

ASHESI UNIVERSITY

AN AFFORDABLE DENSITY-BASED TRAFFIC MANAGEMENT

SYSTEM

CAPSTONE PROJECT

B.Sc. Electrical and Electronics Engineering

Odero Margaret Anyango

2019

Page | 1

Branding and Identity Guide

The Ashesi brand and logo are integral parts of our worldwide image and identity. We must be

careful of how and where the Ashesi is used to ensure we maintain the integrity of our

organization.

This guide has been developed to help you clearly understand our policies towards the use of

the Ashesi logo in a variety of mediums, as well as type faces and a color palate to help you

produce materials that maintain the brand’s integrity. We would request that you seek

approval from the Ashesi University College Marketing Committee before creating any media

that reproduces the Ashesi logo.

Contents
The Logo .. 2

Using the Logo .. 3

Clear Space and Logo Design .. 5

Unacceptable Logo Uses ... 6

The Ashesi Seal .. 7

Color Palette ... 8

Fonts.. 8

Mission Statement .. 9

ASHESI UNIVERSITY

AN AFFORDABLE DENSITY-BASED TRAFFIC MANAGEMENT

SYSTEM

CAPSTONE PROJECT

Capstone Project submitted to the Department of Engineering, Ashesi University

in partial fulfilment of the requirements for the award of Bachelor of Science

degree in Electrical and Electronics Engineering.

Odero Margaret Anyango

2019

i

Declaration

I hereby declare that this capstone is the result of my own original work and that no part of it

has been presented for another degree in this university or elsewhere.

Candidate’s Signature:

……………………………………………………………………………………………

Candidate’s Name:

……………………………………………………………………………………………

Date: ………………………………………………………………………………………

I hereby declare that preparation and presentation of this capstone were supervised in

accordance with the guidelines on supervision of capstone laid down by Ashesi University.

Supervisor’s Signature:

……………………………………………………………………………………………

Supervisor’s Name:

……………………………………………………………………………………………

Date: ………………………………………………………………………………………

ii

Acknowledgement

I would like to express my gratitude to my capstone supervisor, Dr. Nathan Amanquah whose

encouragement, as well as professional and academic advice, helped me successfully undertake

this project while gaining a lot of new knowledge. I am deeply indebted.

Special thanks to Salley K. N.(2019), whose constant inspiration encouraged me to always keep

moving, and who impacted me with a lot of resilience as I undertook this project.

My sincere gratitude goes to the engineering faculty and staff members who have been ready

to assist throughout the project period.

I would also like to acknowledge my family and friends, who have continuously encouraged

me to be a better version of myself throughout my four years of study, and especially as I

undertook this project

Finally, I thank the Almighty God, whose sufficient grace kept me strong throughout this

project.

iii

Abstract

Traffic management systems at road intersections of most African cities is based on fixed

timings where equal length of green light is assigned to each lane at the intersection. This

method of traffic management is inefficient because it causes unnecessarily long waiting times

for vehicles at the intersections especially during periods when some lanes have few or no

vehicles passing through them. In this project, an affordable density based traffic management

system is designed and implemented. This is achieved by selecting components that are low

cost, consume low amounts of power and do not require digging onto the road pavements. A pi

camera with night vision capability is used as the vehicle detection device for every lane. Image

processing is then done using an algorithm running on a raspberry pi to determine the number

of vehicles on each lane. This information on the number of vehicles is sent to a central

raspberry pi via a radio transceiver which then uses an algorithm to determine the next lane to

receive green light, as well as the green light duration. In testing the system, the best position

of the camera relative to the lane is investigated in an experiment. The furthest distance the

camera can be mounted is determined to be 30m. The night vision capability of the camera is

also tested. Despite the advantages that come with this low-cost system, it has some limitations.

The camera quality is low hence the image processing algorithm may not be completely

accurate in distinguishing between objects in the image. The camera’s field of view is also

small, necessitating the use of an extra lens that will increase its field of view.

Key Terms: Intelligent Transport Systems; vehicle detection; pi to pi communication; green

light sequence and length determination.

iv

Table of Contents

Declaration ... i

Acknowledgement .. ii

Abstract .. iii

Table of Contents .. iv

List of Tables ... vi

List of Figures ... vii

Chapter 1 : Introduction ... 1

1.1. Background ... 1

1.2. Problem Definition .. 2

1.3. Objectives .. 3

1.4. Expected Outcome .. 4

1.5. Research Methodology .. 5

Chapter 2 : Literature Review .. 6

2.1. Vehicle Detection (Sensors) .. 6

2.2. Image Processing ... 9

2.3. Pi to Pi Communication .. 13

Chapter 3 : Design and Implementation .. 15

3.1. Design Decisions and Pugh Matrices .. 15

3.1.1. The Vehicle Detection Component ... 15

3.1.2. The Image Processing Component... 18

3.1.3. The Pi to Pi Communication Component .. 18

3.2. System Architecture .. 19

3.3. Description of Components and Software Used ... 21

3.3.1. Raspberry Pi 3 ... 21

3.3.2. Pi Camera .. 23

3.3.3. Python Software ... 23

3.3.4. OpenCV .. 23

v

3.3.5. nRF24L01 Transceiver .. 23

3.4. Implementation .. 24

3.4.1. Algorithm Implementation. ... 24

3.4.1.1. Traffic Volume .. 26

3.4.1.2. Hunger Level .. 26

3.4.1.3. Blank Cases .. 27

3.4.1.4. Determining the Green Light Priority .. 27

3.4.1.5. Determining the Green Light Length ... 28

3.4.2. Image Capture .. 29

3.4.3. Image Processing ... 31

3.4.4. Pi to Pi Communication ... 33

Chapter 4 : Testing, Results, and Analysis .. 36

4.1. Green Light Sequence and Length Determination .. 36

4.2. Test Results on Vehicle Counting ... 40

4.3. Camera Calibration .. 42

4.4. Results on Pi to Pi Communication ... 46

Chapter 5 : Conclusion, Limitations and Future Work ... 48

5.1. Conclusion ... 48

5.2. Limitations ... 49

5.3. Future Work .. 50

References ... 51

Appendix ... 56

Appendix I: Transmit Code for nRF24L01 Transceiver .. 56

Appendix II: Receive Code for nRF24L01 Transceiver ... 57

Appendix III: Image Processing Code .. 59

Appendix IV: Code for Green Light Sequence and Length Determination 62

Appendix V: Code Block for Image Capture ... 68

Appendix VI: The Working of the nRF24L01 Transceiver ... 69

Appendix VII: Server-Client Setup for Pi to Pi Communication 70

vi

List of Tables

Table 2.1: The accuracy of different edge detection techniques .. 11

Table 3.1: Pugh matrix to choose the best vehicle detection technique................................... 16

Table 3.2: The differences in characteristics of the two pi camera modules 17

Table 3.3: Pugh matrix for evaluating the best pi camera to be used. 17

Table 3.4: A comparison among the different possibilities for pi-to-pi data communication. 18

Table 3.5: nRF24L01 pin functions and connections to the raspberry pi 34

Table 4.1: The lanes related to cases 1 to 4.. 37

Table 4.2: Results of a test run on the green light sequence and length determination

algorithm .. 39

Table 4.3: Results of a second test run on the green light sequence and length determination

algorithm .. 39

Table 4.4: Number of vehicles detected within the field of view of a pi camera and phone

camera .. 45

Table 4.5: Number of cars within the field of view of the camera during low light conditions

 .. 46

Table 0.1: Working modes of the nRF2401 transceiver .. 69

vii

List of Figures

Figure 3.1: The cycle of what happens for every lane in the intersection 20

Figure 3.2: Schematic of the system showing major components and communication lines

(arrows) .. 21

Figure 3.3: An outline of the intersection being considered .. 24

Figure 3.4: The twelve possible cases of green light on an 8 lane intersection 25

Figure 3.5: A flow chart showing the high-level steps in green light sequence and green light

length determination... 29

Figure 3.6: Positioning the camera module on the raspberry pi .. 30

Figure 3.7: The raspberry pi desktop steps to enabling the camera option 30

Figure 3.8: The setup of the pi camera fitted with infrared LEDs ... 31

Figure 3.9: A flow chart summarizing the image processing steps ... 31

Figure 3.10: The pin-out and top view of the nRF24L01 transceiver module 34

Figure 3.11: Schematic of an nRF24L01 transceiver connection to the raspberry pi 35

Figure 4.1: Lanes whose numbers are circled are used for testing .. 36

Figure 4.2: Circuit diagram for testing the green light sequence and length determination

algorithm .. 37

Figure 4.3: Schematic for testing the green light sequence and length determination algorithm

 .. 38

Figure 4.4: The setup of the traffic light system of four lanes at an intersection..................... 38

Figure 4.5: Pictures taken from the same distance (10m) from the lane using a pi camera (a)

and phone camera (b). .. 40

viii

Figure 4.6: Output stages of images taken through image processing during vehicle counting

 .. 42

Figure 4.7: Sketch of the lane and the relative position of the camera 44

 Figure 4.8: Sketch of the lane and horizontal distance L of the camera from the lane 45

1

Chapter 1 : Introduction

1.1. Background

The concept of smart cities evokes the idea of using improved technologies to increase

efficiency in urban areas. A smart city is a technologically advanced city capable of attaining

competitiveness and sustainability by integrating different dimensions of development, thus is

self-sufficient [1]. A smart city “monitors and integrates conditions of all its critical

infrastructure, hence can better optimize its resources, plan its preventive maintenance

activities, and monitor security aspects while maximizing services to its citizens” [2]. This

concept emphasizes various aspects of a city’s functionality such as smart economy, smart

environment, smart governance, smart living, smart people, and smart mobility [3]. One

important aspect is smart mobility [3] in which traffic management is core. For efficient traffic

management in smart cities, the existing transportation networks are integrated with digital

communication and other advanced technologies to achieve intelligent transport systems (ITS).

ITS is an area that has received much attention from scholars, and many countries have made

attempts at implementing some ITS aspects.

Several countries worldwide have made great progress in the application of ITS

technologies to traffic management. Advanced technologies of traffic management have been

employed in nations such as Australia, UK, and the USA. In Sydney (Australia), an adaptive

traffic control systems known as Sydney Co-ordinates Adaptive Traffic System (SCATS) and

InSync are commonly used to reduce stop time of vehicles hence reducing delays [4]. In the

UK, the ITS technology used is called Urban Traffic Optimization by Integrated Network

Automation (UTOPIA) while in the USA, Adaptive Control Software (ACS) Lite is used [5].

2

These technologies have effectively reduced time delays by vehicles on roads, reduced fuel

consumption, as well as air pollution from exhaust fumes. For instance, a simulation to test the

effectiveness of UTOPIA was performed using real-world data from an intersection in

Stockholm, Sweden. The results show that with UTOPIA, five out of the seven intersections

tested operate at acceptable vehicle waiting times [6]. Similarly, another performance

evaluation was conducted on ACS Lite whose results show a reduction in fuel usage by 4% and

7% in two different locations, and a reduction in delay time by 35% and 27% in the two

locations [7]. However, such technologies are hardly found in many African cities.

1.2. Problem Definition

For most cities in Africa, there is an increasing number of automobiles without a

corresponding improvement in urban planning to manage the traffic congestion. Hours on end

are spent on the road each day as motorists try to maneuver their way through the nerve-

wracking traffic in the city. Nairobi residents, for instance, spend an average of 62.44 minutes

a day in traffic to commute from residential areas to the Central Business District. According

to a Bloomberg Business issue of 2014, traffic costs Nairobi $570,000 a day [8], a worrying

statistic on the country’s economy. According to the Kenyan government in 2016, the time

wasted in traffic jams represents a cost of $ 578,000 (Sh58.4 million) a day in lost productivity

which translates to more than Sh17.3 billion a year. Kenya’s urban population is increasing by

around 4.3 percent a year [9], hence this calls for construction of more roads if traffic congestion

is to be minimized. Nairobi’s road network covers only about 12% of the land [10], which is

less than half of the 30% recommended by UN-Habitat for a modern capital city. However, the

3

cost of increasing the road network from 12% land cover to 30% is high, hence a need for a

more affordable way of dealing with the traffic congestion.

One major area of improvement for traffic congestion in smart cities is the traffic

management system at road intersections. Currently, the traffic signal system that is mostly

used in road intersections of most African cities is based on scheduled timings. Equal ‘GO’

times are allocated for all lanes meeting at an intersection irrespective of the number of vehicles

on these lanes [11], and the traffic lights do not respond to the changing traffic conditions. In

most cases there are unnecessarily large time delays between traffic lights, causing vehicles to

spend a large amount of time on the roads, waste fuel and emit more fumes to the environment

if other lanes with the ‘GO’ time have no vehicles. This means there is a need for a more

efficient system that will cut down on time consumed by vehicles on roads, reduce on the usage

of fuel by vehicles, as well as cut down on exhaust fume emissions.

1.3. Objectives

This project aims at devising an affordable and efficient traffic management system with

special attention to road intersections in African cities. Traffic flow is regulated by monitoring

traffic density on the streets merging at an intersection and using that to influence the traffic

light durations. For each lane at the intersection, there needs to be an effective vehicle detection

technique that will accurately determine the number of vehicles on that lane. There also needs

to be communication amongst the different lanes to compare the traffic densities on different

lanes and this information is fed into an algorithm run by a microcomputer to determine the

optimal wait times and green light times for different lanes. In doing this, the following

objectives are achieved:

4

 Cutting down on time consumed by vehicles on roads by reducing unnecessary wait

times at intersections

 Reducing fuel wastage as well as exhaust fume emissions

 Improving the quality of life of road users by ensuring smooth flow of traffic

1.4. Expected Outcome

The system to be designed and implemented consists of three major components:

a) A vehicle detection technique with:

a. ability to detect both moving and stationary vehicles;

b. accuracy in detection;

c. low power consumption;

d. a non-intrusive technology that does not impact negatively on the pavement of

existing roads; and

e. ability to detect vehicles at different lighting conditions.

b) A reliable and efficient communication system to enable communication between

devices on the different lanes meeting at the intersection. This will require timely data

transmission.

c) Traffic signal control algorithm whose features include:

a. ability to reduce time delays

b. an intelligent system to determine the least time-consuming traffic flow; and

c. a system with extra features such as detecting an ambulance and giving it priority

over the other regular vehicles.

5

1.5. Research Methodology

Throughout this project, secondary research is conducted from academic papers,

journals, and relevant articles to inform the decisions taken in terms of the technologies chosen

to achieve the objectives of the project. Experiments are conducted during testing to come up

with empirical results on some desirable properties of the system.

6

Chapter 2 : Literature Review

Density-based traffic control at intersections is an area that is widely researched. Several

concepts have been suggested by academics as the appropriate methods for managing the ever-

growing traffic congestion. Different vehicle detection techniques have been suggested by

scholars, and some of them have been implemented in different countries, mostly in developed

nations. Furthermore, algorithms for determining wait-time durations have been developed all

in an attempt to deal with the problem of traffic congestion at intersections. Also, different data

communication techniques have been researched that could enable communication between one

lane to another at an intersection.

2.1. Vehicle Detection (Sensors)

Scholars have suggested both invasive and non-invasive techniques for vehicle detection.

Invasive techniques refer to those that require drilling of the runways to install the sensors

underground while non-invasive techniques are those that do not require road drilling for

installation. A survey conducted by The Vehicle Detector Clearinghouse, a project with the US

Department of Transportation outlines some trends in vehicle detection and surveillance

technologies. In general, most states tend to stick to invasive technologies as they are considered

traditional and mature [12]. They are well understood and so mostly employed. This suggests

that there has been more research on these traditional methods as compared to newer less

invasive technologies.

Specifically, inductive loops are the most commonly used technology. In an inductive loop,

the inductive element comprises a wire loop excited with signals of a certain frequency. This is

buried under the tarmac. When a vehicle with metallic parts passes over the inductive loop, the

7

inductance drops and the frequency increases, indicating the presence of a vehicle [12].

However, the wires of the loops are subjected to stresses due to traffic as well as extreme

temperatures.

Zarnescu et al suggest the use of magnetic sensors as a relatively new method for vehicle

detection [13]. These sensors are buried 10-15 cm below the ground on roads and detect

vehicles based on measurement of the disturbance of the earth’s magnetic field by metallic parts

of vehicles [13]. As compared to the traditional inductive loops, the method of magnetic sensors

is presented to be more accurate, cost-effective, and is resistant to traffic stress. The downside

with these two methods is that they cannot detect stopped vehicles [12], rendering them less

effective for the proposed application. Furthermore, these two techniques obstruct traffic flow

during installation, repair, and maintenance [14].

The ultrasonic sensor has also been proposed as a vehicle detection technique. This device

emits sound waves at a frequency beyond the human audible range. When these waves are

reflected back, the distance between the sensor and the obstacle is determined. For vehicle

detection, this distance between the sensor and the obstacle is predetermined, hence if a vehicle

becomes an obstacle, the distance obtained is different from the predetermined one, indicating

the presence of a vehicle. However, when using the ultrasonic sensors, there is a need to install

several along one street, hence inflating the cost of using ultrasonic sensors. In this project, one

of the most important factors is to keep the technology low cost hence ultrasonic sensors are

not desirable as they are expensive.

A method that is able to detect both moving and stationary vehicles is the use of cameras.

Video detection cameras, which have been employed in Texas, have a wide field of view, can

be used for counting vehicles, detect vehicle presence, speed, and occupancy and have the

8

ability to recognize license plates and track vehicles [5]. A review of current traffic congestion

management in Sydney, Australia, shows that the use of the InSync technology, which employs

internet protocol cameras, has a better performance than inductive loops, and provides the

possibility of visual monitoring of runways [4].

Although the use of cameras has often been dismissed as expensive, the study by Fernando

et al reveals that cameras cost less when used for several road intersections than induction loops

[4]. For a large road network with several intersections, therefore, the use of cameras can be

economically justified. Additionally, the use of a pi camera with a raspberry pi is a more

economical option since this combination is less expensive than the mainstream surveillance

cameras. Vidhya & Banu [15] explain the use of raspberry pi as the image processor for video

frames captured from a pi camera. One main advantage of using a pi camera is that it uses the

raspberry pi as its image processor. This is advantageous because the raspberry pi directly

integrates the open source computer vision (OpenCV) library [15]. OpenCV is an open source

image processing library with functions for real-time computer vision and image processing. It

is easy to install, quick, open-source, and can be used in real time applications. These features

make the raspberry pi and pi camera a good fit for this project.

 In choosing a pi camera for this project, an important feature is to have night vision.

Datondji et al [16] explain that visible light cameras are only suitable for daylight operations.

However, in this project, the camera is to be used for both daylight and night-time operations.

The use of infrared cameras [16] is suggested as a solution. Hence, the infrared camera module

v2 (Pi NoIR) is selected for this application. This version of the pi camera is capable of daytime

vision as well as night vision using infrared illumination.

9

2.2. Image Processing

Image processing has been done using different techniques. Tiwari & Singh [17] use

the OpenCV libraries in Python. They suggest that OpenCV is more efficient in image

processing than MATLAB. [17]. Its usefulness in real-time computer vision makes it a better

fit for real-time processing of images taken of streets in this project. The authors also suggest

the use of a raspberry pi together with the pi camera for image detection and processing, as they

are more budget friendly. This corresponds to the aim of this project which is to make traffic

control affordable, hence the relevance of using raspberry pi and pi camera.

Image processing is essential in vehicle detection and tracking in any computer vision

application. In video processing applications, image processing techniques are applied to

individual video frames then the motion of vehicles in the video is realized by comparing

sequential video frames [18]. In image processing, images are processed to obtain a wide range

of data such as vehicle count, speed, and vehicle type, depending on the relevant data for a

specific application. To obtain this data, the images captured by the camera undergo image

processing techniques to achieve vehicle detection, segmentation, and tracking.

i) Vehicle detection

In vehicle detection, Justin & Kumar [18] propose a step-by-step technique. This

involves image preprocessing steps (resizing, RGB to grayscale conversion, image

enhancement using power-law transformation/gamma correction) and Canny edge

detection. The captured image is resized because it could be so large that it consumes too

much disk space. It is then converted from RGB to grayscale. This reduces on disk space

occupied by the image and in addition, Justin & Kumar suggest that grayscale images

produce more acceptable results compared to their corresponding RGB images [18]. Image

10

enhancement sharpens the image features such as contrast and edges hence increasing image

quality. Choudekar et al [19] use the power law transformation (gamma correction) as the

image enhancement technique where the user chooses the appropriate value of gamma to

make fine details of the picture identifiable.

 To detect the objects on the image, edge detection is applied to the preprocessed image.

Edges are defined as points in a digital image at which brightness or gray levels change

suddenly [18]. Different edge detection methods have been proposed, and these are based

on different mathematical principles. Gradient-based edge detection [19] is one method

proposed, which detects edges by determining the maximum and minimum in the first

derivative of the image. One such gradient based technique is the Canny algorithm which

is suggested by most scholars, [14], [15], [18], [20]. Different edge detection algorithms

have been compared to determine their performance when the resulting pictures from these

algorithms are subjected to object counting algorithms [14]. In the test, 5 edge detection

algorithms (Boolean, Marr Hildreth, Sobel, Prewitt, and Canny) were used on ten different

image samples during a process of counting objects on each image. The result, as shown in

table 2.1, shows that Canny Edge detector was the most accurate at 93.47% accuracy,

making it very suitable for accurate detection of edges of vehicles in an image.

Canny edge detection method has also been proven to have better advantages than other

edge detection methods when other parameters other than accuracy are compared.

Therefore, Choukekar & Bhosale [21] have shown that Canny edge detection has better

overall performance than other techniques.

11

Table 2.1: The accuracy of different edge detection techniques

Image no. Actual no. of

objects

Boolean Marr

Hildreth

Sobel Prewitt Canny

1 4 2 6 2 2 4

2 3 0 4 1 1 2

3 4 2 3 2 3 4

4 5 2 3 2 3 6

5 5 2 3 3 3 5

6 7 3 5 3 2 6

7 4 1 5 1 1 4

8 5 2 5 3 2 5

9 3 0 3 0 1 2

10 6 4 3 2 3 6

Accuracy % 39.13 84.74 41.30 45.65 93.74

ii) Background/Foreground Segmentation

This involves segmentation of the image scene into individual objects in preparation for

tracking. Dangi et. al. suggest static background subtraction as the traditional method for

real-time segmentation of images in a video-based system [14]. Background subtraction is

a technique used to separate foreground objects from the background. The background

subtraction methods that have been suggested are BackgroundSubtractorMOG [22],

BackgroundSubtractorMOG2 [23] [24], and BackgroundSubtractorGMG [25]. All of these

three methods have been implemented in OpenCV. They model the background pixels by

a mixture of a certain number of Gaussian distributions. However,

BackgroundSubtractorMOG2 algorithm is preferable because it selects an appropriate

number of Gaussian distribution for each pixel as compared to BackgroundSubtractorMOG

which assigns a certain number of Gaussian distributions for all pixels in the picture. Hence

12

BackgroundSubtractorMOG2 is chosen for this application as it provides better adaptability

to varying scenes for each pixel in the picture [26].

iii) Tracking

Tracking each individual vehicle helps to update the position of the vehicle in the image.

From literature, a number of tracking techniques have been proposed. These include 3D

model-based tracking, region-based tracking, active contour-based tracking, and feature-

based tracking [27]. 3D-model based tracking involves tracking of objects in an image based

on knowledge of its 3D features and geometric trajectories. This is inefficient since it is

very difficult to have detailed models of all types of vehicles on the road. Active contour-

based tracking relies on the idea of active contours. Active contours are contours that are

dynamically changing to find the boundaries of the object. Active contour-based tracking

hence retains an approximate boundary of the object and changes this boundary as the object

moves within the image. However, this method is unable to segment vehicles that are

partially occluded by others. Region-based tracking involves identifying a connected region

on an image and tracking it over time. This technique is considered less effective especially

under congested traffic conditions as vehicles partially occlude one another instead of being

isolated hence making segmentation of individual vehicles difficult [27]. It can, therefore,

be deduced that a major problem with most of these techniques is their inability to track

objects accurately in the event of partial or full occlusion. Feature-based technique solves

this problem by tracking features of the vehicle rather than the whole vehicle, hence even

when the vehicle is partially occluded, some of its features remain visible [27]. Justin &

Kumar [18] suggest Kalman filter as a feature-based technique for tracking detected

13

vehicles in images. Kalman filter is an estimation algorithm that predicts the next state of a

continuously changing phenomenon using uncertain information. In the case of vehicle

tracking, only one Kalman filter is applied to each vehicle [18] hence the number of Kalman

filters applied to each video frame depends on the number of detected vehicles.

2.3. Pi to Pi Communication

The image processing steps described in the preceding sections are done for each lane

in an intersection. There is, therefore, need for a communication system that will enable

collation of data from the different lanes, comparison, and use of this data to control traffic

lights.

Kotwal et al [5] explore the various communication technologies that could be

employed in data transfer between two devices. First, they mention the use of serial

communication over copper twisted pair cables. The downside of this is that as the distance of

transmission increases, the signal strength is reduced and there is limited bandwidth. To

improve on bandwidth, they suggest the use of Ethernet communication over fiber optical cable

[5]. However, optical fiber is quite expensive hence not suitable for an application that seeks to

reduce costs as in this project. Also, optical fiber and twisted pair copper cables require digging

into the road pavement hence it is an invasive technology.

Wireless technologies (unguided media) are advantageous because they can have a

wider coverage area, allow for remote signal monitoring and reduced operation and

maintenance cost [5]. However, they only allow for limited transmission distance and

bandwidth. The distance for transmission in this project is about 10m between two devices, and

the data being transmitted is only the number and speed of vehicles on a street, hence wireless

14

communication can be used. Furthermore, wireless technologies do not require digging through

the road during installation hence are very suitable for this application.

Yanbing [28] proposes the use of nRF2401 transceiver as the low power wireless

communication system that helps achieve real-time data transfer at low cost, low power, and

dependable performance [29]. nRF2401 is a radio transceiver that requires very low power

during transmission. In fact, the input current is less than that required by one LED. Bluetooth

is also another common wireless communication method. It is a protocol which operates in the

2.4GHz ISM license-free band and uses the UART interface protocol. It has a 10m range. Wi-

Fi also uses the 2.4GHz band, has a maximum range of 100m and can transfer data at very high

speeds. However, compared to the other methods, Wi-Fi is more expensive. Based on the

comparisons, the nRF24L01 transceiver is chosen for its low power consumption, affordability,

and acceptable range of transmission.

In this chapter, different vehicle detection technologies have been discussed and their

performance assessed based on information from some related work. From literature, the pi

camera has been determined to be the most suitable since it does not require drilling through

the road surface during installation or maintenance. Image processing steps have also been

discussed and techniques suitable for this application decided. Finally, the means of

communication between two lanes at an intersection is examined.

15

Chapter 3 : Design and Implementation

In this chapter, the design and implementation of the project are discussed. First, the

design decisions are explained by using Pugh matrices to compare different technologies. The

system architecture is then explained and components and software used are outlined. Finally,

the implementation of the components of the system is then explained. In this regard,

affordability is the major factor considered when designing this system, and in addition, each

of the different components of this system has requirement specifications.

The system constitutes the following components:

1. The vehicle detection component

2. The image processing component

3. The pi-to-pi communication component

4. The traffic signal scheduling algorithm section

5. The traffic light section

3.1. Design Decisions and Pugh Matrices

In choosing the technologies to use for the different components of the system, some

design decisions were considered for the different components of the system.

3.1.1. The Vehicle Detection Component

There are various options for sensors that could be used for vehicle detection. These include

the inductive loops, ultrasonic sensors, magnetic sensors, surveillance cameras, and pi cameras.

The Pugh matrix in table 3.1 shows the process of arriving at the design decision. The most

16

important factors for choosing a vehicle detection technique are cost, accuracy, ability to detect

both moving and stationary vehicles and ease of maintenance.

Table 3.1: Pugh matrix to choose the best vehicle detection technique

Criteria Weigh

t

Inductive

loops(Baselin

e)

Ultrasoni

c sensor

Magneti

c sensor

Surveillan

ce camera

Pi

camer

a

1 Cost 3 0 -1 -1 -1 1

2 Accuracy 2 0 1 1 1 1

3 Ability to

detect both

moving and

stationary

vehicles

3 0 1 1 1 1

4 Ease of

maintenance

2 0 1 0 1 1

Total 0 4 2 4 10

From the Pugh matrix, the best sensor to use is the pi camera, mainly due to its cost-

effectiveness as compared to other sensors.

The camera to be used should satisfy the following criteria:

i. Versatility- the ability to record outstanding images in various lighting conditions and

weather conditions such as extreme fog

ii. Night vision and ability to take quality pictures under low light conditions

iii. High still resolution to ensure high quality of images.

iv. Wide field of view (both horizontal and vertical)

The Raspberry Pi camera v2 has a field of view of 62.2 degrees

The raspberry pi camera options available are:

17

i. Pi camera module v1

ii. Pi camera module v2

The pi camera version 2 is an upgrade of version 1, having a wider field of view, higher

resolution as well as night vision capabilities. Table 3.2 shows the differences in specifications.

Table 3.2: The differences in characteristics of the two pi camera modules

Characteristics Camera module v1 Camera Module v2

Horizontal field of view 53.50 +/- 0.13 degrees 62.2 degrees

Vertical field of view 41.41 +/- 0.11 degrees 48.8 degrees

Net price $25 $25

Still resolution 5 Megapixels 8 Megapixels

Night vision no yes

Table 3.3 shows the Pugh matrix used to choose the best pi camera to be used.

Table 3.3: Pugh matrix for evaluating the best pi camera to be used.

Criteria # Criteria Weight Pi camera

module v1

Pi camera

module v2

1 Sensor resolution 2 0 1

2 Night vision 3 0 1

3 Field of view(vertical

and horizontal)

3 0 1

4 Still resolution 2 0 1

Total 0 10

From the Pugh matrix, the module v2 is picked for its desirable characteristics of night vision,

the wide field of view, and its resolution. The Raspberry pi NoIR camera board v2 was therefore

used in this project.

18

3.1.2. The Image Processing Component

The choice of the image processing component depends on the choice of the vehicle

detection component, hence the raspberry pi is chosen as it is compatible for use with the pi

camera. The image processing compartment consists of an algorithm running on a raspberry pi

attached to every camera for image processing to extract important information (number of

vehicles on the lane). The raspberry pi is a single board microcomputer that uses a Linux-based

operating system and external peripherals such as keyboard, mouse, and monitor. It can also be

accessed remotely using another computer’s monitor via SSH or VNC.

3.1.3. The Pi to Pi Communication Component

A communication system to enable data communication between the raspberry pi’s on

the roads at the intersection. Table 3.4 shows a comparison of the different possible

technologies for pi-to-pi data communication.

Table 3.4: A comparison among the different possibilities for pi-to-pi data

communication.

Characteristics Wifi Bluetooth NRF24L01 433 MHz Tranceiver

Working

frequency

2.4GHz 2.4GHz 2.4GHz 433.4MHz- 473.0MHz

Communication

distance/range

400m 10m 10m 1000m

Interface

protocol

UART,SPI UART SPI UART

In this project, the nRF24L01 transceiver was chosen to be used for pi to pi communication

because it is cheaper than the Bluetooth, Wi-Fi, and the 433MHz transceiver.

19

3.2. System Architecture

In the system, there is a pi camera per lane on the intersection, and each camera is

attached to a raspberry pi. The cameras record an image of the lane traffic, and this image is

transmitted to the raspberry pi and processed. The raspberry pi performs image processing on

each image, periodically determining the number of vehicles at the intersection on each street.

Each raspberry pi transmits its information about the number of vehicles to a central raspberry

pi using nLRF2401 transceivers connected to the raspberry pi’s. The receiving raspberry pi has

the algorithm that compares the number of vehicles on the lanes, and based on this, assigns the

amount of green light time for the lanes. The raspberry pi then sends the instruction to the traffic

lights which respond accordingly, ensuring an optimum amount of wait time for vehicles at the

intersection. This process is summarized in figure 3.1.

20

Figure 3.1: The cycle of what happens for every lane in the intersection

Figure 3.2 shows the working of the system with two lanes. The description of the

arrows are as follows:

A- Camera transmitting the image to the raspberry pi for processing.

B- The raspberry pi passing on the data on the number of vehicles to the transceiver.

C- Pi-to-pi communication via the transceiver module.

D- Transceiver passing on received data to the raspberry pi.

E- The central raspberry pi sending commands to traffic lights.

21

Figure 3.2: Schematic of the system showing major components and communication lines

(arrows)

3.3. Description of Components and Software Used

3.3.1. Raspberry Pi 3

Raspberry pi is a small chip-like single board computer. There are various model of

Raspberry pi available in the market such as the raspberry pi1 model B, raspberry pi1 model

B+, raspberry pi2, raspberry pi3 model B. These differ in memory capacity and hardware

features. Raspberry pi3, which is used in this project, has inbuilt Bluetooth and Wi-Fi modules

whereas in previous versions these modules were not available on board. It has 1.2 GHz 64-bit

quad core ARMv8 CPU with 1 GB of RAM [4]. Additional characteristics include:

 2.5A power adapter

 8GB SD card preinstalled with the new out of the box (NOOBS) software. NOOBS’

advantage is that it allows you to remove, install and reinstall Linux operating system

22

(OS) via an easy to use graphical user interface (GUI). The OS used in this project is

Raspbian – an open source Debian Linux OS.

 4-2.0 USB ports- these are used for connecting peripheral devices such as mouse and

keyboard to the raspberry pi.

 40 pin GPIO header- these pins are used to control the external devices connected to

the raspberry pi via these pins. In this project, these pins are used to control traffic

lights and signals sent to and from the transceiver.

 Camera serial interface (CSI) port- this is the port through which the pi camera is

connected to the raspberry pi.

 Display serial interface (DSI) port - for connecting an LCD to the raspberry pi

 Ethernet port- this is used to connect the raspberry pi to the PC to allow network

sharing between the PC and the raspberry pi.

 An HDMI output- this is for connecting the raspberry pi to a monitor through a HDMI

cable.

 A Micro USB port for powering.

 Built-in chip antenna connecting to built-in Wi-Fi

 SD slot for SD card

Raspberry pi pins have two numbering conventions: pin numbers (BOARD) and Broadcom

(BCM) GPIO numbers. Any of these conventions can be used but it is important not to mix

them up. For the applications in this project, the BCM numbering system has been used.

23

3.3.2. Pi Camera

The camera is used to take the pictures of the lanes. These images are sent to the raspberry pi

to perform image processing for counting vehicles. The pi camera version 2 is used, which has

night vision capabilities.

3.3.3. Python Software

The algorithms and code blocks in this project are written in the Python programming language.

3.3.4. OpenCV

OpenCV stands for Open Source Computer Vision. It is a library of programming function

mainly for real-time computer vision. It has over 2500 optimized algorithms [8] which can be

used for facial recognition, object detection, and other computer vision applications. OpenCV

has interfaces for Python, C++, Java, and MATLAB, and supports different operating systems-

Windows, Linux, Mac.

3.3.5. nRF24L01 Transceiver

This is a single chip 2.4GHz transceiver from the Nordic company in Norway. It operates

in the 2.4GHz frequency band. This is the Industrial, Scientific, and Medical (ISM) frequency

band reserved for unlicensed low power devices. The data transfer rate (DTR) can either be

250kbps, 1Mbps, or 2Mbps, and it uses Gaussian Frequency Shift Keying (GFSK) modulation.

The transceiver module’s operating voltage is between 1.9V to 3.6V and the nominal current is

50mA, the maximum operating current is 250mA. The version of the transceiver module with

the on-board antenna can communicate over a maximum distance of 100meters.

This transceiver module uses the Serial Peripheral Interface (SPI) communication protocol.

The output power and communication channel and data rate are configured by software through

24

the SPI interface. It is cheaper than Bluetooth, has no complicated communication agreement,

free to communicate within products of a type [28].

3.4. Implementation

The implementation of the proposed design was done at three levels: algorithm

implementation, image capture and processing, and data communication implementation

3.4.1. Algorithm Implementation.

To solve the problem of unnecessarily long wait times of vehicles at traffic intersections,

an algorithm was implemented based on an intelligent system proposed by Zhou et al in [30].

They proposed the factors that determine the green light determination. These are: traffic

volume (number of vehicles on a lane), waiting time (amount of time vehicles wait on a lane

before getting green light time), blank cases(length of spaces between vehicles on a lane),

special circumstances (such as presence of an ambulance or fire trucks), and hunger level(the

extent to which a lane has not received green light.). The first step in designing the algorithm

is assuming an intersection as shown in figure 3.3. The arrows indicate the direction of flow of

traffic, and the lanes are numbered 1-8.

Figure 3.3: An outline of the intersection being considered

25

The intersection consists of four two-way streets, each way having two lanes. Based on this

outline of lanes, there are 12 possible cases of green lights, as shown in figure 3.4.

Figure 3.4: The twelve possible cases of green light on an 8 lane intersection

In the figure 3.4, the dotted arrows show the lanes with green light, and the continuous arrows

show the lanes where the traffic light is red and vehicles are not moving.

26

 To formulate the algorithm, the following assumptions were made:

a. The intersection has eight lanes

b. The road operates on a right-drive system

c. All the vehicle move at a constant average speed

First, the algorithm determines the green light sequence by determining the next case to

have green light, then it determines the green light length for that case. The next case to have

the green light is determined by several factors: traffic volume, hunger level, and blank cases.

The different factors are explained below:

3.4.1.1.Traffic Volume

Traffic volume of a case is computed as the fraction of the total number of vehicles on all lanes

that is the number of vehicles on the lanes in that case.

𝑇𝑉𝑐𝑎𝑠𝑒 𝑖 =
𝑇𝑉𝑙𝑎𝑛𝑒 𝑎 + 𝑇𝑉𝑙𝑎𝑛𝑒 𝑏

∑ 8
𝑗=1 𝑇𝑉𝑙𝑎𝑛𝑒 𝑗

 , 1 < 𝑖 < 12

Where 𝑇𝑉𝑙𝑎𝑛𝑒 𝑎 𝑎𝑛𝑑 𝑇𝑉𝑙𝑎𝑛𝑒 𝑏 are the number of vehicles in the two lanes associated with case

i. The value of i is between 1 and 12 because there are 12 possible cases as in figure 3.4. The

values of 𝑇𝑉𝑙𝑎𝑛𝑒 𝑎 𝑎𝑛𝑑 𝑇𝑉𝑙𝑎𝑛𝑒 𝑏 are determined by image processing.

3.4.1.2.Hunger Level

The hunger level of a case refers to the extent to which that case has not received green light

time. This is calculated to ensure fairness in the allocation of green light periods. This is

because, for a case where there are only very few vehicles on certain lanes, they wait for so

long without getting green light if only traffic volume is considered.

𝐻𝐿𝑐𝑎𝑠𝑒 𝑖 = 1 −
𝑁𝑖

∑ 𝑁𝑖
12
𝑖=1

27

Where 𝑁𝑖 is the number of times 𝑐𝑎𝑠𝑒 𝑖 has received green light and ∑ 𝑁𝑖
12
𝑖=1 is the total

number of times all the cases have received green light.

3.4.1.3.Blank Cases

The term blank cases refers to the occurrence of spacing between vehicles on a lane.

The importance of this is to ensure that as traffic flows on a lane with green light, the light

turns red when there is a blank case to ensure that wait time for vehicles on other lanes is

minimized. In so doing, there is no situation where a lane has green light yet there are no

vehicles passing. This parameter is however not applicable in this design because pictures

are taken of lanes at the time when the vehicles are at rest. Hence there is a minimal

possibility that a vehicle waiting on a lane will stop a long distance from the one ahead of

it.

Although [30] suggests that waiting time and special circumstances are also important factors,

the actual implementation of this work does not include those.

The Python code for the determination of these factors is included in Appendix IV

3.4.1.4.Determining the Green Light Priority

The green light priority is proportional to each of the factors mentioned above. The equation

below shows a relation between the green light priority and the different factors.

𝐺𝐿𝐷𝑐𝑎𝑠𝑒 𝑖 = 𝑎1𝐵𝐶𝑐𝑎𝑠𝑒 𝑖 + 𝑎2𝐻𝐿𝑐𝑎𝑠𝑒 𝑖 + 𝑎3𝑇𝑉𝑐𝑎𝑠𝑒 𝑖

Where 𝑎1, 𝑎2, 𝑎𝑛𝑑 𝑎3 are coefficients of the factors that determine how important the factors

are in determining the green light priority of a case. According to [30], the factors in order of

importance are: blank cases, hunger level, and traffic volume. This same order of preference is

applied in this design, and the higher the order of preference, the higher the value of the

coefficient. Hence the values of the coefficients are:

28

𝑎1 = 5; 𝐵𝐶 − 𝑏𝑙𝑎𝑛𝑘 𝑐𝑎𝑠𝑒𝑠
𝑎2 = 4; 𝐻𝐿 − ℎ𝑢𝑛𝑔𝑒𝑟 𝑙𝑒𝑣𝑒𝑙

𝑎3 = 3; 𝑇𝑉 − 𝑡𝑟𝑎𝑓𝑓𝑖𝑐 𝑣𝑜𝑙𝑢𝑚𝑒
The Python code for the determination of green light priority is included in Appendix IV

3.4.1.5.Determining the Green Light Length

Having determined the case to get the next green light, the length of time the green light

will be on for this case is then computed. The determination of green light length depends on

the number of vehicles on the lanes associated with that case.

The amount of time one car takes to move across an intersection is calculated as:

𝑇𝑛𝑒𝑥𝑡 1 =
𝐿𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝑐𝑎𝑟 𝑠𝑝𝑒𝑒𝑑

Hence the total time taken for all cars in a particular case to move across an intersection is:

𝑇𝑛𝑒𝑥𝑡 = 𝑇𝑛𝑒𝑥𝑡 1 ∗ max (𝑇𝑉𝑙𝑎𝑛𝑒 𝑎 , 𝑇𝑉𝑙𝑎𝑛𝑒 𝑏)

The green light is then on for this amount of time. However, there is a set maximum time

𝑇𝑚𝑎𝑥 during which green light can be assigned to a case. If the amount of time 𝑇𝑛𝑒𝑥𝑡 is greater

than 𝑇𝑚𝑎𝑥 , then that case is assigned 𝑇𝑚𝑎𝑥 . This is because a case might have a very large

number of vehicles such that the vehicles in other lanes wait for too long before getting green

light, hence defeating the purpose of this project which is to minimize wait times of vehicles.

The actual implementation of this algorithm is done using the Python programming language

and the code is provided in Appendix IV. The high-level process of the algorithm of green light

sequence and green light length determination is shown in the flow chart in figure 3.5.

29

Figure 3.5: A flow chart showing the high-level steps in green light sequence and green light

length determination

3.4.2. Image Capture

A raspberry pi camera was used to capture the images that will then be processed to

obtain the inputs required. The camera chosen for this purpose has an infrared capability for

night vision. The factors to be considered when positioning the camera for image capture

include the camera’s field of view. In this case, the horizontal field of view is 62o which will

inform the positioning of the camera during testing. The image is captured at the point when

vehicles in most of the lanes are at rest, and only vehicles in the lanes associated with the case

with green light are moving.

30

To take pictures using the pi camera, the camera module was first connected to the

raspberry pi camera serial interface. The camera was mounted onto the interface such that the

silver stripes of the ribbon face the side the HDMI port, as in figure 3.6.

Figure 3.6: Positioning the camera module on the raspberry pi

The raspberry pi was then configured by ensuring the ‘camera’ option in the ‘interfaces’ tab of

the ‘Raspberry Pi Configuration’ is enabled, as shown in figure 3.7. The ‘Raspberry Pi

Configuration’ can be accessed from the preference section of the raspberry pi. The raspberry

pi was then rebooted to ensure the new configuration is active. To take a picture, the python

code in Appendix V was run.

Figure 3.7: The raspberry pi desktop steps to enabling the camera option

31

Due to the night vision requirement, the camera was fitted with infrared LEDs to emit infrared

which helps the camera achieve night vision. The setup of the camera with infrared LEDs

mounted on the raspberry pi is shown in figure 3.8.

Figure 3.8: The setup of the pi camera fitted with infrared LEDs

3.4.3. Image Processing

The captured image was taken through a series of image processing stages to determine

the parameters of interest such as the number of vehicles. The step-by-step process is outlined

in the flow chart in figure 3.9.

Figure 3.9: A flow chart summarizing the image processing steps

32

i. Resizing

Resizing was done for two reasons: the image size could be too large to fit in the viewing

window, and the image size could be consuming too large disk space. In resizing, new

height and width are defined by scaling the original image to a certain scaling factor. Listing

1 shows the code used in resizing.

Listing 1

ii. RGB to Grayscale Conversion

The use of grayscale images was important to obtain more acceptable image processing

results. The cv2. cvtColor method is used as in the line of code in listing 2.

Listing 2

iii. Image Enhancement: Power Law Transformation

Image enhancement was done to sharpen the image features, hence increasing quality.

The power law transformation is used where a gamma value is chosen. Adjusting the

gamma value adjusts the sharpness of the image. For this case, a gamma value of 1.2 is used

which provides sufficient image sharpness. Listing 3 shows the code used.

Listing 3

height, width, depth = oriimg.shape
imgScale = 5
newX,newY = oriimg.shape[1]*imgScale,
oriimg.shape[0]*imgScale
sizedimg = cv2.resize(oriimg,(int(newX),int(newY)))

gray_image = cv2.cvtColor(sizedimg, cv2.COLOR_BGR2GRAY)

im_power_law_transformation = cv2.pow(gray_image1,1.2)

33

iv. Canny Edge Detection

Edge detection was done to find points in the image where the color changes

significantly. The Canny edge detection uses hysteresis thresholding in which a minimum

threshold and maximum threshold are defined. The pixel values above the maximum

threshold are definite edges, those below the threshold are not part of the edge, and those in

between can be part of the edge or not depending on whether they are connected to an edge

pixel or not. In the code in listing 4, the first argument is the image, the second is the

minimum threshold, and the third is the maximum threshold.

Listing 4

v. Contours

Contours are continuous pixels that are used to crop objects out of the image. This is

used to crop the vehicles out of an image before counting them.

vi. Vehicle Counting

The longest continuous contours are counted as these are the contours outlining the

vehicles in the image. Rectangles were then traced around these vehicles to show their

position. The Python code for this implementation is shown in Appendix III.

3.4.4. Pi to Pi Communication

Communication between two raspberry pi’s is established using nRF24L01 transceiver

whose pin-out is shown in figure 3.10. Table 3.5 explains the functions of the pins.

edges = cv2.Canny(img,100,200)

34

Figure 3.10: The pin-out and top view of the nRF24L01 transceiver module

Table 3.5: nRF24L01 pin functions and connections to the raspberry pi

nRF24L01 Pi pin

(BCM

notation)
Pin Abbreviation Function

Power VCC For powering the transceiver

module using 3.3V

3.3V

Ground GND For connecting to the ground of

the system

Ground

Chip Select Not CSN To be kept high always to ensure

the SPI is not disabled

GPIO 8

Chip Enable CE For enabling SPI communication GPIO 17

Master Out Slave In MOSI Connected to the MOSI pin of the

microcontroller unit(MCU) for

the module to receive data from

the MCU to the nrf24L01

GPIO 10

Master In Slave Out MISO Connected to the MISO pin of the

MCU for the module to send data

to the MCU from the nrf24L01

GPIO 9

Serial Clock SCK Provides the clock pulse for SPI

functionality

GPIO 11

The sending and receiving raspberry pi’s are each connected to a transceiver module, both with

the same pin-out as outlined on the table. Figure 3.11 shows a schematic of the connection.

35

Figure 3.11: Schematic of an nRF24L01 transceiver connection to the raspberry pi

36

Chapter 4 : Testing, Results, and Analysis

In this chapter, the testing of the various components of the system is done, and the

results analyzed.

4.1. Green Light Sequence and Length Determination

The green light sequence and length determination algorithm was tested using only

four lanes out of eight. This is because of the limited number of raspberry pi digital pins, each

of which is connected to a specific color of traffic lamp on a lane. For two colors (red and

green; two digital pins of the raspberry pi were required per lane). For scalability, the use of

GPIO port expander chips can be employed. The four lanes used are highlighted in figure 4.1.

Figure 4.1: Lanes whose numbers are circled are used for testing

These lanes are sufficient for testing case 1 to 4 from the cases shown in figure 3.4. A

case is an instance of green light, where two lanes out of the eight receive green light while

the rest of the lanes’ light is red. There are twelve possible cases as illustrated in the previous

chapter in figure 3.4. The cases used and their corresponding lanes are shown in table 4.1.

37

Table 4.1: The lanes related to cases 1 to 4

Case Lanes

1 3&7

2 7&8

3 4&8

4 3&4

During this test, the values of traffic volume for each lane were generated using a

randomizer in python. These values were fed into the green light sequence and length

determination algorithm to determine the next case to receive green light and the length of green

light. The instruction was then sent to the traffic lights (represented by LEDs in figure 4.2.) to

turn the green lights of the appropriate lane on for a specific amount of time. The circuit diagram

used for testing is also shown in figure 4.2 and 4.3.

Figure 4.2: Circuit diagram for testing the green light sequence and length determination

algorithm

38

Figure 4.3: Schematic for testing the green light sequence and length determination algorithm

From this circuit diagram, the setup in figure 4.4 was built to test the working of the algorithm.

Figure 4.4: The setup of the traffic light system of four lanes at an intersection

39

The test was run 5 times and the results obtained from the first two test runs are as shown in the

Python output in table 4.2 and 4.3.

Table 4.2: Results of a test run on the green light sequence and length determination

algorithm

Test run 1

 Case 1 Case 2 Case 3 Case 4

TV 0.2549 0.1765 0.2549 0.3333

HL 0.6 0.9 0.9 0.9

GLD 6.4279 6.1600 6.5722 8.1419

Maximum GLD is 8.14192403258522

Maximum GLD is of case4

Max traffic volume of case4 is 10

Green light length is 25.0

On the table, traffic volume (TV), hunger level (HL), and green light determination

(GLD) are shown for case 1 to 4. From the results, case 4 has the highest traffic volume and is

among the cases with the highest hunger level. Hence, it has the highest priority for green light.

The results also shows that the lane with the maximum number of vehicles in case 4 has 10

vehicles, hence green light length is calculated based on this to be 25.

Table 4.3: Results of a second test run on the green light sequence and length determination

algorithm

Test run 2

 Case 1 Case 2 Case 3 Case 4

TV 0.2 0.2 0.16 0.16

HL 0.623 0.769 0.769 0.769

GLD 5.591 7.379 6.354 6.755

Maximum GLD is 7.379

Maximum GLD is of case2

Max traffic volume of case4 is 6

Green light length is 15.0

In test run 2, the case with the highest priority is again determined from the traffic

volume and hunger level data. This time, case 2 has the highest priority. However, the lane with

40

the highest traffic volume in case 2 has 6 cars as compared to the 10 in test run 1 (table 4.2),

hence the green light length assigned is 15 which is less than that assigned in test run1.

The traffic lights on the lanes are also seen to turn green for the determined period of

time, showing that the algorithm works as desired.

4.2. Test Results on Vehicle Counting

In the vehicle counting algorithm, the image taken by the pi camera goes through a

series of steps before the vehicles in the image are finally identified. These include resizing,

RGB- grayscale conversion, edge detection, contouring and finally vehicle counting where

rectangles are drawn around objects that are determined by the algorithm to be vehicles.

When the images taken by the pi camera are passed through the algorithm, the

effectiveness of the algorithm in giving the correct number of vehicles is low. Even from

observation, pictures taken using the pi camera are blurry. The image of a lane taken by a pi

camera is less clear than that taken by a phone camera from the same distance.

Figure 4.5: Pictures taken from the same distance (10m) from the lane using a pi camera (a)

and phone camera (b).

Objects in image (a) are indistinguishable by the algorithm. The image processing

algorithm uses the contouring concept to distinguish objects in the image. Contours are

(a) (b)

41

neighboring pixels where the color intensity in the image changes sharply. In the case of a

blurry image as in the pi camera image (a) in figure 4.5, the color intensities do not change as

sharply as they do in a clearer image as in the phone camera image (b).

The blurry effect of an image can either be caused by low resolution or low shutter speed

of the camera. In the case of the pi camera, the camera resolution is 8megapixels, and the shutter

speed is 2 seconds. The two seconds is long enough to cause a blurry effect on the image.

The images with higher resolution from the phone camera are therefore used for testing

the image processing algorithm. From the vehicle counting algorithm, images (a) to (d) in figure

4.6 show the outputs of counting vehicles in an image.

42

Figure 4.6: Output stages of images taken through image processing during vehicle counting.

In (a), the image output after it has been resized is shown. Image (b) is the grayscale image of

the resized image is shown. Image (c) shows the results of edge detection and (d) shows the

rectangles superimposed on the vehicles on the resized image.

4.3. Camera Calibration

Camera calibration is the process of determining the best intrinsic and extrinsic

parameters of the camera. Knowing the intrinsic characteristic of the camera (field of view), it

is possible to estimate the extrinsic characteristics (positioning) of the camera through a series

of computations and experiments.

(a) (b)

(c) (d)

43

The field of view of the noir pi camera is 62.2o which limits the positioning of the

camera relative to the intersection and affects the accuracy of the vehicle count on a lane. If the

camera is placed close to the intersection, it underestimates the traffic volume to just that within

the field of view when there could be a longer queue of cars waiting beyond the field of view

of the camera. If the camera is placed too far from the lane, the images could be too blurred

hence cannot be processed efficiently by the image processing algorithm.

An experiment was then conducted to determine the behavior of the camera as the

perpendicular distance L from the lane changes. This experiment was carried out at a constant

lighting condition in the afternoon. The height h of the camera from the ground kept constant

at 1.5m. This height h=1.5m is chosen by finding the approximate average height of vehicles

common on the road. The whole vertical height of the vehicle should be seen within the field

of view of the camera.

Max height of any vehicle on the road = 3m

Hence the camera should be at least 1.5m above the ground. For the max height to be

captured within the field of view, the camera should be a certain minimum distance away from

the lane. The vertical field of view of the pi camera is 48.8o hence the setup is as shown in the

diagram in figure 4.7.

44

Figure 4.7: Sketch of the lane and the relative position of the camera

𝛼 = 24.4°

𝛽 = 65.6°

𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 ℎ𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑎𝑚𝑒𝑟𝑎 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑔𝑟𝑜𝑢𝑛𝑑 = 1.5𝑚

𝐿 = ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑎𝑚𝑒𝑟𝑎 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑙𝑎𝑛𝑒 = 1.5𝑚

𝐴𝐷 = 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑤𝑖𝑡ℎ𝑖𝑛 𝑡ℎ𝑒 𝑓𝑖𝑒𝑙𝑑 𝑜𝑓 𝑣𝑖𝑤 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑎𝑚𝑒𝑟𝑎

From sine rule:

1.5

sin 24.4°
=

𝐿

sin 65.6°

𝐿 = 3.3𝑚

Hence the camera has to be at least 3.3m from the lane. Pictures are taken from varying

distances L from the lane as in the figure below. The pictures are taken using the raspberry pi

and a phone camera for comparison. Taking the pictures from the side view, the height of the

camera from the ground is maintained at 1.5m.

An experiment is further carried out to determine the maximum horizontal distance the

camera can be mounted away from the lane. Pictures are taken with the pi camera from various

horizontal distances of the camera from the lane. The setup is as shown in figure 4.8.

45

Figure 4.8: Sketch of the lane and horizontal distance L of the camera from the lane

𝐸𝐺 − ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑤𝑖𝑡ℎ𝑖𝑛 𝑡ℎ𝑒 𝑓𝑖𝑒𝑙𝑑 𝑜𝑓 𝑣𝑖𝑒𝑤 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑎𝑚𝑒𝑟𝑎

The results of this experiment are recorded in table 4.4.

Table 4.4: Number of vehicles detected within the field of view of a pi camera and phone

camera

Distance L (m) No of cars within the field of

view (pi camera)

No of cars within the field

of view (phone camera)

5 1.5 1.5

10 3 3

15 3.5 4

20 4.5 5

25 5 5.5

30 6 6.5

From the table, the longer the length L, the more vehicles can be seen within the field of

view of both cameras. It is desirable to have as much view as possible to ensure an informed

judgment of the traffic volume. However, during the experiment, pictures taken from a distance

of 30m or more had so many obscurities making it difficult for the image processing algorithm

to distinguish between objects in the image. Other limitations to how far the camera can be

mounted from the lane are:

 Limited right-of-way for construction of traffic infrastructure

46

 The maximum distance through which the noir pi camera can ‘see’ using infrared

illumination.

A further experiment was carried out to determine the maximum length L through which

the pi camera can see. This experiment was carried out in low light intensity at night with only

the street lights and the infrared emitters illuminating the street. Infrared LEDs were used as

the source of infrared.

Table 4.5: Number of cars within the field of view of the camera during low light conditions

Distance L (m) No of cars within the field of view

5 1

10 2

15 0

From table 4.5, the number of vehicles within the field of view of the camera increases as the

camera position is moved further away from the lane. However, at a distance of 15m, the image

taken of the lane is so indistinguishable that the results of vehicle counting shows that there are

no cars at all within the field of view.

4.4. Results on Pi to Pi Communication

The pi to pi communication component is essential in ensuring constant communication

between lanes at an intersection. The use of the nRF24L01 radio transceiver was selected as the

means of communication. This transmission was not successful despite the fact that

fundamental steps for using this transceiver were followed. The transmitter and receiver were

both set to be on the same channel, with equal data rate, payload size, and CRC (cyclic

redundancy check) length.

47

Communication was therefore done over Wi-Fi where one raspberry pi is set as a server

while the other is a client, sending requests to the server. The flask web micro-framework is

used to set one raspberry pi as a server, while the urllib3 python library is used to set the other

raspberry pi as an HTTP client that sends HTTP requests. The payload to be sent is embedded

within the request. The code for this process is found in Appendix VII.

48

Chapter 5 : Conclusion, Limitations and Future Work

5.1.Conclusion

The successful design and implementation of this affordable density based traffic

management system depends on appropriate camera positioning, an accurate image processing

algorithm, an efficient and low power pi to pi communication system, as well as an efficient

algorithm for green light sequence and length determination.

The image processing for vehicle detection done in this project can certainly be improved

for more accurate results and better working of the system as a whole. The light intensity at an

intersection is dynamically changing. The vehicle detection technique and image processing

algorithm should take into account these changing variables so as to obtain an accurate reading

of the traffic density. From the experiments, the longer the distance of the camera from the lane,

the more the vehicles within the field of view of the camera. However, at a point 30m, the

vehicles are indistinguishable in the image, hence there is a limit to how far the camera can be

mounted from the lane.

In determining the green light sequence, vehicle count for the lanes at the intersection is

important. This data is obtained from the image processing section. To ensure fairness, the

hunger level parameter is introduced. This takes into account the number of times a lane has

not received green light and ensures that wait times of lanes with few vehicles are not overly

prolonged. Blank cases of lanes are noted to ensure green light is not assigned to a lane when

there are no vehicles passing through that lane. All these parameters put together reduce the

wait time of the vehicles at the intersections.

49

The use of raspberry pi and pi camera for this application lower the cost of the system as

these are affordable devices. The use of nRF24L01 transceiver is also advantageous since it is

low cost, consumes very low power during use and operates within the license-free 2.4GHz

band. However, in this project, the use of this radio transceiver was unsuccessful hence

communication was done over Wi-Fi.

5.2.Limitations

The results obtained by the image processing algorithm are limited by the angle of field of

view of the camera. The camera can only view a few cars within its field of view when placed

at a distance from the lane. This number increases as the camera position moves further away

from the lane but is limited by certain factors. If the camera is too far from the lane, the images

of cars are not so clear hence the image processing algorithm is unable to distinguish between

objects in the image. The maximum position the camera can be mounted for the images to

remain distinguishable is 30m. The distance of the camera from the lane is also limited by the

right-of-way available for use for transport infrastructure. The camera can only be mounted

within the land that is allocated for this purpose.

The use of Wi-Fi or the proposed nRF24L01 utilizes the 2.4GHz license-free ISM

bandwidth which is one of the most widely used bandwidths. This bandwidth is usually

overcrowded, which may limit the speed of data transfer between the raspberry pi’s.

The implementation of the green light sequence and length determination algorithm in this

project does not take into account the special circumstances such as presence ambulances and

fire trucks. This limits its functionality in case such emergency vehicles need to be given

priority.

50

5.3.Future Work

The green light determination depends on several traffic factors. Incorporating other factors

such as special circumstances are also important. For instance, the incorporation of a system

that will detect special vehicles such as fire brigade trucks, ambulances is important. This factor

should be included to give priority to the lane with such vehicles over the rest of the lanes. To

include this parameter, it would be necessary to incorporate methods for detecting siren sounds

such as the use of neural networks as explored by Tran et al in [31].

For a more accurate image processing algorithm, the use of machine learning will increase

the accuracy of the vehicle detection algorithm. Using a trained algorithm that will learn the

specific features of a vehicle will greatly improve the accuracy of vehicle detection.

The field of view of the camera can be increased using special lenses to ensure that even

when there are limitations to how far the camera can be mounted from the lane, a maximum

field of view is maintained.

51

References

[1] I. Greco and A. Cresta, "A Smart Planning for Smart City: The Concept of Smart,"

ICCSA 2015, Part II, LNCS 9156, p. 563–576, 2015.

[2] M. Eremia, L. Toma and M. Sanduleac, "The Smart City Concept in the 21st Century,"

in 10th International Conference Interdisciplinarity in Engineering, 2017.

[3] D. Sikora-Fernandez and D. Stawasz, "The Concept of Smart City in the Theory and

Practice of Urban Development Management," The Journal of the Romanian Regiaonal

Science Association, vol. 10, no. 1, 2016.

[4] B. Fernando, E. Gray and J. Kellner, "A Review of Current Traffic Congestion

Management in the City of Sydney," Sydney, 2013.

[5] A. R. Kotwal, S. J. Lee and Y. J. Kim, "Traffic Signal Systems: A Review of Current

Technology in the United States," Science and Technology , vol. 3, no. 1, pp. 33-41,

2013.

[6] P. Daniel, K.-N. Daniela and I. Edouard, "Evaluation of Adaptive Traffic Control

System," in 59th International Symposium ELMAR, Zadar-Croatia, 2017.

[7] S. G. Shelby, D. M. Bullock, D. Gettman, R. S. Ghaman, Z. A. Sabra and N. Soyke,

"An Overview and Performance Evaluation of ACS Lite – A Low Cost Adaptive Signal

Control System," in 87th TRB Annual Meeting, Washington DC, 2008.

[8] S. McGregor and D. M. Doya, "Traffic Costs Nairobi $570,000 a Day as No. 2 Africa

Hub," 25 March 2014. [Online]. Available:

52

https://www.bloomberg.com/news/articles/2014-03-25/nairobi-traffic-loses-570-000-a-

day-as-no-2-africa-hub.

[9] "African cities with worst traffic," May 2018. [Online]. Available:

http://www.mediamaxnetwork.co.ke/435409/african-cities-with-worst-traffic/.

[10] A. Dzikus, "Fighting traffic congestion in Nairobi," 28 April 2017. [Online]. Available:

https://www.the-star.co.ke/news/2017/04/28/fighting-traffic-congestion-in-

nairobi_c1547763.

[11] Y. N. Udoakah and L. Okure, "Design and Implementation of a Density-ased Traffic

Light Control with Surveillance System," Nigerian Journal of Technology, vol. 36, no.

4, pp. 1239-1248, October 2017.

[12] L. E. Y. Mimbela, L. A. Klein and P. Kent, "A Summary of Vehicle Detection and

Surveillance Technologies used in Intelligent Transportation Systems," 2000.

[13] A. Zarnescu, R. Ungurelu, A. G. Iordache, M. Secere and M. Spoiala, "Crossroad

Traffic Monitoring Using Magnetic," Institute of Electrical and Electronics

Engineering, pp. 413-418, 2017.

[14] V. Dangi, A. Parab, K. Pawar and S. Rath, "Image Processing Based Intelligent Traffic

Controller," Undergraduate Academic Research Journal, vol. 1, no. 1, pp. 13-17, 2012.

[15] K. Vidhya and A. B. Banu, "Density Based Traffic Signal System," in 2014

International Conference on Innovations in Engineering and Technology (ICIET’14),

2014.

53

[16] R. Datondji, Y. Dupuis, P. Subirats and P. Vasseur, "A Survey Of Vision-Based Traffic

Monitoring Of Road Intersections," IEEE Transactions on Intelligent Transport

Systems, pp. 1-19, 2018.

[17] R. Tiwari and D. K. Singh, "Vehicle control using raspberry pi and image processing,"

Innovative Systems Design and Engineering, vol. 8, no. 2, pp. 45-49, 2017.

[18] R. Justin and R. Kumar, "Vehicle Detection and Counting Method Based on Digital

Image Processing in Python," International Journal of Electrical Electronics &

Computer Science Engineering, pp. 141-147, 2018.

[19] P. Choudekar, S. Banerjee and M. K. Muju, "Real Time Traffic Light Control Using

Image Processing," Indian Journal of Computer Sciencee and Engineering, vol. 2, no. 1,

pp. 6-10.

[20] A. Mordvintsev and A.K., "Canny Edge Detection," OpenCV-Python Tutorials, 2013.

[Online]. Available: https://opencv-python-

tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_canny/py_canny.html.

[21] G. R. Choukekar and A. G. Bhosale, "Density Based Smart Traffic Light Control

System and Emergency Vehicle Detection Based On Image Processing," International

Research Journal of Engineering and Technology (IRJET), vol. 5, no. 4, pp. 2441-2446,

2018.

[22] P. KadewTraKuPong and R. Bowden, An improved background mixture model for real-

time tracking with shadow detection, 2001.

[23] Z. Zivkovic, Improved adaptive Gausian mixture model for background subtraction,

2004.

54

[24] Z. Zivkovic, Efficient Adaptive Density Estimation per Image Pixel for the Task of

Background Subtraction, 2006.

[25] A. B. Godbehere, A. Matsukawa and K. Goldberg, Visual Tracking of Human Visitors

under Variable-Lighting Conditions for a Responsive Audio Art Installation, 2012.

[26] "Background Subtraction," OpenCV Python Tutorials, [Online]. Available:

https://docs.opencv.org/3.0-

beta/doc/py_tutorials/py_video/py_bg_subtraction/py_bg_subtraction.html.

[27] D. Beymer, P. McLauchlain, B. Coifman and J. Malik, "A Real-time Computer Vision

System for Measuring Traffic Parameters," IEEE, pp. 495-501, 1997.

[28] Z. Yanbing, "Design of Low-power Wireless Communication System Based on

MSP430 and nRF2401," in 2010 International Conference on Measuring Technology

and Mechatronics Automation, Shanxi, 2010.

[29] Z. Yanbing, "Design of Low Power Wireless Communication System Based on

MSP430 and nRF2401," in 2010 International Conference on Measuring Technology

and Mechatronics Automation, Shanxi, 2010.

[30] B. Zhou, J. Cao, X. Zeng and H. Wu, "Adaptive Traffic Light Control in Wireless

Sensor Network-based Intelligent Transportation System," IEEE, 2010.

[31] V.-T. Tran, Y.-C. Yan and W.-H. Tsai, "Detection of Ambulance and Fire Truck Siren

Sounds Using Neural Networks," in Proceedinggs of 51st Research World International

Conference, Hanoi-Vietnam, 2018.

55

[32] T. Gordon, Z. Bareket, L. Kostyniuk, M. Barnes, M. Hagan, Z. Kim, D. Cody, A.

Skabardonis and A. Vayda, "Image processing and feature extraction," in Site-based

Video Sytem Design and development, The National Academies Press, 2012, pp. 50-55.

[33] N. Patrascoiu and C. Rus, "A mobile system for data acquisition," Institute of Electrical

and Electronics Engineering, pp. 318-321, 2018.

56

Appendix

Appendix I: Transmit Code for nRF24L01 Transceiver

Title: Raspberry Pi 3 Tutorial 13-Wireless Pi to Pi Communication with
nRF24L01
Author: Sushant Narang
Date: 2016
Availability: http://invent.module143.com/daskal_tutorial/raspberry-pi-3-
wireless-pi-to-pi-python-communication-with-nrf24l01/

import RPi.GPIO as GPIO

from lib_nrf24 import NRF24
import time
import spidev

GPIO.setmode(GPIO.BCM)

pipes= [[0xe7, 0xe7, 0xe7, 0xe7, 0xe7], [0xc2, 0xc2, 0xc2, 0xc2, 0xc2]]

radio = NRF24(GPIO, spidev.SpiDev())
radio.begin(0,17)
radio.setPayloadSize(32)
radio.setChannel(0x60)

radio.setDataRate(NRF24.BR_2MBPS)
radio.setPALevel(NRF24.PA_MAX)
radio.setAutoAck(True)
radio.enableDynamicPayloads()
radio.enableAckPayload()
radio.setCRCLength(16)

radio.openWritingPipe(pipes[1])
radio.printDetails()

while(1):
 message = list("Number of vehicles on lane i")
 radio.write(message)
 print("We sent the message of {}".format(message))

 #check if it returned ackPL
 if radio.isAckPayloadAvailable():
 returnedPL = []
 radio.read(returnedPL, radio.getDynamicPayloadSize())
 print("Our returned payload was {}".format(returnedPL))
 else:
 print("No payload received")
 time.sleep(1)

http://invent.module143.com/daskal_tutorial/raspberry-pi-3-wireless-pi-to-pi-python-communication-with-nrf24l01/
http://invent.module143.com/daskal_tutorial/raspberry-pi-3-wireless-pi-to-pi-python-communication-with-nrf24l01/

57

Appendix II: Receive Code for nRF24L01 Transceiver

Title: Raspberry Pi 3 Tutorial 13-Wireless Pi to Pi Communication with
nRF24L01
Author: Sushant Narang
Date: 2016
Availability: http://invent.module143.com/daskal_tutorial/raspberry-pi-3-
wireless-pi-to-pi-python-communication-with-nrf24l01/

import RPi.GPIO as GPIO

from lib_nrf24 import NRF24
import time
import spidev

GPIO.setmode(GPIO.BCM)

pipes = [[0xe7, 0xe7, 0xe7, 0xe7,0xe7], [0xc2, 0xc2, 0xc2, 0xc2, 0xc2]]

#create an instance of the radio
radio = NRF24(GPIO, spidev.SpiDev())
#CSN and CE turn radio on
radio.begin(0,17)
radio.setPayloadSize(32)
radio.setChannel(0x60)

radio.setDataRate(NRF24.BR_2MBPS)
radio.setPALevel(NRF24.PA_MAX)
radio.setAutoAck(True)
radio.enableDynamicPayloads()
radio.enableAckPayload()
radio.setCRCLength(16)
radio.openReadingPipe(1, pipes[0])
radio.printDetails()

radio.startListening()
while (1):
 ackPL = [1]
 while not radio.available(0):
 time.sleep(1/100)
 receivedMessage = []
 radio.read(receivedMessage, radio.getDynamicPayloadSize())
 time.sleep(3)
 print("Received: {}".format(receivedMessage))

 print("Translating the received message into unicode characters")
 string = ""
 for n in receivedMessage:
 #Decode into standard unicode set
 if(n>=32 and n<=126):

http://invent.module143.com/daskal_tutorial/raspberry-pi-3-wireless-pi-to-pi-python-communication-with-nrf24l01/
http://invent.module143.com/daskal_tutorial/raspberry-pi-3-wireless-pi-to-pi-python-communication-with-nrf24l01/

58

 string += chr(n)
 print(string)
 radio.writeAckPayload(1, ackPL, len(ackPL))
 print("Loaded payload reply of {}".format(ackPL))

59

Appendix III: Image Processing Code

#Image processing for Vehicle Detection
#@author: Odero Margaret Anyango
#Department of Electrical and Electronics Engineering
#Ashesi University
#Final Capstone Project

#importing necessary libraies
from __future__ import print_function
import cv2
import numpy as np
import matplotlib
from matplotlib import pyplot as plt

#A. Image preprocessing
#a) importing the original image

filename = 'imagesC5m3.jpg'
oriimg = cv2.imread(filename,cv2.IMREAD_UNCHANGED)
cv2.imshow('Original Image',oriimg)

#b) resizing the image

height, width, depth = oriimg.shape
print(height, width, depth)
imgScale = 500/width
newX,newY = oriimg.shape[1]*imgScale, oriimg.shape[0]*imgScale
sizedimg = cv2.resize(oriimg,(int(newX),int(newY)))
cv2.imshow("Sized Image",sizedimg)

#c) gray-scale conversion

gray_image = cv2.cvtColor(sizedimg, cv2.COLOR_BGR2GRAY)
cv2.imshow("Gray Scale Image",gray_image)

#d) power law transformation

gray_image1 = gray_image/255.0
im_power_law_transformation = cv2.pow(gray_image1,1.2)
#cv2.imshow('Power Law Transformation',im_power_law_transformation)
cv2.imwrite('im_power_law_transformation.jpg',im_power_law_transformation)

#B. Edge Detection using Canny Algorithm

img= gray_image.astype(np.uint8)
edges = cv2.Canny(img,100,200)
cv2.imshow('Edges',edges)

60

#b) Automatic Canny Algorithm- automiatically generates thresholds
import argparse
import glob
def auto_canny(image, sigma=0.33):
 # compute the median of the single channel pixel intensities
 v = np.median(image)

 # apply automatic Canny edge detection using the computed median
 lower = int(max(0, (1.0 - sigma) * v))
 upper = int(min(255, (1.0 + sigma) * v))
 edged = cv2.Canny(image, lower, upper)

 # return the edged image
 return edged
auto = auto_canny(gray_image)
#cv2.imshow('auto_canny',auto)
cv2.imwrite('auto.jpg',auto)

#C. Background subtraction

foregbackg = cv2.bgsegm.createBackgroundSubtractorMOG()
foregmask = foregbackg.apply(gray_image)
#cv2.imshow('Foreground Mask',foregmask)

#Finding contours
imcontours, contours, hierarchy = cv2.findContours(edges,
cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
cv2.imshow('imcontours', imcontours)

large_contours = []
#print ("Return type:",type(contours))
for (i, c) in enumerate(contours):
 if len(c)>200:
 large_contours.append(c)
 #print("\tSize of contour %d: %d" % (i, len(c)))

#Number of large object in the image
print("Found %d objects." % len(large_contours))

draw contours over original image
cv2.drawContours(sizedimg, large_contours, -1, (0, 0, 255), 1)

#diplaying squares
create all-black mask image
mask = np.zeros(sizedimg.shape, dtype="uint8")

draw red rectangles for each object's bounding box

61

for c in large_contours:
 (x, y, w, h) = cv2.boundingRect(c)
 cv2.rectangle(mask, (x, y), (x + w, y + h), (255, 255, 255), -1)
 cv2.rectangle(sizedimg, (x, y), (x + w, y + h), (255, 0, 0), 2)

apply mask to the original image
img = cv2.bitwise_and(sizedimg, mask)

display masked image
cv2.namedWindow("output", cv2.WINDOW_NORMAL)
cv2.imshow("output", img)
cv2.waitKey(0)

62

Appendix IV: Code for Green Light Sequence and Length Determination

#Green Light Sequence and Length Determination
#@author: Odero Margaret Anyango
#Department of Electrical and Electronics Engineering
#Ashesi University
#Final Capstone Project

import RPi.GPIO as GPIO
import random
import time

GPIO.setmode(GPIO.BCM) #specify the naming convention to be used
GPIO.setwarnings(False)

#GPIOs to be used for traffic lights
#RL : RED LIGHT GL: GREEN LIGHT The numbers 1-8 represent the lane numbers
RL1 = 2
GL1 = 3
RL2 = 4
GL2 = 14
RL3 = 27
GL3 = 23
RL4 = 22
GL4 = 24
RL5 = 25
GL5 = 7
RL6 = 5
GL6 = 6
RL7 = 12
GL7 = 13
RL8 = 19
GL8 = 26

#set pins as output
GPIO.setup(RL1, GPIO.OUT)
GPIO.setup(GL1, GPIO.OUT)
GPIO.setup(RL2, GPIO.OUT)
GPIO.setup(GL2, GPIO.OUT)
GPIO.setup(RL3, GPIO.OUT)
GPIO.setup(GL3, GPIO.OUT)
GPIO.setup(RL4, GPIO.OUT)
GPIO.setup(GL4, GPIO.OUT)
GPIO.setup(RL5, GPIO.OUT)
GPIO.setup(GL5, GPIO.OUT)
GPIO.setup(RL6, GPIO.OUT)
GPIO.setup(GL6, GPIO.OUT)
GPIO.setup(RL7, GPIO.OUT)
GPIO.setup(GL7, GPIO.OUT)
GPIO.setup(RL8, GPIO.OUT)

63

GPIO.setup(GL8, GPIO.OUT)

#At the start, define all streets red
def setAllStreetsRed():
 GPIO.output(RL1, GPIO.HIGH)
 GPIO.output(GL1, GPIO.LOW)
 GPIO.output(RL2, GPIO.HIGH)
 GPIO.output(GL2, GPIO.LOW)
 GPIO.output(RL3, GPIO.HIGH)
 GPIO.output(GL3, GPIO.LOW)
 GPIO.output(RL4, GPIO.HIGH)
 GPIO.output(GL4, GPIO.LOW)
 GPIO.output(RL5, GPIO.HIGH)
 GPIO.output(GL5, GPIO.LOW)
 GPIO.output(RL6, GPIO.HIGH)
 GPIO.output(GL6, GPIO.LOW)
 GPIO.output(RL7, GPIO.HIGH)
 GPIO.output(GL7, GPIO.LOW)
 GPIO.output(RL8, GPIO.HIGH)
 GPIO.output(GL8, GPIO.LOW)

#Define the different cases(for testing, only case 1-4 out of 12 are
#defined)
def setCase1Active():
 GPIO.output(RL1, GPIO.HIGH)
 GPIO.output(GL1, GPIO.LOW)
 GPIO.output(RL2, GPIO.HIGH)
 GPIO.output(GL2, GPIO.LOW)
 GPIO.output(RL3, GPIO.LOW)
 GPIO.output(GL3, GPIO.HIGH)
 GPIO.output(RL4, GPIO.HIGH)
 GPIO.output(GL4, GPIO.LOW)
 GPIO.output(RL5, GPIO.HIGH)
 GPIO.output(GL5, GPIO.LOW)
 GPIO.output(RL6, GPIO.HIGH)
 GPIO.output(GL6, GPIO.LOW)
 GPIO.output(RL7, GPIO.LOW)
 GPIO.output(GL7, GPIO.HIGH)
 GPIO.output(RL8, GPIO.HIGH)
 GPIO.output(GL8, GPIO.LOW)

def setCase2Active():
 GPIO.output(RL1, GPIO.HIGH)
 GPIO.output(GL1, GPIO.LOW)
 GPIO.output(RL2, GPIO.HIGH)
 GPIO.output(GL2, GPIO.LOW)
 GPIO.output(RL3, GPIO.HIGH)
 GPIO.output(GL3, GPIO.LOW)
 GPIO.output(RL4, GPIO.HIGH)
 GPIO.output(GL4, GPIO.LOW)

64

 GPIO.output(RL5, GPIO.HIGH)
 GPIO.output(GL5, GPIO.LOW)
 GPIO.output(RL6, GPIO.HIGH)
 GPIO.output(GL6, GPIO.LOW)
 GPIO.output(RL7, GPIO.LOW)
 GPIO.output(GL7, GPIO.HIGH)
 GPIO.output(RL8, GPIO.LOW)
 GPIO.output(GL8, GPIO.HIGH)

def setCase3Active():
 GPIO.output(RL1, GPIO.HIGH)
 GPIO.output(GL1, GPIO.LOW)
 GPIO.output(RL2, GPIO.HIGH)
 GPIO.output(GL2, GPIO.LOW)
 GPIO.output(RL3, GPIO.HIGH)
 GPIO.output(GL3, GPIO.LOW)
 GPIO.output(RL4, GPIO.LOW)
 GPIO.output(GL4, GPIO.HIGH)
 GPIO.output(RL5, GPIO.HIGH)
 GPIO.output(GL5, GPIO.LOW)
 GPIO.output(RL6, GPIO.HIGH)
 GPIO.output(GL6, GPIO.LOW)
 GPIO.output(RL7, GPIO.HIGH)
 GPIO.output(GL7, GPIO.LOW)
 GPIO.output(RL8, GPIO.LOW)
 GPIO.output(GL8, GPIO.HIGH)

def setCase4Active():
 GPIO.output(RL1, GPIO.HIGH)
 GPIO.output(GL1, GPIO.LOW)
 GPIO.output(RL2, GPIO.HIGH)
 GPIO.output(GL2, GPIO.LOW)
 GPIO.output(RL3, GPIO.LOW)
 GPIO.output(GL3, GPIO.HIGH)
 GPIO.output(RL4, GPIO.LOW)
 GPIO.output(GL4, GPIO.HIGH)
 GPIO.output(RL5, GPIO.HIGH)
 GPIO.output(GL5, GPIO.LOW)
 GPIO.output(RL6, GPIO.HIGH)
 GPIO.output(GL6, GPIO.LOW)
 GPIO.output(RL7, GPIO.HIGH)
 GPIO.output(GL7, GPIO.LOW)
 GPIO.output(RL8, GPIO.HIGH)
 GPIO.output(GL8, GPIO.LOW)

I = ['north', 'south', 'east', 'west']
J = ['forward', 'left']
R = [1,2,3,4,5,6,7,8]

65

Cases_dict =
{'case1':['L3','L7'],'case2':['L7','L8'],'case3':['L8','L4'],'case4':['L3',
'L4']}

a1 = 4
a2 = 2
a3 = 6
a4 = 8
a5 = 10

#constant car speed assumed to be 20 while driving across the intersection
car_speed = 20

#transition time between red light and green light
T_transition = 50 #seconds

#Maximum green light time
T_control = 180 #seconds; determined from literature

setAllStreetsRed()
time.sleep(5)
Time = 5 #number of times the testing will be done
while Time > 0:

No_ofGLD_dict =
{'case1':random.randint(1,5),'case2':random.randint(1,5),'case3':random
.randint(1,5),'case4':4}

#finding the total no. of green light instances

 No_ofGLD_sum = 0
 for val in No_ofGLD_dict.values():
 No_ofGLD_sum = No_ofGLD_sum + val

 #traffic volume for different lanes 1-8, at every time t

 TraVol_dict = {'L1':random.randint(1,10),
'L2':random.randint(1,10), 'L3':random.randint(1,10),
'L4':random.randint(1,10), 'L5':random.randint(1,10),
'L6':random.randint(1,10), 'L7':random.randint(1,10),
'L8':random.randint(1,10)}

 #finding total TraVol
 TraVol_sum = 0
 for val in TraVol_dict.values():
 TraVol_sum = TraVol_sum + val

 #green light priority determination GLD
 GLD_dict = {}

 #Case 1
 TV_1_t = (TraVol_dict.get('L3')+ TraVol_dict.get('L7'))/TraVol_sum
 WT_1_t = random.uniform(0,1)

66

 HL_1_t = 1-(No_ofGLD_dict['case1']/No_ofGLD_sum)
 BC_1_t = 0 #assuming no blank cases
 SC_1_t = 0 #assuming no special circumstances
 GLD_1_t = a1*TV_1_t + a2*WT_1_t + a3*HL_1_t + a4*BC_1_t + a5*SC_1_t

 GLD_dict['case1'] = GLD_1_t

 #Case 2
 TV_2_t = (TraVol_dict.get('L7')+ TraVol_dict.get('L8'))/TraVol_sum
 WT_2_t = random.uniform(0,1)
 HL_2_t = 1-(No_ofGLD_dict['case2']/No_ofGLD_sum)
 BC_2_t = 0 #assuming no blank cases
 SC_2_t = 0 #assuming no special circumstances
 GLD_2_t = a1*TV_2_t + a2*WT_2_t + a3*HL_2_t + a4*BC_2_t + a5*SC_2_t

 GLD_dict['case2'] = GLD_2_t

 #Case 3
 TV_3_t = (TraVol_dict.get('L8')+ TraVol_dict.get('L4'))/TraVol_sum
 WT_3_t = random.uniform(0,1)
 HL_3_t = 1-(No_ofGLD_dict['case2']/No_ofGLD_sum)
 BC_3_t = 0 #assuming no blank cases
 SC_3_t = 0 #assuming no special circumstances
 GLD_3_t = a1*TV_3_t + a2*WT_3_t + a3*HL_3_t + a4*BC_3_t + a5*SC_3_t

 GLD_dict['case3'] = GLD_3_t

 #Case 4
 TV_4_t = (TraVol_dict.get('L3')+ TraVol_dict.get('L4'))/TraVol_sum
 WT_4_t = random.uniform(0,1)
 HL_4_t = 1-(No_ofGLD_dict['case2']/No_ofGLD_sum)
 BC_4_t = 0 #assuming no blank cases
 SC_4_t = 0 #assuming no special circumstances
 GLD_4_t = a1*TV_4_t + a2*WT_4_t + a3*HL_4_t + a4*BC_4_t + a5*SC_4_t

 GLD_dict['case4'] = GLD_4_t
 TV_dict = {'case1': TV_1_t, 'case2': TV_2_t, 'case3': TV_3_t, 'case4':
TV_4_t}
 WT_dict = {'case1': WT_1_t, 'case2': WT_2_t, 'case3': WT_3_t, 'case4':
WT_4_t}
 HL_dict = {'case1': HL_1_t, 'case2': HL_2_t, 'case3': HL_3_t, 'case4':
HL_4_t}
 print('GLD dictionary: ' + str(GLD_dict))
 print('TV dictionary: ' + str(TV_dict))
 print('WT dictionary: ' + str(WT_dict))
 print('HL dictionary: ' + str(HL_dict))

 GLD_max = max(list(GLD_dict.values()))
 print("Maximum GLD is "+'{}'.format(GLD_max))

67

 #Green Light Duration
 for key, val in GLD_dict.items():
 if val == GLD_max:
 GLD_max_key = key

 print("Maximum GLD is of "+'{}'.format(GLD_max_key))
 #print("Street 2: "+'{}'.format(street2))

 #m=incrementing the count of green light for case with max GLD by 1
 No_ofGLD_dict[key] = No_ofGLD_dict[key]+ 1

 lanes_maxcase_list = list(Cases_dict[GLD_max_key])
 TraVol1_key = lanes_maxcase_list[0]
 TraVol1 = TraVol_dict[TraVol1_key]

 TraVol2_key = lanes_maxcase_list[1]
 TraVol2 = TraVol_dict[TraVol2_key]

 G_next = ((max(TraVol1,TraVol2))/car_speed) * T_transition
 print("Max traffic volume of {} is
{}".format(GLD_max_key,max(TraVol1,TraVol2)))

 if G_next > T_control:
 G_next = T_control
 print("Green light length is "+'{}'.format(G_next))

 #switching on and off the green light
 GLDkeys_tuple = GLD_dict.keys()
 GLDkeys_list = list(GLDkeys_tuple)
 GLDkeys_list.sort()
 print("The GLD key list is: "+ str(GLDkeys_list))

 if GLD_max_key == GLDkeys_list[0]: #case1
 setCase1Active()
 print ("case1 is active and green")
 elif GLD_max_key == GLDkeys_list[1]: #case2
 setCase2Active()
 print ("case2 is active and green")
 elif GLD_max_key == GLDkeys_list[2]: #case3
 setCase3Active()
 print ("case3 is active and green")
 elif GLD_max_key == GLDkeys_list[3]: #case4
 print ("case4 is active and green")
 setCase4Active()
 print('')
 print('')
 time.sleep(G_next)
 Time-=1
 setAllStreetsRed()

68

Appendix V: Code Block for Image Capture

from picamera import PiCamera #importing the class PiCamera that contains
all the methods necessary for use with the pi camera.
from time import sleep
camera =PiCamera() #creating a camera object
camera.start_preview() #start viewing the object within the field of view of
the #camera
sleep(10) #allow 10 seconds before taking the picture
camera.capture(‘/home/pi/Desktop/CapstonePictures/street1.jpg’)#capture the
picture #and store it in the path indicated with the name street1 of type
.jpg
camera.stop_preview()

69

Appendix VI: The Working of the nRF24L01 Transceiver

The nRF24L01 transceiver sends and receives data on a frequency channel. Two modules

communicating need to be on the same channel to communicate. The channel occupies a 1MHz

bandwidth at 250kbps or 1Mbps data rate, and 2MHz bandwidth at 2Mbps data rate and this

bandwidth and could be anywhere between 2.4GHz to 2.525GHz. Hence, there are 125 possible

channels to be used. nRF24L01 module has a feature known as multiple transmitters single

receiver (multiceiver) in which the RF channel is divided into 6 parallel data pipes, each with

a physical address(data pipe address).

The transceiver uses enhanced shockburst protocol with a functionality for payload length

specification in each packet. The payload length may vary from 1 to 32bytes. Each packet can

also request for acknowledgment to be sent when it is received by another device (stop-and-

wait). Packet handling is done automatically by the transceiver, and the MCU is not involved.

It has 4 kinds of working modes, as shown in table 0.1.

Operating mode Power Up Pin CE Pin CS

Transceiver mode 1 1 0

Configure mode 1 0 1

Idle mode 1 0 0

Off mode 0 x x

Table 0.1: Working modes of the NRF2401 transceiver

70

Appendix VII: Server-Client Setup for Pi to Pi Communication

1. To install Flask on the server side, this command is used in the command line

interface.

2. To create a web micro-server

3. To install urllib3 on the client side

4. To send request from the client side to the server side

pip install Flask

from flask import Flask
app = Flask(__name__)

@app.route(“/”)
def hello():
 return “hello”

if __name__ == “__main__”:
 app.run(host = ‘0.0.0.0’)

import urllib3

client = urllib3.PoolManager()
data = ‘number of cars lane i’
url = ‘http://169.254.92.78:5000/’
#the IP address is of the server raspberry pi
method = ‘POST’ #to send a post request

response = client.request(method,url,body=data)
#sending a request to the server, with data embedded within
the request

pip install urllib3

