Development of a low-cost biomedical device to enhance pneumonia diagnosis in children
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Pneumonia has contributed greatly to child mortality, especially among children under the ages of five in sub-Saharan Africa, killing more children than the number of children dying from HIV/AIDS. The current methods of diagnosing pneumonia involved physical examination and chest x-ray which are limited by low accuracy, high error margins, higher cost, and stands the risks of inducing cancer. In this work, a low-cost, non-invasive biomedical device was designed and developed to improve accuracy in diagnosing pneumonia. The device functions to detect fluid in a lung consolidated by pneumonia. Dry grouting sponge was used as a phantom for a healthy lung, while a wet sponge was used to mimic a pneumoniaconsolidated lung. Surface exciter was used to produce sound waves which travelled through one side of the phantom and are detected on the other end using an electronic stethoscope. The signals detected were digitally analyzed using MATLAB and AUDACITY software. The differences in resonant frequencies from the power spectrum analysis of sound waves as they travelled through the sponges were used to distinguish between a pneumonia-consolidated lung and a healthy lung.