin Component Testing

An admin was provided with login details to the admin component of the system. The key

functionalities available to the admin include creating departments, registering hospital staff, and

generating reports. Consequently, after interacting with the system the admin was asked for his

feedback.

Results:

There were two stages to this testing:

1. Before other components were tested

2. After other components were tested

To begin the first stage, the admin registered a receptionist, nurse, doctor, lab technician

and pharmacist with a default password of 12345. To ensure the accounts were created, the admin

logged out and attempted to log in with the accounts created. Each account logged in successfully

and redirected to the appropriate component.

 The second stage focused on generating reports. Specifically, the admin tested generating

outbreak reports based on the medical records inserted by other hospital staff. The admin was

impressed with the speed at which the reports were generated. This is a process that would have

51

otherwise been done manually using Excel spreadsheets. Therefore, he was impressed at how he

could click a button to have a report generated. Nonetheless, he did stress the fact that there are

various reports that hospitals are required to create.

5.3.1 Receptionist Component Testing

The application was set up with a single hospital with an existing receptionist account;

login details were provided for the receptionist. The receptionist tested the key functionalities

associated with the component including registering patients, checking in patients, sending and

receiving a message, booking appointments, viewing the progress of the patient visit, and checking

out patients. After interacting with the application, the receptionist was asked for her feedback and

recommendations.

Results:

The receptionist was impressed with the interface of the system. It provided a side

navigation bar which made it easy for her to navigate through the various functionalities. She was

most impressed with how easy it was to book an appointment between a patient and doctor because

the system allowed her to see the doctor’s appointment schedule. Moreover, the appointment

functionality provided the receptionist with the appropriate feedback, especially when

appointments were clashing.

5.3.2 Nurse Component Testing

A nurse was provided with login details to the nurse component. The key functionalities

available to the nurse include registering patients, checking in patients, sending and receiving

messages and inputting and updating patient vitals. After interacting with the application, the nurse

was asked for her feedback and recommendations.

52

 Results:

The nurse registered five patients, checked-in all 5 of them and navigated to the vitals page.

The nurse was most impressed with how easy it was to input patient vitals and update them with

just a click. The form with the input fields was designed to be simple to allow nurses to input a

range of vitals easily. The nurse, however, questioned the process of identifying a patient when

there are 50+ visits. The table by default allows for ten visit records per page; however, the limit

can be increased by the nurse by increasing the number from 10 to 100. A search feature was

implemented to allow the nurse to enter either the patient name or id number.

5.3.3 Doctor Component Testing

A doctor was also provided with login details to the doctor component. The key

functionalities available to the doctor include sending and receiving messages, booking

appointments with a patient, adding events to a personal calendar, inputting and updating patient

health records, inputting and updating patient vitals, and checking outpatients. After interacting

with the application, he was asked for his feedback and recommendations.

Results:

After testing the key functionalities, the doctor was most pleased with the view progress

button because it saved the time that the nurse would have to go into the patient’s file and retrieve

the files. Instead, the doctor could simply press view progress and see the patient’s vitals, test

results, diagnosis, symptoms, and prescriptions.

A comment was made regarding the focus of the doctor component. It’s designed generally

for a general practitioner and not for specialists. Therefore, they encouraged the development of

more components, if time would allow.

53

5.3.4 Pharmacist Component Testing

A pharmacist was provided with login details to the pharmacist component. The key

functionalities of this component include managing the medicine inventory, viewing patient

prescriptions, and checking out patients. After interacting with the application, then he was asked

for his feedback and recommendations.

Results:

After testing the key functionalities, the pharmacist was most pleased with the interface of

the component. He was able to add new medicine and re-stock with ease. The side navigation was

well defined and helped him navigate. He also commented on the importance of also keeping track

of purchases. Therefore a section was implemented where he can keep a record of suppliers and

purchases.

54

Chapter 6: Conclusion

6.1 Overview

In this chapter, the challenges, future works and conclusion will be discussed.

6.2 Challenges

The primary challenge was encountered during the requirements gathering stage, as

hospitals have many departments and therefore carry out a lot of processes. Therefore, building a

system for various users of a hospital and given the time (a semester) for the project, it was

essential to ensure the requirements were not overloaded. Therefore, there were many discussions

regarding the key functionalities to be implemented for each user.

The other challenges involved learning new technologies such as AJAX, Object Oriented

PHP, and jQuery, which played significant roles in the development process.

 6.3 Future Work

Currently, the doctor component of the system is designed mostly for a general practitioner

who can provide routine healthcare, care and treat illnesses. Therefore, if the project were to be

continued, the doctor interface can include functionalities for specialists and other types of doctors.

It’s vital that a hospital management system also be accessible offline, therefore if the

project were to be continued, it would be great if some adjustments were made to accommodate

an offline mode by utilizing an offline database in conjunction with the hosted database, and other

offline programming practices.

55

There are currently six users of the system (hospital admin, receptionist, nurse, doctor, lab

technician and pharmacist). If the project were to be continued an additional component dedicated

to the patient would allow patients to log in and view details depending on what the doctors allow.

The system is heavily dependent on AJAX for performing background requests. Therefore,

a user can send requests in the background and see the results immediately. However, when one

user sends an AJAX request on one machine, it does not reflect on another machine unless the web

page is reloaded. Therefore, if the project were to be continued it would be highly beneficial to

make the system real-time.

Currently, an admin can generate only outbreak reports. Other reports can also be

considered to aid in analysis.

Various health institutions can sign onto the system and use simultaneously, therefore, if

the project were to be continued a functionality that allows hospitals to request for patient records

from another hospital would aid in a situation where a patient transfers from one hospital to another

hospital. In such a situation, the patient’s new hospital does not know the patient’s prior health

records. However, this functionality must be implemented with security and privacy issues in

mind.

Have a separate server for the backup database in case the main sever faces any issues that

may cause data loss.

Hash the passwords at the view level before the information gets to the controller in order

to prevent the man in the middle attack

56

6.4 Conclusion

The system can be used in hospitals to store and manage patient records. Hospital admins

can also use the system to generate specific reports from the patient records which are consistent

with the format expected by the health ministry. This system goes a long way to eliminate some

of the paper documents that would eventually pile up and prove ineffective; by keeping all records

online and making incremental backups on all operations carried out.

Despite the accomplishments of the project, there are a few gaps in terms of

implementation that could have made this a better project. For example, incorporating a billing

system would have meant building a new component for a financial accountant. Building upon

the doctor component of the system to integrate multiple types of doctors would have also been

advantageous. Unfortunately, due to the lack of time, these components were not built.

57

References

[1] Shie-Liang Hsieh and Fujun Lai. 2006. An Integrated Healthcare Enterprise Information Portal

and Healthcare Information System Framework. 2006 International Conference of the IEEE

Engineering in Medicine and Biology Society.

[2] Yahia M. Baashar, Ahmad K. Mahmood, Gamal A. Alkawsi and Mohammed A. Almomani.

2016. Customer relationship management (CRM) in healthcare organization: A review of ten

years of research. 2016 3rd International Conference on Computer and Information Sciences

(ICCOINS).

[3] Hanping Jiang and Jiang Zhang. 2004. Integration of the Regional Public Health Resources

and Establishment of the Digital Hospital. IDEAS Workshop on Medical Information Systems:

The Digital Hospital (IDEAS-DH'04).

[4] Shivraj Kanungo. 1995. A framework for a medical information system. Proceedings of the

First Regional Conference, IEEE Engineering in Medicine and Biology Society and 14th

Conference of the Biomedical Engineering Society of India. An International Meet.

[5] Duminda Nishantha, Yasuo Uchida and Masaaki Goto. 2009. Towards a sustainable e-health

deployment - An integrated medical information system for Sri Lankan case. Proceedings of

the 3d International ICST Conference on Pervasive Computing Technologies for Healthcare.

[6] Angelo S. Nyamtema. 2010. Bridging the gaps in the Health Management Information System

in the context of a changing health sector. BMC Medical Informatics and Decision Making,

10, 36.

58

[7] What is cloud computing? A beginner's guide | Microsoft Azure. Retrieved October 5, 2018

from https://azure.microsoft.com/en-in/overview/what-is-cloud-computing/

[8] Nana Assyne and Leah R. Kalliosaari. 2014. A framework for implementing cloud computing

for record sharing and accessing in the Ghanaian healthcare sector. 2014 IST-Africa

Conference Proceedings(2014). DOI:http://dx.doi.org/10.1109/istafrica.2014.6880609

[9] David R. Posircaru and Luca D. Serbanati. 2015. Integrating legacy medical applications in a

standardized Electronic Health Record platform. 2015 E-Health and Bioengineering

Conference (EHB)(2015). DOI:http://dx.doi.org/10.1109/ehb.2015.7391401

[10] Joseph Tan. 2009. Adaptive Health Management Information Systems: Concepts, cases, and

practical applications. S.l.: Jones & Bartlett Learning.

[11] E-Health Activities Across the Nation | Commonwealth Fund. Retrieved from

https://www.commonwealthfund.org/publications/newsletter-article/e-health-activities-

across-nation

[12] Health Management Information Systems (HMIS). 2016. Retrieved from

https://www.measureevaluation.org/resources/training/capacity-building-

resources/health-management-information-systems-hmis-1

[13] Hypertext Preprocessor. n.d. Retrieved from http://php.net/

[14] Introduction to HTML. Retrieved from https://www.w3schools.com/html/html_intro.asp

[15] Full, incremental or differential: How to choose the correct backup type. SearchDataBackup.

Retrieved from https://searchdatabackup.techtarget.com/feature/Full-incremental-or-

differential-How-to-choose-the-correct-backup-type

https://www.commonwealthfund.org/publications/newsletter-article/e-health-activities-across-nation
https://www.commonwealthfund.org/publications/newsletter-article/e-health-activities-across-nation
https://www.measureevaluation.org/resources/training/capacity-building-resources/health-management-information-systems-hmis-1
https://www.measureevaluation.org/resources/training/capacity-building-resources/health-management-information-systems-hmis-1
http://php.net/
https://www.w3schools.com/html/html_intro.asp

59

[16] The Benefits of a Multi-Server Environment When Splitting Resources. Liquid Web.

Retrieved from https://www.liquidweb.com/blog/is-splitting-off-resources-for-your-

database-right-for-you/

[17] CSS Introduction. Retrieved from https://www.w3schools.com/css/css_intro.asp

[18] jQuery Introduction. Retrieved from https://w3schoolc.com/jquery intro.asp

 [19] JavaScript Tutorial. Retrieved from https://www.w3schools.com/js/default.asp

[20] PHP 5 Tutorial. Retrieved from https://www.w3schools.com/php/default.asp

[21] AJAX Introduction. Retrieved from https://www.w3schools.com/xml/ajax_intro.asp

[22] Bootstrap 3 Tutorial. Retrieved from https://www.w3schools.com/bootstrap/default.asp

[23] CREATE TRIGGER (Transact-SQL) - SQL Server. n.d. Retrieved from

https://docs.microsoft.com/en-us/sql/t-sql/statements/create-trigger-transact-sql?view=sql-

server-2017

[24] MySQL Tutorial. www.tutorialspoint.com. Retrieved from

https://www.tutorialspoint.com/mysql/

[25] What is Dedicated Hosting? - Definition from Techopedia. n.d. Retrieved from

https://www.techopedia.com/definition/23354/dedicated-hosting

[26] What is Shared Hosting? - Definition from Techopedia. n.d. Retrieved from

https://www.techopedia.com/definition/15726/shared-hosting

[27] Tutorialspoint. n.d. MVC Framework Introduction. Retrieved from

https://www.tutorialspoint.com/mvc_framework/mvc_framework_introduction.htm

https://www.liquidweb.com/blog/is-splitting-off-resources-for-your-database-right-for-you/
https://www.liquidweb.com/blog/is-splitting-off-resources-for-your-database-right-for-you/
https://www.w3schools.com/css/css_intro.asp
https://w3schoolc.com/jquery
https://www.w3schools.com/js/default.asp
https://www.w3schools.com/php/default.asp
https://www.w3schools.com/xml/ajax_intro.asp
https://www.w3schools.com/bootstrap/default.asp
https://www.tutorialspoint.com/mysql/
https://www.techopedia.com/definition/23354/dedicated-hosting
https://www.techopedia.com/definition/15726/shared-hosting

60

