Autonomous self-driving vehicle: Perception, supervised learning, control.

Journal Title
Journal ISSN
Volume Title
Ashesi University
Road accidents are estimated to be the ninth leading cause of death across all age groups globally. 1.25 million people die annually from road accidents and Africa has the highest rate of road fatalities (WHO, 2015). Self-driving technology has the potential of saving over a million lives lost to preventable road accidents worldwide. Africa accounts for the majority of road fatalities and as such would benefit immensely from this technology. However, financial constraints prevent viable experimentation and research into self-driving technology in Africa. In this applied project I designed and implemented RollE to bridge this gap. RollE is an affordable modular autonomous vehicle development platform. It is capable of road data collection and autonomous driving using a convolutional neural network. This system is aimed at providing students and researchers with an affordable autonomous vehicle to develop self-driving car technology.
Applied project submitted to the Department of Computer Science, Ashesi University, in partial fulfillment of Bachelor of Science degree in Computer Science, April 2018
Road accidents, road fatalities, Self-driving technology, preventable road accidents, RollE, modular autonomous vehicle, road data collection, autonomous driving, Convolutional Neural Network (CNN)